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Abstract. Let ρ be an even two-dimensional representation of the Galois

group Gal(Q/Q) which is induced from a character χ of odd order of the
absolute Galois group of a real quadratic field K. After imposing some addi-

tional conditions on χ, we attach ρ to a Hecke eigenclass in the cohomology

of GL(2,Z) with coefficients in a certain infinite-dimensional vector space V
over an arbitrary field of characteristic not equal to 2. The space V is defined

purely algebraically starting from the field K.

1. Introduction

One type of noncommutative reciprocity law connects a Galois representation
(i.e. a continuous homomorphism ρ : GQ → GL(n,F) for some field F, where GQ
is the absolute Galois group of Q) with a system of eigenvalues of a Hecke algebra
of some reductive Q-group acting on an F-vector space V . The connection consists
of an equality, for almost all rational prime numbers `, between the characteristic
polynomial of the image of a Frobenius element at ` under ρ and a “Hecke polyno-
mial” constructed according to a simple recipe from the eigenvalues of the Hecke
operators at `. In such a case, it is standard terminology to say that ρ is “at-
tached” to the system of Hecke operators, or to an eigenvector in V that supports
the system.

We say that ρ is odd if the characteristic of F equals 2 or if the image of complex
conjugation is conjugate to a diagonal matrix with alternating 1’s and −1’s on
the diagonal. When ρ is odd, there are many profound theorems and conjectures
concerning these reciprocity laws. For example, if n = 2, ρ is odd, and F is a finite
field, Serre’s conjecture [17] (now a theorem of Khare and Wintenberger [12, 13]
and Kisin[14]) states that ρ is attached to a holomorphic modular form that is an
eigenform of the Hecke operators. Other papers, such as [3, 4, 11] conjecture the
existence of analogous attachments for general values of n, with modular forms
replaced by elements of arithmetic cohomology groups. In all of these conjectures,
ρ is odd.

Conversely, work of Scholze [16] proves that any eigenclass of the Hecke operators
in the cohomology of a congruence subgroup Γ of GL(n,Z) with coefficients in a
finite-dimensional admissible module M over a field F has an attached Galois repre-
sentation. For a field F of characteristic 0, this theorem was already proven in [10]
by Harris, Lan, Taylor and Thorne. “Admissible” means that if F has characteristic
0 then M is an algebraic representation, and if F has positive characteristic, then
the matrices used to define the Hecke operators act on M via reduction modulo
some fixed integer.
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Caraiani and Le Hung [7] showed that for a Hecke eigenclass z ∈ H∗(Γ,M) for a
congruence subgroup Γ of GL(n,Z) and an admissible moduleM , the representation
guaranteed to exist by Scholze’s theorem is odd if the characteristic of F is positive
or if z is cuspidal.

It is natural then to ask about what kind of cohomological attachment to expect
if ρ is not odd. Of course, any module M occurring in such a reciprocity law could
not be admissible. One reason to suppose there may be some kind of theorem
along these lines is that the work in [3] gives examples of odd 3-dimensional Galois
representations each of which is a sum of an even 2-dimensional Galois represen-
tation σ and a character, and which appear to be attached to the cohomology of
a congruence subgroup of GL(3,Z) with admissible coefficients (over a finite field.)
Some kind of cohomological attachment for σ may explain these phenomena.

We have no idea what may be the case for a general Galois representation. In
this paper, we set n = 2, and say that ρ is even if it is not odd. Our main theorem
asserts the attachment of certain even Galois representations to Hecke eigenclasses
in H∗(GL(2,Z),M) for some “natural” (infinite dimensional) module M . We have
to be careful with the exact definition of “attachment”, which we will explain, and
then we can state the theorem.

Let f be a modular form of weight k ≥ 0 on the upper half plane, with level
Γ1(N) and nebentype θ, and suppose that f is an eigenform for the Hecke operators
T` and T`,` for all ` - N . Denote the eigenvalue of T` by a`, and the eigenvalue of
T`,` by A`. When k ≥ 2, and f is holomorphic, there is a Galois representation ρ
such that for all ` - N ,

det(I − ρ(Frob`)X) = 1− a`X + `A`X
2,

where (in this case), A` is easily seen to be equal to `k−2θ(`).
The cases when k = 0 or 1 are different. If k = 1 and f is holomorphic, or if

k = 0 and f is a Maass form where the eigenvalue of the Laplacian is 1/4, there is
an attached Galois representation (this is only conjectural in the Maass form case)
with finite image. In both cases, the motivic weight of f is 0, and the characteristic
polynomial of Frob` equals

1− a`X + θ(`)X2.

These forms of the Hecke polynomials depend on the usual normalization of the
Hecke operators. The correct definition of attachment to use in our situation is
analogous to the case of a Maass form.

Definition 1.1. Let V be a Hecke module over the field F, occurring in the ho-
mology of GL(2,Z) with a non-admissible coefficient module. Let v ∈ V be an
eigenvector for the Hecke operators T` and T`,` for almost all primes. Let a` be
the eigenvalue of T` acting on v, and A` the eigenvalue of T`,` acting on v. Let
ρ : GQ → GL(2,F) be an even Galois representation. We say that ρ is attached to
v if, for almost all `,

det(I − ρ(Frob`)X) = 1− a`X +A`X
2.

Our main theorem (Theorem 11.1) then takes the following form.

Theorem. Let K be a real quadratic field of discriminant d, and let F be a field of
characteristic 0 or a finite field of odd characteristic. In the first case, set p = 1 and
in the second case let p be the characteristic of F. Let χ : GK → F× be a character
with finite image. Let L be the fixed field of the kernel of χ and choose N ∈ Z so
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that L/K is unramified outside primes of K dividing N . Then we may consider
χ as a character on the fractional ideals of K relatively prime to N . Define the
subgroup K(M, q) ⊆ K× as in Definition 3.7. Assume that

(1) χ is trivial on the principal fractional ideals of K generated by elements of
K(M, q).

(2) χ is trivial on the principal fractional ideals of K generated by elements of
Q× that are prime to pdN .

(3) [L : K] is odd.
(4) L/Q is Galois.

Then ρ : GQ → GL(2,F) given by ρ = Ind
GQ
GK

χ is an even Galois representation and

is attached to a Hecke eigenclass in H1(GL(2,Z),M(M, q)∗), for a certain module
M(M, q) defined in Definition 4.2.

The module M(M, q) that we use is naturally defined in terms of the field K. It
is a countably infinite-dimensional module related to the kind of module that we
we used in [2] to study reducible cases of the Serre-type conjecture for GL(3)/Q.

The conditions imposed on χ guarantee that L is a totally real field, which is
why the induced representation ρ can be even. Examples of characters χ satisfying
the conditions of the theorem include unramified characters of GK and characters
of GK cutting out subfields of ring class fields of K that are Galois over Q and of
odd degree over K.

The Galois representations in the theorem are known to be attached to Maass
forms. The results of [6] (building on [15]) thus also serve to attach the Galois
representations that we study to cohomology groups. However, there are very sig-
nificant differences between the construction in [6] and our construction. First, [6]
uses wholly different coefficient modules than we do. Their modules are real vector
spaces and their techniques are analytic. In contrast, our coefficient modules are
duals of countably infinite-dimensional vector spaces over any field of characteristic
not equal to 2, and our methods are purely algebraic. Second, the results of [6] hold
for arbitrary Maass forms, not only those that are expected to have arithmetic sig-
nificance. Third, we hope to be able to use our theorem, combined with techniques
similar to those of [2], to prove a Serre type conjecture for an odd 3-dimensional
Galois representation which has a 2-dimensional constituent equivalent to an in-
duced representation as treated in the theorem. We do not think that the results of
[6] would be helpful in this regard, because for Serre type conjectures it is essential
for the coefficient module to be a vector space over a finite field.

The proof of our theorem goes as follows. Viewing K as a two-dimensional
Q-vector space, we construct a GL(2,Q)-module M consisting of formal F-linear
combinations of elements of X, where X is the set of homothety classes of column
vectors in K2 where the ratio of the two entries is not in Q ∪∞. The homotheties
involved here are restricted to multiplication by the elements of a carefully chosen
subgroup of K× (see sections 2, 3, and 4). The stabilizer Γx ⊂ GL(2,Z) of a
homothety class x ∈ X is an infinite abelian group generated by {±I2} and the
image γx of a certain unit in the ring of integers of K under a certain embedding
of K into GL(2,Q) as a non-split torus.

Because of the factor {±I2} in the stabilizers, we must assume that the charac-
teristic of F is not equal to 2.
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Incidentally, the matrix γx also stabilizes a closed geodesic in the quotient of
the upper half plane modulo GL(2,Z). Our initial idea was to work with the
fundamental classes of these closed geodesics in some appropriate homology group.
In the end we work directly with certain classes in H1(G,M). (The construction
of these homology classes is similar to a construction used in [1], but we do not see
any deep connection between the two situations.)

Because K× is abelian, it also acts on M, commuting with the GL(2,Q)-action.
We replace M by a related submodule M(M, q) on which a certain large subgroup
of Q× acts via a quadratic character q related to the quadratic field K/Q. The
purpose of this is to make q equal the central character of the coefficient module
M(M, q), which then causes the coefficient of X2 in the Hecke polynomial to be
correct.

In section 5, we obtain an isomorphism of H1(GL(2,Z),M) with a direct sum of
H1(Γx,F)’s, where x runs over a set of representatives of the GL(2,Z)-orbits in X.
This uses Shapiro’s lemma and is an algebraic version of the fundamental classes
of the corresponding closed geodesics.

To complete section 5, we work out how the Hecke operators act on this direct
sum. We use the method of partial Hecke operators described in [2] to get a
tractable formula for the action of a Hecke operator on H1(GL(2,Z),M(M, q)).
This rather delicate analysis is what allows us to compare the Hecke operator at `
with a Laplace operator on the `-adic Bruhat-Tits tree below.

We call attention to the connection proved in Lemma 5.8 between two constants,
dj and ej , which are indexes of certain subgroups of units. When we compare the
Hecke operator at ` with the Laplace operator on functions of `-adic lattices, at the
beginning of the proof of Theorem 8.8, this connection appears in a surprising and
crucial fashion.

A class in H1(GL(2,Z),M(M, q)) has finite support, and the Hecke operators
expand that support. So there will not be any Hecke eigenvectors in the homology
group. Instead, we find Hecke eigenvectors in the dual spaceH1(GL(2,Z),M(M, q)∗).

A key idea is to interpret elements of the dual space H1(GL(2,Z),M(M, q)∗)
of the homology as functions on the space of lattices in K, which we explain in
section 6. In order to construct suitable such functions we introduce, in section 7,
the Bruhat-Tits graph T` for GL(2,Q`) or a certain double cover T 2

` of T`, depending
on whether ` is split or inert in K.

We then relate the Hecke operators at ` to a Laplacian on T` (or T 2
` ). We

must go to a double cover in the inert case to make this work compatibly with the
central character q on M(M, q). Then, in sections 8 and 9, we construct functions
on lattices that have the desired Hecke eigenvalues.

These functions on lattices are infinite products over the rational primes of the
local functions we construct on the graphs. Lattices which are fractional ideals in
K play a special role and we call them “idealistic” lattices. The construction of
the local functions depends on the distinction between idealistic and non-idealistic
lattices.

To define the desired cohomology class, the infinite product has to satisfy a
certain global invariance property (proved in Section 10), which follows from the
fact that χ is a global character on ideals. This global requirement means that we
cannot simply define the local functions on lattices any way we want to obtain any
random set of Hecke eigenvalues. Instead, the situation is rather rigid.
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Finally, in section 11 we prove the main theorem (Theorem 11.1) stated above.
We thank Dick Gross, David Hansen, Richard Taylor, and especially Kevin Buz-

zard for helpful comments and answers to questions that arose during the course
of this research. We also thank Henri Darmon and the anonymous referee for their
feedback, which helped us improve the exposition of the paper.

2. Lattices and Homotheties in K

In this section and the next two sections we construct the coefficient modules
we use in the homology of GL(2,Z) which appear in our main theorem as stated in
the introduction.

Fix a real quadratic field K, its ring of integers O and an element ω ∈ O such
that O = Z[ω]. Let d be the discriminant of K/Q. Let ε be a fundamental unit,
i.e. a unit whose image modulo ±1 generates O×/{±1}.

Consider K as a two-dimensional vector space over Q. By a lattice in K, we will
mean a free Z-module of rank 2 contained in K. Such a module has as a Z-basis
two Q-linearly independent elements.

Let Y be the set of all column vectors t(a, b) ∈ K2 with b 6= 0 and a/b /∈ Q.
If we let ω̄ = t(ω, 1) ∈ Y , then every element of Y is of the form γω̄ for some
γ ∈ GL(2,Q). In addition, given y, y′ ∈ Y , there is a unique γ ∈ GL(2,Q) with
y = γy′. There is a natural action of K× by scalar multiplication on Y , which we
write as a right action.

Definition 2.1. Let y = t(a, b) ∈ Y . Define Λy to be the Z-lattice in K generated
by a and b (i.e. the set of all integer linear combinations of a and b).

Note that for α ∈ K×, we have Λyα = αΛy.

Definition 2.2. Let H ⊆ K× be a multiplicative subgroup of K×. Two lattices
Λ1 and Λ2 in K will be said to be homothetic if there is some α ∈ K× such that
Λ1 = αΛ2. If α ∈ H, we will say that the lattices are H-homothetic.

Homothety and H-homothety of lattices are equivalence relations on the set of
all lattices in K.

Definition 2.3. Let H be a multiplicative subgroup of K×. Define Y/H to be the
quotient of Y with respect to the right action of scalar multiplication by H. The
left action of GL(2,Q) on Y then gives a left action of GL(2,Q) on Y/H.

Lemma 2.4. There is a bijection between GL(2,Z)-orbits of elements of Y/H and
the set H of H-homothety classes of lattices in K.

Proof. Define a map f : Y/H → H by setting f(x) equal to the H-homothety class
of Λy for any y ∈ Y representing x ∈ Y/H. This map is constant on GL(2,Z)-orbits,
and is easily seen to induce a bijection between GL(2,Z)-orbits and H-homothety
classes of lattices in K. �

Lemma 2.5. Let Λ be a lattice in K. Then there is a positive integer m such that
εmΛ = Λ.

Proof. Note that if Λ and Λ′ are K×-homothetic, the lemma will be true for Λ if
and only if it is true for Λ′, with the same value of m (since K× is commutative.)
Hence, we may, without loss of generality, assume that Λ is contained in O. Since
Λ is a rank two Z-submodule of O, it must have finite index in O. We may thus
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choose an N ∈ Z such that NO ⊆ Λ ⊆ O. Since O/NO is finite and multiplication
by ε permutes its elements, there is some positive m ∈ Z such that δ = εm acts
trivially on O/NO, and hence on Λ/NO. Then δ must take Λ to itself, so δΛ ⊆ Λ.
We must also have δ−1Λ ⊆ Λ, so Λ ⊆ δΛ ⊆ Λ, and therefore δΛ = Λ. �

Definition 2.6. Let H be a subgroup of K× containing −1. Given x ∈ Y/H, we

define Γx to be the stabilizer of x in GL(2,Z), and Γ̂x to be the quotient Γx/{±I}.

Remark 2.7. Note that for y ∈ Y , (−I)y = y(−1), so since −1 ∈ H, we have
−I ∈ Γx for any x ∈ Y/H.

Theorem 2.8. Let H be a subgroup of K× such that H∩O× is infinite and −1 ∈ H,
and let x ∈ Y/H be represented by y ∈ Y . Then Γx is generated by {−I, g}, where
g ∈ Γx satisfies

gy = yεm

and m is smallest possible positive integer such that εm ∈ H and Λy = Λyεm .

Further, Γ̂x is cyclic, generated by the image of g.

Proof. Let x be represented by y = t(a, b) ∈ Y . Choose the smallest positive m
such that εmΛy = Λy and εm ∈ H. Then Λy = Λyεm , so yεm is a basis of Λy.
Hence, there is some g ∈ GL(2,Z) such that gy = yεm. Since εm ∈ H, we see that
gx = x.

We now show that every element in Γx is (up to a sign) a power of g. Let η ∈ Γx.
Then, since ηx = x, there is some α ∈ H such that ηy = yα. Now α is an eigenvalue
of η, and η ∈ GL(2,Z), so α ∈ O×. Hence, α = ±εr. By the division algorithm and
the minimality of m, we see that α = ±(εm)k for some k. Hence, η = ±gk. �

Certain elements x ∈ Y/H will be quite important to us; for these elements, the
value of m in the previous proof is determined solely by H.

Definition 2.9. Let H be a multiplicative subgroup of K×. If x ∈ Y/H can be
represented by y ∈ Y such that Λy is a fractional ideal in K, then we say that x is
idealistic.

Note that determining whether x is idealistic does not depend on the choice of
y ∈ Y representing x.

Corollary 2.10. Let H be a subgroup of K× such that H ∩ O× is infinite and
−1 ∈ H. If x ∈ Y/H is idealistic, the value of m in Theorem 2.8 is equal to the
smallest positive integer k such that εk ∈ H.

For any subgroup H of K× such that H ∩O× is infinite and −1 ∈ H, then since
Γ̂x is cyclic, there is a canonical isomorphism

Ix : H1(Γ̂x,F)→ Γ̂x ⊗Z F.
Since the characteristic of F is not equal to 2, the Hochschild-Serre spectral

sequence for the exact sequence 0→ {±1} → Γx → Γ̂x → 0 yields an isomorphism

φx : H1(Γx,F)→ H1(Γ̂x,F).

Definition 2.11. Let H be any subgroup of K× such that H ∩O× is infinite and
−1 ∈ H, and let x ∈ Y/H.

(a) Define mx to be the integer m described in Theorem 2.8.

(b) Define gx to be the generator of Γ̂x described in Theorem 2.8.
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(c) Define zx to be the generator of H1(Γx,F) such that Ix(φx(zx)) = gx ⊗ 1.

Corollary 2.12. Let H be a subgroup of K× such that H ∩ O× is infinite and
−1 ∈ H. If x, x′ ∈ Y/H are in the same GL(2,Z)-orbit, then mx = mx′ .

Proof. If x = γx′ for γ ∈ GL(2,Z), then we may choose y, y′ ∈ Y representing
x, x′, respectively such that y = γy′. Then Λy = Λy′ . From the description of m in
Theorem 2.8, we see that mx = mx′ . �

Lemma 2.13. If γ ∈ GL(2,Z), then conjugation by γ from Γx to Γγx induces a

map Γ̂x → Γ̂γx that takes gx to gγx, and induces a map on homology which takes
zx to zγx.

Proof. Let y represent x. Then γy represents γx. There is a unique lift g ∈ GL(2,Z)
of gx, such that gy = yεmx . Then

(γgγ−1)γy = (γy)εmx ,

so, since mx = mγx, we see that (γgxγ
−1) = gγx. �

3. H(M, q)-homothety

In this section we define a subgroup of K×, and study homothety under this
subgroup. We also define a space of homothety classes that we will use to define
the coefficient module for our homology groups.

Definition 3.1. Let F be a field of characteristic not equal to 2. If the characteristic
of F is 0, we will define p = 1, otherwise we define p to be the characteristic of F.
Let d = disc(K), let N be an arbitrary natural number, and let M be a positive
integer dividing pdN .

Definition 3.2. Denote by Z(pdN) the ring consisting of elements of Q with de-
nominators prime to pdN .

Definition 3.3. With p, d,M,N defined as above, define

K×(pdN) = {c ∈ K× : (c) is relatively prime to (pdN)}.

and
K(M) = {c ∈ K×(pdN) : c ≡ 1 (mod M).}

By c ≡ 1 (mod M), we mean that vπ(c − 1) ≥ vπ(M), for each prime π of K
dividing M , where vπ is the valuation on K associated with the prime π. Note that
K×(pdN) and K(M) are multiplicative subgroups of K×, and that K(M) ⊆ K×(pdN)

with finite index.
Next, we define a map from K to the ring M(2,Q) of 2×2 matrices with entries

in Q.

Definition 3.4. Let y = t(a, b) ∈ Y . We define an injective ring homomorphism
ry : K →M(2,Q) by

ry(c)

(
a
b

)
=

(
ac
bc

)
for c ∈ K.

Let θ : Z→ F be the quadratic Dirichlet character cutting out K/Q. Note that
since K is a real quadratic field, θ(−1) = 1. We now extend θ to a character of
K×(pdN).



8 AVNER ASH AND DARRIN DOUD

Definition 3.5. Define q : K×(pdN) → F× to be the composition of the following

multiplicative maps:

(1) The map taking a ∈ K×(pdN) to the principal fractional ideal (a) ⊂ K,

(2) The map taking a fractional ideal to its prime factorization,
(3) The map taking a product of powers of prime ideals to the subproduct of

powers of inert prime ideals,
(4) The map taking an inert prime ideal (`) to θ(`).

We note that q is a homomorphism. By the following lemma, it extends θ.

Lemma 3.6. If r ∈ Z is relatively prime to pdN , then q(r) = θ(r).

Proof. This follows from the fact that q(`) = θ(`) for primes ` - pdN of Q, and that
q(−1) = 1 = θ(−1). �

Definition 3.7. With p, d, N , M from Definition 3.1,

(a) Define K(M, q) to be the kernel of q|K(M).

(b) Define Q(q) to be the kernel of q on Z×(pdN).

(c) Define H(M, q) to be the subgroup of K× generated by Q(q) and K(M, q).

Lemma 3.8. H(M, q) ∩O× is infinite and contains −1.

Proof. Every unit in the ring of integers of K is in the kernel of q, and has a power
that is congruent to 1 mod M . Further, −1 ∈ Q(q). �

Definition 3.9. Let X = Y/H(M, q) and let M = FX.

Since FY is a (GL(2,Q),K×)-bimodule, we obtain an isomorphism

FY ⊗H(M,q) F ∼= FX⊗ F = FX.

Because K× is commutative, this is an isomorphism of (GL(2,Q),K×)-bimodules.

Lemma 3.10. Let x ∈ X be represented by y ∈ Y . Then

(a) Γx = {ry(c) : c ∈ H(M, q)} ∩GL(2,Z).
(b) If g ∈ Γx, then g = ry(c) for some c ∈ O×.

Proof. (a) Suppose g ∈ Γx. Then we have that gy = yc for some c ∈ H(M, q).
Since yc = ry(c)y, and the entries of y are a Q-basis of K, we see that g = ry(c).
Hence, g is in the given intersection, and any g in the given intersection fixes x.

(b) Let g ∈ Γx. Then g = ry(c), for some c ∈ H(M, q), and the characteristic
polynomial of g is the same as that of multiplication by c on K. Since g ∈ GL(2,Z),
we see that c ∈ O×. �

Denote by ω̂ the image in X of ω̄ = t(ω, 1) and recall the definition of mx from
Definition 2.11.

Definition 3.11. Define iM = mω̂.

Lemma 3.12. Let x ∈ X.

(i) For any x, iM | mx.
(ii) If x is idealistic, then mx = iM .
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Proof. (i) For any x ∈ X represented by y ∈ Y , let φx : Γx → H(M, q) be the
injective homomorphism defined by φx(g) = r−1

y (g). Then the image of φx is a

subgroup of O× containing {±1}, and this subgroup has index mx in O×.
For an element c ∈ O×, we see (by Lemma 3.10(a)) that ry(c) ∈ Γx implies that

c ∈ H(M, q), which in turn implies that rω̂(c) ∈ Γω̂. Hence, r−1
y (Γx) ⊆ r−1

ω̄ (Γω̂).

Hence, the index in O× of the first (mx) is a multiple of the index of the second
(mω̂ = iM ).

(ii) Since x is idealistic, Λy is a fractional ideal of K. Hence, ry(c) ∈ GL(2,Z)
for all c ∈ O×. Hence,

r−1
y (Γx) = O× ∩H(M, q) = r−1

ω̄ (Γω̂).

Since these subgroups are equal, mx = iM . �

Definition 3.13. For x ∈ X, set m′x = mx/i
M .

Lemma 3.14. Let r ∈ Z×(pdN), let α ∈ H(M, q), and let y ∈ Y . If ry(rα) ∈
GL(2,Z), then q(r) = 1.

Proof. Since the characteristic polynomial of rα is the same as the characteristic
polynomial of ry(rα), we see that rα is a unit in O. Hence, q(rα) = q(r)q(α) = 1.
Since q(α) = 1 by the definition of H(M, q), we see that q(r) = 1. �

4. Defining the coefficient module M(M, q)

The elements of X consist of H(M, q)-homothety classes of elements of Y . In
order to study them more fully, we fix once and for all a certain element of Z×(pdN).

Definition 4.1. Let ξ ∈ Z×(pdN) be any element of Z×(pdN) with q(ξ) = −1.

Since ξ is not in H(M, q), we see that for any x ∈ X the two elements xξ and x
are distinct. In addition, since ξ2 ∈ H(M, q), right multiplication by ξ induces an
involution on the elements of X, and in fact, this involution is independent of the
choice of ξ.

Recall that M = FX is the F-vector space consisting of formal F-linear combi-
nations of elements of X; i.e. the set of all elements of the form

∑
x∈X cxx with

cx ∈ F. Also, M is a (GL(2,Q),K×)-bimodule. Since the action of ξ on the right is
an involution on X, it induces an involution on M; the eigenvalues of this involution
are all either 1 or −1.

Definition 4.2. Let M(M, q) be the eigenspace in M of ξ with eigenvalue −1.

It is clear that Z×(pdN) acts on M(M, q) via the character q.

Lemma 4.3. Let x ∈ X. Then x and xξ are in different GL(2,Z)-orbits.

Proof. Suppose x is represented by y ∈ Y , and xξ = γx for some γ ∈ GL(2,Z).
Then there is some α ∈ H(M, q) such that yξα = γy, which implies that γ =
ry(ξα) ∈ GL(2,Z). However, this contradicts Lemma 3.14. �

We now consider a collection A of representatives of the GL(2,Z)-orbits in X.

Definition 4.4. Let A be a collection of GL(2,Z)-orbit representatives in X, chosen
so that if x ∈ A, then xξ ∈ A. Choose a subset A ∈ A such that for every x ∈ A,
exactly one of {x, xξ} is in A.
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The following lemma then follows easily.

Lemma 4.5. Let A be the subset of A defined above. Then the set

{gx : x ∈ A}
is a basis for M, and the set

{g(x− xξ) : x ∈ A, g ∈ GL(2,Z)}
is a basis of M(M, q).

From this fact, the following lemma follows immediately.

Lemma 4.6. The map from⊕
x∈A

F[GL(2,Z)]⊗FΓx F→M

taking g ⊗ 1 in the summand corresponding to x ∈ A to gx is a GL(2,Z)-invariant
isomorphism.

5. Homology with coefficients in M(M, q) and Hecke operators

In this section, we fix an element x0 ∈ X and a set A of GL(2,Z)-orbit repre-
sentatives in X as in Definition 4.4 that contains x0. We have fixed an element
ξ ∈ Z×(pdN) with q(ξ) = −1. Using the set A, we will study the action of the Hecke

operators on the homology of M, and ultimately on the homology of M(M, q).
As a consequence of Lemma 4.6, we have that

M ∼=
⊕
x∈A

Ind
GL(2,Z)
Γx

F.

Hence, by Shapiro’s lemma, we have

H1(GL(2,Z),M) ∼=
⊕
x∈A

H1(Γx,F).

Recall that in Definition 2.11, for each x ∈ X, we have a canonical generator zx
for H1(Γx,F). Then {zx : x ∈ A} is a basis for H1(GL(2,Z),M). Recall that ξ acts
as an involution on M, and hence on H1(GL(2,Z),M). From Lemma 4.6, we see
that the action of ξ on M swaps the summands corresponding to x, xξ ∈ A. Hence,
under Shapiro’s isomorphism, we see that the action of ξ on H1(GL(2,Z),M) is
converted to an action on ⊕x∈AH1(Γx,F) that swaps zx and zxξ (the groups Γx
and Γxξ are identical, but zx and zxξ are in different summands). This proves:

Lemma 5.1. The set

{zx − zxξ = zx − ξzx |x ∈ A}
is a basis for H1(GL(2,Z),M(M, q)).

We will now use Section 3 of [2] to examine an individual Hecke operator Ts.
(Warning: in [2] the modules are right-modules, but here we are using left-modules,
so the formulas need to be adjusted accordingly.) What we call X is there called
X.

To follow the notation of [2], we set Γ = GL(2,Z), and let S = GL(2,Z(pdn)).
Recall that A is a set of representatives of Γ-orbits in X. Let W be the S-sheaf
(in the terminology of [2]) whose stalk at each x ∈ X is F. In other words, W is
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M, and it is an S-module. As a Γ-module, W is isomorphic to a sum of induced
representations

W =
⊕
x∈A

F[Γ]⊗Γx F,

where Γx is the stabilizer in Γ of x.
Let s ∈ S. We choose a set E of single coset representatives sα for ΓsΓ, so that

ΓsΓ =
∐
sα∈E

Γsα.

Then E is a finite set. We now adjust the elements sα ∈ E in several stages to
make the computation of Hecke operators easier.

We have chosen A to contain x0. The proof of Theorem 3.1 of [2] immediately
shows that we can choose a finite set of elements x1, . . . , xk of A such that after
possibly left-multiplying the sα’s by elements of Γ, we have a partition

E =

k∐
i=1

Ri

where Ri = {sα |sαx0 = xi}. Now setting

Gi = {g ∈ ΓsΓ | gx0 = xi},

we see that since the xi are in distinct GL(2,Z)-orbits,

Gi =
∐

sα∈Ri

Γxisα.

The partial Hecke operator T0i = Γxi\Gi/Γx0 maps H∗(Γx0 ,M) to H∗(Γxi ,M)
for any S-module M .

Theorem 5.2. Let φ be the isomorphism given by Shapiro’s lemma:

φ : H∗(GL(2,Z),M)→
⊕
x∈A

H∗(Γx,F).

If z ∈ H∗(Γx0
,F), then

Ts(φ
−1(z)) = φ−1

(
k∑
i=1

T0iz

)
.

Proof. This is a restatement of Theorem 3.1 of [2], where we note that W = M. �

Now we rewrite each of the partial Hecke operators T0i in terms of the homology
of the stabilizers Γx of elements of A.

Fix i and note that for some finite set Ci,

Gi =
∐
t∈Ci

ΓxitΓx0

is a disjoint union of double cosets.
Let Tt : H1(Γx0

,F) → H1(Γxi ,F) denote the Hecke operator corresponding to
the double coset ΓxitΓx0

.
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Theorem 5.3. With notation as above,
(a) T0i =

∑
t∈Ci Tt.

(b) After possibly left-multiplying the sα’s by elements of GL(2,Z),

ΓxitΓx0
=

∏
sα∈Qi,t

Γxisα,

and E is partitioned by the Qi,t, as i and t vary.
(c) After possibly left-multiplying one sα by an element of GL(2,Z), t ∈ Qi,t.

Proof. Let F• be a resolution of F by free FGL(2,Q)-modules. We use f to stand
for an arbitrary element of F• and a to stand for an arbitrary function with finite
support a : F• → F. For each t ∈ Ci, write its double coset as a disjoint union of
single cosets:

ΓxitΓx0
=
∐
β

Γxitβ .

The Hecke operator Tt maps the class of a cycle
∑
f f ⊗Γx0

a(f) to the class of∑
β

∑
f tβf ⊗Γxi

a(f). (Remember that Γ acts trivially on F.)
There is a similar formula for the action of the Hecke operator T0i. Since the set

Gi is the union of the double cosets ΓxitΓx0
, t ∈ Ci, it is the disjoint union of the

single cosets Γxitβ as t, β vary. Part (a) is now clear.
For (b), again write ΓxitΓx0 =

∏
tβ

Γxitβ , for some choice of tβ . We know from

the discussion preceding Theorem 5.2 that E is the disjoint union of the Ri and
that

Gi =
∐
t∈Ci

ΓxitΓx0
=

∐
sα∈Ri

Γxisα.

Therefore each coset Γxitβ must equal Γxisα for some sα, and so we replace tβ with
sα. We let Qi,t be the set of sα’s corresponding to t. Then Ri is the disjoint union
of the Qi,t as t varies, and (b) follows.

Finally, since t ∈ ΓxitΓx0 , we see that t ∈ Γxisα for some sα ∈ Qi,t. We may
replace that sα by t, proving (c). �

Definition 5.4. Set

J =
∑
i

|Ci|.

As i, t vary, enumerate the t’s as t1, . . . , tJ . For each j = 1, . . . , J , set

Bj = Qi,t, Uj = Ttj , and xj = xi,

where (i, t) is the pair corresponding to j.
Set Γ0 = Γx0

and Γj = Γxj .
Finally, set

dj = [Γ0 : t−1
j Γjtj ∩ Γ0], and ej = [Γj : tjΓ0t

−1
j ∩ Γj ].

Remark 5.5. Since all groups involved in the definitions of dj and ej contain −I,
we note that we also have

dj = [Γ̂0 : t−1
j Γ̂jtj ∩ Γ̂0], and ej = [Γ̂j : tjΓ̂0t

−1
j ∩ Γ̂j ].

Theorem 5.6. (a) E = {sα} =
∐
Bj and Ts =

∑J
j=1 Uj where we suppress

mention of the isomorphism φ from Theorem 5.2.
(b) The number of elements in Bj is dj.
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(c) Uj(zx0
) = ejzxj , where zx is the generator of H1(Γx,F) chosen in Defini-

tion 2.11.
(d) Uj(zx0 − ξzx0) = ej(zxj − ξzxj ) in H1(GL(2,Z),M(M, q)).

Proof. Part (a) follows from Theorem 5.2 and Theorem 5.3 (a) (b) and (d) combined
with the new notation.

Part (b): The number of elements in Bj is the number of left Γxj -cosets contained
in Γxj tjΓx0 (in our new notation Γxj tjΓx0 = ΓjtjΓ0). A standard computation with
cosets shows that the number of single cosets in this double coset equals the index
[Γ0 : t−1

j Γjtj ∩ Γ0], which is dj .

For part (c) we use the following lemma, which is standard, and follows easily
from [5, Sec. III.9]:

Lemma 5.7. Let A be an infinite cyclic group with generator a, and B ⊂ A a
subgroup of index c, and suppose that A acts trivially on F. For an abelian group
G acting trivially on F, we identify H1(G,F) canonically with G⊗Z F.

(i) The transfer map tr : H1(A,F)→ H1(B,F) takes the generator a⊗1 to the
generator ac ⊗ 1.

(ii) The corestriction map i : H1(B,F) → H1(A,F) (i.e. the map induced by
the inclusion B ⊂ A) takes the generator ac ⊗ 1 to c times the generator
a⊗ 1.

Proof of part (c) continued: Uj is a Hecke operator. A standard fact about
Hecke operators is that they can be written in terms of transfer, conjugation, and
corestriction. (This is also easily checked on the chain level.) In our case, the
following is true:

The map Uj : H1(Γ0,F) → H1(Γj ,F) is given as the composition of the three
maps

H1(Γ0,F)→ H1(Γ0 ∩ t−1
j Γjtj ,F)

φj−→ H1(tjΓ0t
−1
j ∩ Γj ,F)→ H1(Γj ,F),

where the first map is the transfer, the second map is the map induced on homology
via conjugation by tj on the group, and the third map is corestriction. We note that
all of the groups involved in this diagram contain {±I}, and the maps described
above each commute with the isomorphism on homology induced by the quotient
map by {±I}. Hence, the composition above translates to the following,

H1(Γ̂0,F)→ H1(Γ̂0 ∩ t−1
j Γ̂jtj ,F)

φj−→ H1(tjΓ̂0t
−1
j ∩ Γ̂j ,F)→ H1(Γ̂j ,F),

where all of the involved groups are cyclic, allowing us to use Lemma 5.7.
Let g0 and gj be the generators of Γ̂0 and Γ̂j corresponding to the chosen gener-

ators zx0
and zxj of the homology groups in Definition 2.11. Identifying elements of

an abelian group with elements of the homology, we can say that by Lemma 5.7(i),

the transfer takes g0 to the generator g
dj
0 of Γ̂0 ∩ t−1

j Γ̂jtj .

Since tjx0 = xj , conjugation by tj takes g
dj
0 to the generator g

ej
j of tjΓ̂0t

−1
j ∩ Γ̂j .

Then by Lemma 5.7 (ii), corestriction takes this to g
ej
j .

Part (d) follows, since ξ commutes with the action of GL(2,Q) and so commutes
with Uj . �

We now compute the values of ej and dj in terms of m0 and mj . Recall that
tjx0 = xj . For j = 0, . . . , J , choose yj ∈ Y such that xj is represented by yj , and
recall that Γj is the stabilizer of xj in GL(2,Z) and ε is the fundamental unit of O
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which we chose at the beginning of Section 2. Let gj ∈ Γ̂j and mj ∈ Z be defined as

in Definition 2.11 (with H = H(M, q)). Then gj is a generator of Γ̂j and mj > 0.

Lemma 5.8. With notation as above,

ej = LCM(m0,mj)/mj , dj = LCM(m0,mj)/m0,

and ejmj = djm0.

Proof. There are two lifts of gj ∈ Γ̂j to Γj ; let hj ∈ Γj be the unique lift of gj
satisfying hj = ryj (ε

mj ) (the other lift will be −hj = ryj (−εmj )). We note that
Γj is generated by {−I, hj}, and any subgroup G ⊆ Γj containing −I is generated
by {−I, hkj }, where k is the smallest positive integer such that hkj ∈ G. For such a
subgroup G ⊆ Γj , we see easily that [Γj : G] = k. In particular, ej is the smallest

positive integer such that h
ej
j ∈ tjΓ0t

−1
j ∩ Γj .

Now, h0y0 = y0ε
m0 . Since tjx0 = xj , we have tjy0 = yjαj for some αj ∈

H(M, q). Hence, t−1
j yj = y0α

−1
j . It follows that tjh0t

−1
j yj = yjε

m0 . In addition,
hjyj = yjε

mj .

Let k be the smallest positive integer such that h = (tjh0t
−1
j )k ∈ Γj . Then

{−I, h} will generate Γj ∩ tjΓ0t
−1
j . We note that k must be the smallest positive

integer such that (εm0)k is a power of εmj , or in other words, the smallest positive
integer such that km0 is a multiple of mj . Hence, km0 = LCM(m0,mj), so h =

(tjh0t
−1
j )LCM(m0,mj)/m0 , and we see that

hyj = yj

(
εLCM(m0,mj)

)
= yj

(
(εmj )LCM(m0,mj)/mj

)
= h

LCM(m0,mj)/mj
j yj .

It follows that

h = h
LCM(m0,mj)/mj
j ,

and therefore,

ej = LCM(m0,mj)/mj .

Reversing the roles of Γ0 and Γj and switching tj and t−1
j , we obtain

dj = LCM(m0,mj)/m0. �

6. Elements of H1(GL(2,Z),M(M, q)∗) interpreted as functions on
lattices

We now interpret the cohomology of the dual of M(M, q) as a collection of
functions on a space of lattices.

Definition 6.1. Let Φ be a function from lattices in K to F. We will say that Φ
is q-homogeneous if Φ(αΛ) = q(α)Φ(Λ) for all α ∈ Z×(pdN) and all lattices Λ. We

further define ξΦ by the formula (ξΦ)(Λ) = Φ(ξΛ).
If H is a subgroup of K×, we will say that Φ is H-invariant if Φ(αΛ) = Φ(Λ)

for all α ∈ H and all lattices Λ.

Remark 6.2. Since q is trivial onH(M, q), a function Φ can be both q-homogeneous
and H(M, q)-invariant. Note that K(M, q)-invariance together with q-homogeneity
implies H(M, q)-invariance, since H(M, q) = Q(q)K(M, q). In addition, since K is
a real quadratic field, q(−1) = 1. If this were not the case, the fact that −Λ = Λ
for any lattice Λ in K would force all q-homogeneous functions to be identically 0.
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Lemma 6.3. Choose a set A of GL(2,Z)-orbit representatives of X as in Defini-
tion 4.4.

(a) There is a natural ξ-equivariant isomorphism between H1(GL(2,Z),M∗) and
the vector space of F-valued functions on lattices in K that are H(M, q)-invariant.

(b) There is a natural isomorphism between H1(GL(2,Z),M(M, q)∗) and the
vector space of F-valued functions on lattices in K that are q-homogeneous and
H(M, q)-invariant.

Proof. (a) The choice of A yields an isomorphism of GL(2,Z)-modules

f : M→
⊕
x∈A

FGL(2,Z)⊗FΓx F.

This induces an isomorphism (via Shapiro’s Lemma)

H1(GL(2,Z),M) ∼=
⊕
x∈A

H1(GL(2,Z),FGL(2,Z)⊗FΓx F)

∼=
⊕
x∈A

H1(Γx,F)

∼=
⊕
x∈A

F.

Using the natural duality between H1(GL(2,Z),M) and H1(GL(2,Z),M∗), we see
that determining an element of H1(GL(2,Z),M∗) is the same as giving a function
from A to F.

The space of lattices L in K is in bijection with GL(2,Z)\Y , where a lattice
Λ corresponds to the GL(2,Z)-orbit of y = t(a, b) ∈ Y where a, b is a Z-basis of
Λ. The set A consists of a set of representatives for the GL(2,Z)-orbits in X and
therefore is in bijection with GL(2,Z)\Y/H(M, q). This is the same as L/H(M, q),
i.e. the set of H(M, q)-homothety classes of lattices.

Therefore there is a natural isomorphism between the vector space of functions
from A to F and the vector space of H(M, q)-invariant functions on lattices in K.
For future reference, we can write down this isomorphism explicitly:

If Φ is any H(M, q)-invariant function on lattices in K, we get a function g on
A as follows: Given x ∈ A, lift x to y ∈ Y and set g(x) = Φ(Λy), where Λy is the
lattice spanned by the entries of y.

Conversely, given a function g on A and a lattice Λ in K, Λ corresponds (by
choosing a basis {a, b}, setting y = t(a, b) ∈ Y and projecting modulo H(M, q))
to an element x′ ∈ X, which lies in the GL(2,Z)-orbit of a unique x ∈ A. Define
Φ(Λ) = g(x).

It is clear that this isomorphism is ξ-equivariant, where we define (ξg)(x) =
g(xξ).

(b) The module M(M, q) is the q-isotypic component of ξ acting on M. There-
fore M(M, q)∗ is the q-isotypic component of ξ acting on M∗. It follows that
H1(GL(2,Z),M(M, q)∗) is the q-isotypic component of ξ acting onH1(GL(2,Z),M∗).

Therefore the ξ-equivariant isomorphism from part (a) induces an isomorphism
between H1(GL(2,Z),M(M, q)∗) and the vector space of F-valued functions on lat-
tices in K that are q-homogeneous and H(M, q)-invariant, since Z×(pdN) is generated

by ξ and Q(q), and H(M, q) = Q(q)K(M, q) (see definition 3.7). �
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7. The Branched Bruhat-Tits graph and the Laplacian

In order to construct functions on lattices that are eigenfunctions of the Hecke
operators, we will use a modification of the Bruhat-Tits building [8, 18], in which
we lift the Bruhat-Tits building to a finite branched cover.

For each prime ` unramified in K, let K` denote K ⊗ Q`. Then K` is a two-
dimensional vector space over Q`.

Definition 7.1. If ` is inert, then K` is a quadratic field extension of Q`. We fix
the integral basis {1, ω} of K, and we identify K` with Q2

` by identifying 1 and ω
with the standard basis elements e1, e2 ∈ Q2

` .
If ` splits in K, then (`) = λλ′ for prime ideals λ, λ′ in O lying over `. Each of the

completions Kλ and K ′λ is then isomorphic to Q`. Restricting these isomorphisms
to K, we obtain two distinct Galois conjugate embeddings iλ, iλ′ : K → Q`. We
then identify K` = K ⊗Q Q` with Q2

` via the map taking

t⊗ 1 7→ (iλ(t), iλ′(t)).

We abbreviate the notation by writing t 7→ (t, t′).

Definition 7.2. By a lattice in K`, we will mean a rank two Z`-submodule of K`.

If Λ is a lattice in K, then Λ` = Λ⊗Z Z` is a lattice in K`.

Definition 7.3. Let ` be a prime, and n a positive integer. Denote the elements
of Q×` with `-adic valuation divisible by n by Vn. We note that Vn is a subgroup

of index n of Q×` .

Definition 7.4. Let Λ1 and Λ2 be lattices in K`. We say that Λ1 and Λ2 are
n-homothetic if Λ1 = αΛ2 for some α ∈ Vn. Then n-homothety is an equivalence
relation, and we call an equivalence class an n-homothety class of lattices in K`.

Definition 7.5. Let n a positive integer, K a real quadratic field, and ` a prime
unramified in K . The branched Bruhat-Tits graph T n` is the graph whose vertices
are n-homothety classes of lattices in K`. Two vertices are joined by an edge if
there are representative lattices Λ1 and Λ2 of the vertices such that Λ2 ⊂ Λ1 or
Λ1 ⊂ Λ2 with index `.

Remark 7.6. The Bruhat-Tits tree is a special case of the branched Bruhat-Tits
graph in which n = 1. When n = 1, we may denote T n` by T`. When n > 1, we
will typically write vertices of T n` with a superscript n, i.e. tn ∈ T n` .

Definition 7.7. Let Λ be a lattice in K`. Denote the vertex of T n` represented
by Λ by $(Λ). Denote the vertex of T` represented by Λ by π(Λ). Given a vertex
tn ∈ T n` , there is a unique vertex s ∈ T` containing tn; we write s = π(tn).

Note that for any lattice Λ with $(Λ) = tn, π(tn) = π(Λ). To keep our notation
less cluttered, if Λ is a lattice in K`, we will often denote $(Λ) by Λ, as long as the
context makes this usage clear.

Remark 7.8. We note that for any vertex t ∈ T`, there are exactly n vertices
tn ∈ T n` with π(tn) = t. If Λ is a lattice in K` representing t, these n vertices of
T n` are represented by

Λ, `Λ, . . . , `n−1Λ.

Definition 7.9. If t is a vertex of T`, we will call the set {tn ∈ T n` : π(tn) = t} the
fiber of t and also the fiber of tn for any tn in that set .
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Definition 7.10. A vertex tn is idealistic if tn is the n-homothety class of the
completion I` of some fractional ideal I of K.

We now review some facts about completions Λ` of lattices in K. Let ` be a
prime of Q.

By [19, V.2, Corollary to Theorem 2], the operations of sum and intersection of
lattices in K commute with completion at `. In addition, by [19, V.3, Theorem 2],
a lattice Λ in K is determined by its set of completions Λw for all finite places w
of Q. In fact

Λ =
⋂
w

K ∩ Λw.

Finally, completion at a finite place w of finitely generated Z-modules is an exact
functor [9, Theorem 7.2].

Applying these facts to fractional ideals of K, we note that if I is an ideal of
O of norm prime to `, then I` is an ideal of O` of index prime to `, so I` = O`.
In addition, multiplication of relatively prime ideals (i.e. intersection) commutes
with completion at `. Hence, for an ideal I, the completion I` depends only on the
factors of I of `-power norm.

Now suppose that tn ∈ T n` is idealistic. Then we may assume that tn is repre-
sented by an ideal I`, where I is an ideal in O whose norm is a power of `. If ` is
inert in K, such an I must be principal, so I` is Q×` -homothetic to O`. Hence, tn

is idealistic if and only if π(tn) is represented by O`.
On the other hand, if ` splits in K, then `O = λλ′, where λ, λ′ are prime ideals

of O lying over `. We then see that tn ∈ T n` is idealistic if and only if π(tn) is
represented by an ideal of the form λk or (λ′)k for some k ∈ Z. In particular, if
π(tn1 ) = π(tn2 ), then tn1 and tn2 are either both idealistic, or both nonidealistic.

Lemma 7.11. Suppose n > 1. Let Λ1 ⊃ Λ2 be lattices in K` with [Λ1 : Λ2] = `.
Let tn1 = $(Λ1) ∈ T n` . Then there are precisely two vertices tn2 , t

n
3 ∈ T n` with

π(tn2 ) = π(tn3 ) = π(Λ2) which are connected by an edge to tn1 . If we let tn2 be
represented by Λ2, then tn3 is represented by `−1Λ2.

Proof. Clearly, if we take tn2 = $(Λ2) and tn3 = $(`−1Λ2), we see that tn2 and tn3
are distinct and have the desired properties. It remains to show that there is no
third vertex tn4 , distinct from tn2 and tn3 , with π(tn4 ) = π(Λ2), and such that there is
an edge between tn4 and tn1 .

Suppose that π(tn4 ) = π(Λ2) and there is an edge between tn1 and tn4 . Then either
there is a lattice Λ4 representing tn4 such that Λ1 ⊃ Λ4 and [Λ1 : Λ4] = ` or there
is a lattice Λ4 representing tn4 such that Λ1 ⊂ Λ4 and [Λ4 : Λ1] = `.

Now suppose Λ4 is homothetic to Λ2, say with Λ4 = αΛ2, where α ∈ Q×` .
If Λ1 ⊃ Λ4 has index `, then by hypothesis `−1Λ2 ⊃ Λ1 has index ` and Λ1 ⊃ αΛ2

has index `. Hence, multiplying by `, we see that Λ2 ⊃ `αΛ2 with index `2. This
implies that v`(α) = 0, so that αΛ2 = Λ2, so tn4 = tn2 .

On the other hand, if Λ1 ⊂ Λ4 with index `, then Λ2 ⊂ Λ1 has index ` by
hypothesis and Λ1 ⊂ αΛ2 with index `, so Λ2 ⊂ αΛ2 has index `2. Hence v`(α) =
−1, and we see that αΛ2 = `−1Λ2, so tn4 = tn3 . �

Corollary 7.12. Let n > 1, let tn be a vertex in T n` , and let t = π(tn) ∈ T`. Let
s ∈ T` be a neighbor of t. Then there are exactly two neighbors sn1 and sn2 of tn

in T n` with π(sn1 ) = π(sn2 ) = s. If Λ represents tn, then exactly one of sn1 and sn2
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is represented by a sublattice Λ′ of Λ of index `; the other is represented by `−1Λ′,
which contains Λ with index `.

Definition 7.13. Let n ≥ 1, let tn ∈ T n` be a vertex represented by a lattice Λ in
K`, and let sn be a neighbor of tn. If sn is represented by a sublattice of index ` in
Λ, we call sn a downhill neighbor of tn; if it is represented by a lattice containing
Λ with index `, we call sn an uphill neighbor of tn.

We note that if n = 1, any neighbor of tn is both an uphill and a downhill
neighbor of tn.

Definition 7.14. Let tn ∈ T n` . We define the tier of tn to be the distance between
π(tn) and π(O`) in T`. A neighbor of tn of higher tier than tn will be called an
outer neighbor of tn: a neighbor of lower tier will be called an inner neighbor.

Remark 7.15. Each tn ∈ T n` has precisely ` + 1 downhill neighbors and ` + 1
uphill neighbors. The use of uphill and downhill matches our intuition; if sn is a
downhill neighbor of tn, then tn is an uphill neighbor of sn. (However, as in an
Escher staircase, it is possible to go uphill several times and return to your starting
point without going downhill.)

Each vertex of positive tier has precisely ` downhill outer neighbors, and 1 down-
hill inner neighbor. It also has precisely ` uphill outer neighbors, and 1 uphill inner
neighbor.

A vertex of tier 0 has only outer neighbors; ` + 1 of them are uphill, and ` + 1
are downhill. The following definition names a particular vertex of tier 0.

Definition 7.16. Let tn0 ∈ T n` be the vertex represented by the lattice O`.

There is a natural action of the group GL(2,Q`) on Q2
` , namely matrix multipli-

cation with elements of Q2
` considered as column vectors. We transfer this action

to K` via the identification that we have made between K` and Q2
` . The action of

g ∈ GL(2,Q`) is invertible, and preserves Q`-linear combinations, so it maps bases
of Q2

l to bases, maps lattices to lattices, and preserves n-homothety of lattices.
Hence, multiplication by g defines a bijection from T n` to T n` . We now record some
properties of this action.

Lemma 7.17. The action of an element γ ∈ GL(2,Z`) on T n` permutes the vertices
of T n` , fixes vertices of tier 0, and preserves edges (including whether the edge is
uphill or downhill) and the tier of each vertex.

Proof. Since the action of γ ∈ GL(2,Z`) is invertible, it is clear that the map it
induces on vertices is a bijection. In addition, if Λ1 ⊂ Λ2 are lattices in K` with
[Λ2 : Λ1] = `, then γΛ1 ⊂ γΛ2 with index `, so edges are preserved (including
whether the edge is uphill or downhill).

Since the action of γ stabilizes Z2
` , which is identified with O`, it fixes vertices

of tier 0. Since it preserves neighbors, a simple inductive argument shows that it
maps each vertex to a vertex of the same tier. �

Lemma 7.18. Multiplication by the fundamental unit ε ∈ K ⊂ K` induces a
permutation on the vertices of T n` given (on the level of Z`-lattices) by multiplication
by a matrix in GL(2,Z`).

Proof. Suppose that ` is inert in K. In this case (see Definition 7.1), we have
identified K` = Q` ⊕ Q`ω with Q2

` . Since multiplication by ε is Q-linear on K
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it induces a Q`-linear map on K`. Hence, multiplication by ε is represented by a
matrix in GL(2,Q`). Since multiplication by ε is an automorphism of O` and O`

is identified with Z2
` ⊂ Q2

` , this matrix has entries in Z`, and since ε has norm ±1,
the matrix must have determinant ±1, so we see that the matrix is in GL(2,Z`).

Now suppose that ` is split. Referring to Definition 7.1 again, we have identified
K` with Q2

` , where c ∈ K is identified with (c, c′) ∈ Q2
` . Hence, multiplication by ε

is represented by the matrix diag(ε, ε′), which is in GL(2,Z`). �

We will define functions on lattices in K as products of local functions on lattices
in K`. To that end, we make the following definitions.

Definition 7.19. Let F (T n` ) be the set of F-valued functions on the vertices of
T n` .

Definition 7.20. The Laplace operator ∆n
` on F (T n` ) is defined by

∆n
` (f)(tn) =

∑
un

f(un),

where the sum runs over the `+ 1 downhill neighbors un ∈ T n` of tn ∈ T n` .

Now we concentrate on the Hecke operator at ` and describe how its coset repre-
sentatives interact with lattices. We assume from now on that ` is unramified in K.
We choose s = diag(`, 1) and refer to Definition 5.4 for the sets Bj and the integers
dj . List Bj = {sβ,j | β = 1, . . . , dj}. These definitions as well as the following
definition depend on various choices, such as an element x0 ∈ X, a lift of x0 to Y ,
and a choice of GL(2,Z)-orbit representatives A containing x0. We will suppress
these dependencies so as not to overburden the notation.

Definition 7.21. Let x0 be represented by y = t(a, b) ∈ Y with a, b ∈ K, and let
Λy be the Z-lattice in K generated by a and b. For any j and any sα ∈ Bj , define

sαΛy = Λsαy.

Note that sαΛy depends not just on the lattice Λy, but also on the choice of
basis y = t(a0, b0) ∈ Y for Λy.

Lemma 7.22. Let s = diag(`, 1) and let

GL(2,Z)sGL(2,Z) =
∐
α

GL(2,Z)sα

with the sα chosen and partitioned into the sets Bj as described in Definition 5.4.
Let Λy be a lattice in K with a chosen basis y ∈ Y . Then

(i) L = {sαΛy} consists of the `+ 1 lattices of index ` contained in Λy.
(ii) L is partitioned into the subsets

Lj = {sβ,jΛy|sβ,j ∈ Bj},

and |Lj | = dj.
(iii) The same is true of the completions at `: L` = {(sαΛy)`} consists of the

` + 1 lattices of index ` contained in (Λy)`, and these are partitioned into
the subsets

L`,j = {(sβ,jΛy)`|sβ,j ∈ Bj}
and |L`,j | = dj.
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Proof. (i) Since sα is an integral matrix of determinant `, it is clear that sαΛy
has index ` in Λy, and all sublattices of Λy of index ` arise this way.

(ii) Since {sα} is partitioned by the sets Bj , it is clear that the lattices are
partitioned as indicated.

(iii) If Λ has index ` in Λy, then the completion Λ` has index ` in (Λy)`, since
taking completions of finitely generated modules is an exact functor. Given
two lattices Λ 6= Λ′, each having index ` in Λy, we note that for all places
w 6= `, Λw = Λ′w = (Λy)w. Since a lattice is determined by its completions
at all finite places, we must have Λ` 6= Λ′`.

�

Definition 7.23. Let φn` ∈ F (T n` ), let x0 ∈ X, and let A be any set of GL(2,Z)-
orbit representatives of X containing x0, as in Definition 4.4. Define the sets Bj in
terms of x0 and A as in Definition 5.4. If, for all choices of A and for all y ∈ Y
representing x0, and for all j = 1, . . . , J , we have that φn` is constant on the set

{(sβ,jΛy)`|β = 1, . . . , dj}
of vertices of T n` , then we will say that φn` is locally constant relative to T` and x0.

If φn` is locally constant relative to T` and all x0 ∈ X, then we say that φn` is
locally constant relative to T`, or just that φn` is locally constant.

Lemma 7.24. Let φ ∈ F (T n` ) be a function on the vertices of T n` . Assume that
for every vertex tn ∈ T n` , φ is constant on the set of non-idealistic outer downhill
neighbors un of tn. Then φ is locally constant relative to T`.

Proof. Assume that φ satisfies the conditions of the lemma. Let x0 ∈ X, choose any
collection A of orbit representatives containing x0 as in Definition 4.4, and choose
any y ∈ Y representing x0. Partition the set {sα} of coset representatives for the
Hecke operator T` as in Definition 5.4.

Let tn be the vertex of T n` represented by Λy. For each set Bj , we wish to show
that φ is constant on the set {(sβ,jΛy)`|sβ,j ∈ Bj}. Let 1 ≤ j ≤ J , choose any
sβ,j ∈ Bj , and let un be the downhill neighbor of tn represented by (Λj)`, where
Λj = sβ,jΛy. Then Λj is H(M, q)-homothetic to a lattice with a basis representing
xj (where xj ∈ A is given in Definition 5.4). We now divide the proof into 3 cases.

Case 1: Suppose un is idealistic. Then Λj is a fractional ideal of K, and it
is H(M, q)-homothetic to a fractional ideal with basis representing xj . Hence,
mj = iM , so dj = 1 by Lemmas 3.12 and 5.8. Hence, there is only one vertex on
which φ must be constant.

Case 2: Suppose that un is the unique downhill inner neighbor of tn. Recall
from Theorem 2.8 that the stabilizer Γx0 of x0 in GL(2,Z) is generated by −I and
an element γ0 that acts on Λy as multiplication by δ0 = εm where m = mx0 . From
Theorem 2.8, we see that

γ0Λy = δ0Λy = Λy.

Since multiplication by δ0 fixes Λy, it also fixes (Λy)` = tn. By Lemma 7.18,
multiplication by δ0 also fixes each element of the fiber of tn0 = $(O`). Therefore
it fixes the unique downhill path from tn to the fiber of tn0 . Hence, multiplication
by δ0 must fix un.

Now, both Λj and δ0Λj are sublattices of Λy of index `. Since both must represent
un, we see that they are equal. Since δ0Λj = Λj , we see that mj |m0, so that dj = 1.
Hence, again, there is only one vertex on which φ must be constant.
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Case 3: Suppose un is a nonidealistic outer downhill neighbor of tn. By cases
1 and 2, no vertex in {(sβ,jΛy)`|sβ,j ∈ Bj} can be idealistic or a downhill inner
neighbor of tn. Hence, φ is constant (by hypothesis) on all the vertices in the
desired set. �

8. Functions on lattices; comparison between the Laplacian and a
Hecke operator

In this section, we study functions on lattices in K`; in particular, we will show
that, given an eigenfunction of the Laplacian ∆n

` , we can construct an eigenfunc-
tion of the Hecke operator T`. We will use this construction later in the paper
to construct eigenfunctions of Hecke operators by performing the easier task of
constructing eigenfunctions of the Laplacian.

Definition 8.1. Let q : K×(pdN) → F× be the character defined in Definition 3.5,

and let ` be a prime of Z that does not divide pdN . We say that a function
f ∈ F (T n` ) is q-homogeneous (or just homogeneous, if q is understood) if, for all
lattices Λ in K,

f(`Λ`) = q(`)f(Λ`).

Definition 8.2. For all finite places w of Q unramified in K, let nw = 2 if w is
inert in K, let nw = 1 if w splits in K. Fix a prime ` of Q not dividing pdN ,
and let W be the set of all finite places of Q not dividing `pdN . For w ∈ W , let
φw ∈ F (T nww ) denote a homogeneous function such that φw(Ow) = 1. We view
the functions φw as fixed by the context, and do not include them in the following
notation for Φ. For any homogeneous φ` ∈ F (T n`` ), define the function Φ(φ`) on
lattices Λ in K by the formula

Φ(φ`)(Λ) = φ`(Λ`)
∏
w∈W

φw(Λw).

Lemma 8.3. The infinite product in the definition makes sense and Φ(φ`) is q-
homogeneous. The map φ` 7→ Φ(φ`) is F-linear.

Proof. For any given Λ, we have that Λw = Ow for almost all w, so the product
is actually finite. The linearity of the map φ` 7→ Φ(φ`) is clear. Now suppose
α ∈ Z×(pdN) and Λ is a lattice. Then α is prime to pdN and factors as

α = `f`
∏
w∈W

wfw .

Then

Φ(φ`)(αΛ) = φ`(αΛ`)
∏
w∈W

φw(αΛw) = φ`(`
f`Λ`)

∏
w∈W

φw(wfwΛw).

Since φ` and all the φw are homogeneous, this equals

q(`f`)φ`(Λ`)

( ∏
w∈W

q(wfw)

)( ∏
w∈W

φw(Λw)

)
= q(α)Φ(φ`)(Λ). �

We now proceed to the main theorem of this section: the comparison between
the Hecke operator and the Laplace operator.

By Lemma 2.5 and the fact that H(M, q) ∩ O× is infinite, we see that for any
lattice Λ ⊆ K, there is a minimal positive integer mΛ such that both εmΛΛ = Λ
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and εmΛ ∈ H(M, q). If Λ1 and Λ2 are K×-homothetic lattices in K, it is clear that
mΛ1 = mΛ2 . Set m′Λ = mΛ/i

M . By Theorem 2.8, if Λ = Λy for y ∈ Y , and x is
the image in X of y then mΛ = mx. Therefore, by Lemma 3.12, iM |mΛ and m′Λ is
a positive integer.

Definition 8.4. Let ψ` ∈ F (T n`` ). We define the transform of ψ` to be the function

ψ̂` ∈ F (T n` ) given by the formula

ψ̂`(t
n) = m′Λψ`(t

n),

where Λ is any lattice in O of `-power index, such that Λ` represents tn.

Lemma 8.5. Given ψ` ∈ F (T n` ), the transform ψ̂` is well defined.

Proof. We need to show that for tn ∈ T n` , the value of mΛ does not depend on
the lattice Λ chosen to represent tn. Note that up to homothety by powers of `n,
there is a unique lattice Λ′ ⊆ O` representing tn. By [19, V.2, Theorem 2] there is
a unique lattice Λ ⊆ O of `-power index such that Λ` = Λ′. Since Λ′ is uniquely
defined up to homothety by powers of `n, so too is Λ. Finally, since homothety
does not change the value of mΛ, we see that mΛ does not depend on the choice of
Λ, so m′Λ does not. �

If ψ`(O`) = 1, then ψ̂`(O`) = 1, since m′O = 1.

Lemma 8.6. Let ` - pdN be prime. If ψ` ∈ F (T n` ) is homogeneous, then ψ̂` is also
homogeneous.

Proof. If tn ∈ T n` is represented by Λ`, with Λ a lattice of `-power index in O, then
`tn is represented by `Λ`. Since m′Λ = m′`Λ, we have

ψ̂`(`t
n) = m′`Λψ`(`t

n) = m′Λq(`)ψ`(t
n) = q(`)ψ̂`(t

n). �

We now fix a set A of representatives of the GL(2,Z)-orbits in X, as in Defini-
tion 4.4. Recall from Lemma 6.3 that this choice fixes an isomorphism between the
cohomology group

H1(GL(2,Z),M(M, q)∗)

and q-homogeneous, H(M, q)-invariant functions on lattices.

As in Lemma 6.3 and its proof, if Φ(ψ̂`) is H(M, q)-invariant and q-homogeneous,

view Φ(ψ̂`) as an element of

H1(GL(2,Z),M(M, q)∗) ∼= H1(GL(2,Z),M(M, q))∗.

That is to say, view Φ(ψ̂`) as an F-valued functional on H1(GL(2,Z),M(M, q)), via
the pairing

〈Φ(ψ̂`), •〉 : H1(GL(2,Z),M(M, q))→ F.
The relation between Φ(ψ̂`) as a function on lattices and as a functional on

homology is as follows: for a basis element zx of H1(GL(2,Z),M) with x ∈ A, we
have that

〈Φ(ψ̂`), zx〉 = Φ(ψ̂`)(Λy),

where y ∈ Y is any representative of x. Then, from the definition of ψ̂`, we have
that

〈Φ(ψ̂`), zx〉 = Φ(ψ̂`)(Λy) = m′xΦ(ψ`)(Λy),

a fact that we will use in the proofs of Theorem 8.8 and Corollary 8.9.
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Definition 8.7. Let zxj be the chosen generator of H1(Γxj ,F) from Definition 2.11,
and set zj = zxj and mj = mxj for j = 0, . . . , J .

Theorem 8.8. Let ` - pdN be prime. For each finite place w ∈ W , fix a q-
homogeneous function φw ∈ F (T nw` ), as in Definition 8.2. Let n = n`, and let ψ` ∈
F (T n` ) be q-homogeneous. Assume that Φ(ψ̂`) is H(M, q)-homothety invariant. It
will be q-homogeneous by Lemma 8.3.

If ψ` is locally constant relative to T` and x0, then

〈Φ(ψ̂`)T`, z0〉 = m′0Φ(∆n
` ψ`)(Λy),

where y ∈ Y represents x0 ∈ A.

Proof. Choose a y ∈ Y representing x0. Then for j = 1, . . . , J , set yj = tjy, so that
yj represents xj . We will write Λj in place of Λyj .

By Theorem 5.6, T` =
∑J
j=1 Uj , and for 1 ≤ j ≤ J , we have

Uj(z0) = ejzj .

Then

〈Φ(ψ̂`)T`, z0〉 = 〈Φ(ψ̂`), T`z0〉

=

J∑
j=1

ej〈Φ(ψ̂`), zj〉

=

J∑
j=1

ejΦ(ψ̂`)(Λj)

=

J∑
j=1

ejm
′
jΦ(ψ`)(Λj).

We have ejm
′
j = m′0dj by Lemma 5.8 and Definition 3.13, so

〈Φ(ψ̂`)T`, z0〉 =

J∑
j=1

m′0djΦ(ψ`)(Λj).

Now, for a fixed j, we will analyze the term Φ(ψ`)(Λj). Note that by definition,

Φ(ψ`)(Λj) = ψ`((Λj)`)
∏
w∈W

φw((Λj)w).

Since tj is an integral matrix with determinant `, we know that tj ∈ GL(2,Ow) for
all w ∈W . Then (Λj)w is the same as the lattice (Λy)w. Set

c =
∏
w∈W

φw((Λy)w),

so that

Φ(ψ`)(Λj) = ψ`((Λj)`) · c.
Hence,

〈Φ(ψ̂`)T`, z0〉 = cm′0

J∑
j=1

djψ`((Λj)`).



24 AVNER ASH AND DARRIN DOUD

On the other hand, since ψ` is assumed to be locally constant with respect to
T` and x0, any sβ,j takes any vertex to a downhill neighbor, and one of the sβ,j is
equal to tj (see Theorem 5.3(c)), we have that for each sβ,j ,

ψ`((sβ,jΛy)`) = ψ`((tjΛy)`)

= ψ`((Λj)`).

Hence, using the fact that dj = |Bj |, we have

Φ(∆n
` ψ`)(Λy) = (∆n

` ψ`)((Λy)`)
∏
w∈W

φw((Λy)w)

= c(∆n
` ψ`)((Λy)`)

= c
J∑
j=1

∑
sβ,j∈Bj

ψ`((sβ,jΛy)`)

= c

J∑
j=1

djψ`((Λj)`),

where we have used Lemma 7.22. Multiplying both sides of the last equality by m′0
yields the assertion of the theorem. �

Corollary 8.9. Assume that ψ` is locally constant relative to T`, that ψ`(O`) = 1,

that Φ(ψ̂`) is q-homogeneous and H(M, q)-invariant, and that ∆n`
` ψ` = µψ`.

Then Φ(ψ̂`), viewed as an element of H1(GL(2,Z),M(M, q)∗), is an eigenclass
for T` with eigenvalue µ and it is an eigenclass for T`,` with eigenvalue θ(`).

Proof. First, we show that Φ(ψ̂`) 6= 0. By definition, for Λ a lattice in K,

Φ(ψ̂`)(Λ) = ψ̂`(Λ`)
∏
w∈W

φw(Λw).

By construction, φw(Ow) = 1 for every w ∈ W and ψ`(O`) = 1. Since m′O` = 1,

also ψ̂`(O`) = 1. Therefore, Φ(ψ̂`)(O) = 1.
Recall from Definition 4.4 that we have chosen a subset A ⊂ A, such that

for every x ∈ A, exactly one of x and xξ is in A. For any x ∈ A, write z̃x =
zx − zxξ. Then by Lemma 5.1, {z̃x : x ∈ A} is a basis of H1(GL(2,Z),M(M, q)).
By Theorem 8.8, linearity, and the centrality of ξ, for each x ∈ A we have

〈Φ(ψ̂`)T`, z̃x〉 = 〈Φ(ψ̂`)T`, zx〉 − 〈Φ(ψ̂`)T`, zxξ〉
= m′x

(
Φ(∆n`

` ψ`)(Λy)− Φ(∆n`
` ψ`)(Λyξ)

)
= m′x

(
Φ(µψ`)(Λy)− Φ(µψ`)(Λyξ)

)
= µ

(
Φ(m′xψ`)(Λy)− Φ(m′xψ`)(Λyξ)

)
= µ

(
Φ(ψ̂`)(Λy)− Φ(ψ̂`)(Λyξ)

)
= µ

(
〈Φ(ψ̂`), zx〉 − 〈Φ(ψ̂`), zxξ〉

)
= 〈µΦ(ψ̂`), z̃x〉.

Since Φ(ψ̂`) is in the dual space to H1(GL(2,Z),M(M, q)), and {z̃x : x ∈ A}
spans H1(GL(2,Z),M(M, q)), we are finished with T`.
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As for T`,`, its action is given by the double coset of the central element `I. This
is just a single coset, and its action on homology is given by q(`), since it acts on
M(M, q) as multiplication by q(`).

Since q(`) = θ(`),

〈Φ(ψ̂`)T`,`, z̃x〉 = 〈Φ(ψ̂`), T`,`z̃x〉 = 〈Φ(ψ̂`), θ(`)z̃x〉 = 〈θ(`)Φ(ψ̂`), z̃x〉.

Hence, Φ(ψ̂`)T`,` = θ(`)Φ(ψ̂`). �

9. Constructing locally constant eigenfunctions

Fix an F-valued character χ on the group of fractional ideals of K relatively prime
to N . In this section, we will construct locally constant q-homogeneous functions
ψ0
` on T n`` that are eigenfunctions of the Laplace operator with eigenvalues related

to χ. We do this first for inert primes `.

Theorem 9.1. Let ` be a prime of Q that is inert in K/Q and does not equal
the characteristic of F. Then there is a locally constant q-homogeneous function
ψ0
` ∈ F (T 2

` ) that is an eigenvector of the Laplace operator with eigenvalue 0 and
satisfies ψ0

` (O`) = 1.

Proof. We define ψ0
` inductively.

For vertices of tier 0, we define ψ0
` (O`) = 1 and ψ0

` (`O`) = θ(`) = −1. Then ψ0
`

is homogeneous on the vertices of tier 0.
On vertices t2 ∈ T 2

` of tier 1, we define ψ0
` (t2) = 0. Clearly ψ0

` is q-homogeneous
on vertices of tier 1. In addition, since all downhill neighbors of a vertex of tier 0
have tier 1, we can now compute ∆2

`(ψ
0
` ) on vertices of tier 0; we find that its value

is 0, as desired. Finally, ψ0
` is constant on all downhill neighbors of vertices of tier

0.
On each vertex t2 ∈ T 2

` of tier 2, let u2 ∈ T 2
` be the unique uphill neighbor of t2

of tier 1, and we let v2 be the unique downhill neighbor of u2 of tier 0. We define
ψ0
` (t2) = −ψ0

` (v2)/`. Because the unique uphill neighbor of `t2 of tier 1 is `u2,
which has a unique downhill neighbor of tier 0 equal to `v2, we see that with this
definition, ψ0

` is homogeneous on vertices of tier 1. In addition, for any vertex u2 of
tier 1, ψ0

` is constant on the downhill neighbors of u2 of higher tier, since its value
on such vertices depends only on its value on the unique downhill inner neighbor
of u2. Finally, we have constructed ψ0

` so that

∆2
`(ψ

0
` )(u2) = 0

for each vertex u2 of tier 1.
We continue; for vertices t2 ∈ T 2

` of odd tier, we define ψ0
` (t2) = 0. This

guarantees that for vertices u2 of even tier, ∆2
`(ψ

0
` )(u2) = 0, and that ψ0

` is constant
on all downhill neighbors of u2 of higher tier. Further, with this definition, ψ0

` (`t2) =
0 = θ(`)ψ0

` (t2) so that ψ0
` is homogeneous on vertices of odd tier.

For a vertex t2 ∈ T 2
` of positive even tier, let u2 be the unique uphill inner

neighbor of t2, and let v2 be the unique downhill inner neighbor of u2. We define
ψ0
` (t2) = −ψ0

` (v2)/`. Clearly ψ0
` is constant on all downhill outer neighbors of u2

(since its value on such neighbors depends only on its value on v2). As in the case of
tier 2, we see that ψ0

` (`t2) = θ(`)ψ0
` (t2), and ∆2

`(ψ
0
` )(u2) = ψ0

` (v2)+`(−ψ0
` (v2)/`) =

0.
With this construction, we see that ψ0

` is homogeneous, locally constant, and is
an eigenfunction of ∆2

` with eigenvalue 0. �
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Lemma 9.2. For an inert prime `, the function ψ0
` defined above is GL(2,Z`)-

invariant.

Proof. The action of GL(2,Z`) fixes vertices of tier 0, and preserves uphill and
downhill neighbors, and the tier of each vertex (Lemma 7.17). Since these relation-
ships determine the values of ψ0

` , the function is GL(2,Z`)-invariant. �

For a prime ` that splits in K/Q and does not divide N , we now prepare to
construct a locally constant homogeneous function ψ0

` ∈ F (T 1
` ) that is an eigen-

function of ∆` = ∆1
` . For most of the remainder of this section, we will assume

that ` splits in K, that (`) = λλ′, and since ` - N , χ(λ) and χ(λ′) are defined. In
this case, the function that we construct will depend on the character χ. Since we
work in T 1

` = T`, the concepts of uphill and downhill neighbor coincide.
We begin by defining some terminology and notation for subsets of T`.

Definition 9.3. We take O` as the basepoint of T` and denote it by t0. A descen-
dant of a vertex t ∈ T` is a vertex t1 6= t such that the path from t0 to t1 passes
through t. Denote by C(t) the set of all descendants t′ of t such that every vertex
of the path from t to t′ except possibly t is non-idealistic, and let C(t) = C(t)∪{t}.
We call C(t) the open cohort of t, and C(t) the closed cohort of t.

Definition 9.4. A simple chain starting at a vertex t ∈ T` is a collection C con-
sisting of t and descendants of t such that for any pair t′, t′′ ∈ C, one of t′, t′′ is a
descendant of the other. An apartment in T` is a union of two infinite simple chains
starting at a vertex t and having no other vertices in common.

For future use, we state the next lemma for all unramified primes `.

Lemma 9.5. Let t be an idealistic point in T`.
(1) If ` is inert, then t = t0.
(2) If (`) = λλ′ splits and t is a distance k > 0 from t0, then t = λk` or t = λ′k` ,

and both of these points are a distance k from t0.
(3) If (`) splits and k > 0, then λk` and λ′k` define distinct points in T`.
(4) No descendant of an non-idealistic point in T` is idealistic.
(5) The vertices of T` are partitioned into the closed cohorts C(tI) as tI = I`

runs over the idealistic points of T` (where I is an ideal of O of `-power
norm.)

(6) In the split case, the set of idealistic points of T` form an apartment, namely

{λk` |k > 0} ∪ {t0} ∪ {λ′k` |k > 0}.

Proof. In the discussion following Definition 7.10, we proved that the set of idealistic
nodes of T` is {t0} if ` is inert and {λk` |k > 0} ∪ {t0} ∪ {λ′k` |k > 0} if ` is split.
Since λk has index ` in λk−1, and similarly for the powers of λ′, (1) and (2) are
now clear. As for (3), if λk` = λ′k` in T`, then λk = `mλ′k as ideals for some integer
m, which is absurd.

If ` is inert, (4) and (5) are obvious.
Assume that ` splits. Then the idealistic point λk` is at the end of a path

containing the nodes t0, λ`, . . . , λ
k
` . A similar statement holds for λ′k` . Since every

non-idealistic node is a descendant of t0 and T` is a tree, no idealistic point can be
a descendant of a non-idealistic point. Hence (4) holds.

For any node u ∈ T` consider the path from t0 to u (possibly of length 0.) Let tI
be the last idealistic point in this path. Then u ∈ C(tI) is in the closed cohort of
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this idealistic point. If u were in the closed cohort of two distinct idealistic points,
there would be a nontrivial loop in T`. Hence, (5) holds.

Finally, (6) is clear, since the set of nonnegative powers of λ and of λ′ each form
a simple chain starting at t0. �

Now we assume that ` is split with `O = λλ′ for the rest of this section.

Definition 9.6. Let N be a positive integer and c be an F-valued multiplicative
function on the group IK(N) of nonzero fractional ideals of K relatively prime to
N . Fix an unramified prime ` that does not divide N . Assume that c is trivial on
the principal fractional ideal `O. Define ĉ ∈ F (T`) by

ĉ(t) =

{
0 if t is non-idealistic,

c(I) if t = I`, where I is an ideal of `-power index in O.

Lemma 9.7. The function ĉ is well defined.

Proof. Suppose I and J are both ideals of O of `-power index, and that I` and J`
are homothetic in K` by a power of `.

If (`) = λλ′, then I = `qµa and J = `rνb for nonnegative integers a, b, q, r, and
µ, ν ∈ {λ, λ′}. The fact that I` and J` are homothetic implies that µa = νb, so I
and J differ by a factor of `q−r. Since c is trivial on `O, c(I) = c(J). �

Let t ∈ T`. For any s in the open cohort C(t) of t, all of the neighbors of s are in
the closed cohort C(t). Hence, the Laplace operator ∆` defines a linear map from
functions on C(t) to functions on C(t).

Lemma 9.8. Assume that ` is not equal to the characteristic of F. Let µ ∈ F, and
let t be an idealistic point of T` with closed cohort C(t). Then there is a unique
F-valued function θt,µ on C(t) with the following properties:

(i) θt,µ(t) = 1,
(ii) θt,µ(s) = 0 for every s ∈ C(t) that is distance 1 from t,

(iii) θt,µ(s) depends only on `, µ, and the distance from s to t,
(iv) ∆`(θt,µ)(s) = µθt,µ(s) for every s ∈ C(t).

Proof. Define a sequence ak ∈ F for k ≥ 0 by the recurrence relation a0 = 1, a1 = 0,
and for k ≥ 2,

ak =
µak−1 − ak−2

`
.

This clearly defines a unique sequence. For s a distance k from t in C(t), set
θt,µ(s) = ak. With this definition, θt,µ satisfies conditions (i), (ii), and (iii).

Given a point s ∈ C(t) a distance k from t, s has one neighbor a distance k − 1
from t, and ` neighbors a distance k + 1 from t. Hence

∆`(θt,µ)(s) = ak−1 + `ak+1

= ak−1 + `

(
µak − ak−1

`

)
= µak

= µθt,µ(s),

so θt,µ satisfies condition (iv).

Conversely, if θt,µ is a function on C(t) satisfying condition (iii), then for any s a
distance k from t, we may define ak = θt,µ(s). If in addition θt,µ satisfies conditions
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(i), (ii), (iv), the ak satisfy the recurrence relation given above. The uniqueness of
θt,µ follows from the uniqueness of the sequence {ak}. �

Definition 9.9. Let µ ∈ F, and assume ` does not divide N and does not equal
the characteristic of F, and that χ(`O) = 1. We define ψ0

` ∈ F (T`) by

ψ0
` (s) = χ̂(t)θt,µ(s),

where t ∈ T` is the unique idealistic vertex with s ∈ C(t).

Lemma 9.10. Let µ ∈ F and assume that ` does not divide N and does not equal
the characteristic of F.

(1) ψ0
` (O`) = 1.

(2) ψ0
` is locally constant with respect to T`.

(3) If µ = χ(λ) + χ(λ′), then

∆`ψ
0
` = µψ0

` .

Proof. The first assertion is immediate from the definitions.
Let s be any vertex in T`. We wish to show that ψ0

` is constant on all non-
idealistic outer downhill neighbors u of s. Then, by Lemma 7.24, we will obtain
(2). Let s ∈ C̄(t) with t idealistic. Then any such u will be in C(t). Since χ̂(t) is
constant for all points in C(t), we need only show that θt,µ(u) is constant for all
such u. Letting the distance from t to s be k − 1, the distance from t to u will be
k. Hence, the desired constancy follows from Lemma 9.8(iii).

For (3), again assume s ∈ C̄(t) with t idealistic. Suppose that s = t = I`
is idealistic, where I is an ideal of `-power index in O. Then s has exactly two
idealistic neighbors, namely (λI)` and (λ′I)`. The nonidealistic neighbors u of s
are all in C(t) and have distance 1 from t; hence θt,µ vanishes on them all. Hence

(∆`ψ
0
` )(s) = χ(λI) + χ(λ′I) = (χ(λ) + χ(λ′))χ(I) = µψ0

` (s).

Finally, suppose that s is non-idealistic. Then it belongs to the open cohort C(t).
Then

(∆`ψ
0
` )(s) =

∑
u

ψ0
` (u)

=
∑
u

χ̂(t)θt,µ(u)

= χ̂(t)
∑
u

θt,µ(u)

= χ̂(t)(∆`θt,µ)(s)

= µχ̂(t)θt,µ(s)

= µψ0
` (s),

by Lemma 9.8(iv), where the sums run over all neighbors u of s. �

10. H(M, q)-invariance

In this section, we construct a function on lattices as a product of the local
eigenfunctions for the Laplacian constructed in the previous section, and prove
that the resulting function is H(M, q)-invariant and q-homogeneous, which implies
by Theorem 8.8 and Corollary 8.9 that it corresponds to a Hecke eigenclass in
H1(GL(2,Z),M(M, q)∗).
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Lemma 10.1. Fix a prime ` that is unramified in K, and let n = 1 if ` splits in
K and 2 if ` is inert. Let Λ be a Z-lattice in K, and let α ∈ K×. Let sn be the
vertex in T n` corresponding to Λ`, and let un be the vertex corresponding to (αΛ)`.
Factor the fractional ideal αO = I1I2, where I1 has norm a power of ` and I2 is
prime to `.

(1) There exists a matrix g ∈ GL(2,Q`) depending only on α (independent
of Λ), such that un = gsn. If ` is inert, then g = `kg′ with k ∈ Z and
g′ ∈ GL(2,Z`).

(2) The vertex sn is idealistic if and only if un is idealistic. If sn corresponds
to Λ` with Λ an ideal, then un corresponds (I1Λ)`.

(3) Suppose ` is split. Assume that sn is not idealistic, but lies in the open
cohort C(t) of the idealistic point tn = M`, where M is an ideal of `-power
norm. Then un lies in the open cohort C(tn1 ), where tn1 = (I1M)` and the
distance between sn and tn is the same as the distance between un and tn1 .

Proof. (1) First, suppose that ` is inert. Via our identification of K` with Q2
` ,

multiplication by α is a Q`-linear isomorphism from Q2
` to Q2

` ; hence, it is given
by a matrix g ∈ GL(2,Q`). We can write α ∈ K` as α = `kη for some k ∈ Z, and
some unit η ∈ O×` ; multiplication by η is given by a matrix in GL(2,Z`).

Now assume that ` is split. In this case, we identify K` with Q2
` by mapping α

to (α, α′). Then multiplication by α is defined by the matrix(
α 0
0 α′

)
,

which is in GL(2,Q`).
(2) Λ is a fractional ideal if and only if αΛ is a fractional ideal. If Λ = MP with

M a fractional ideal of `-power norm, and P a fractional ideal prime to `, then

(αΛ)` = (I1M)` = (I1Λ)`.

(3) Let g ∈ GL(2,Q`) be the matrix from part (1) corresponding to multiplication
by α. Multiplication by g is then an automorphism of T` that takes idealistic vertices
to idealistic vertices, and non-idealistic vertices to non-idealistic vertices. Let R be
a simple path from tn to sn whose only idealistic vertex is tn. Then gR is a simple
path from gtn to un of the same length as R, whose only idealistic vertex is gtn.
Moreover, un lies in the open cohort C(gtn) where gtn = (I1M)`. �

Theorem 10.2. Let F be a field of characteristic 0 or of finite characteristic not
equal to two. If F has characteristic 0, set p = 1, and otherwise let p be the char-
acteristic of F. Assume that χ is trivial on principal ideals generated by elements
of Z×(pdN). Also assume that χ is trivial on principal ideals generated by elements

of K(M, q). Let Φ be the function from lattices in K to F defined by

Φ(Λ) =
∏

w-pdN

ψ̂0
w(Λw)

where ψ0
w is given by Theorem 9.1 if w is inert in K/Q, and by Definition 9.9 if w

splits in K/Q.
Then Φ(αΛ) = Φ(Λ) for all α ∈ H(M, q) and all lattices Λ in K.
Moreover, Φ(αΛ) = q(α)Φ(Λ) for all α ∈ Z×(pdN).



30 AVNER ASH AND DARRIN DOUD

Proof. Let Λ be a lattice in K and let α ∈ K(M, q). Note that m′Λ = m′αΛ, since
K× is commutative. Hence, there is a single integer m′ depending on Λ, such that
for each prime w - pdN , we have

ψ̂0
w(Λw) = m′ψ0

w(Λw)

and

ψ̂0
w((αΛ)w) = m′ψ0

w((αΛ)w).

Assume first that w is inert in K. Then we may factor αO as

αO = wjI2,

with I2 a fractional ideal that is relatively prime to w. By Lemma 10.1(1), we have

(αΛ)w = wjgΛw

for some g ∈ GL(2,Zw). Since ψ0
w is homogeneous and is GL(2,Zw)-invariant on

T 2
` (by Lemma 9.2), we have

ψ̂0
w((αΛ)w) = m′ψ0

w(wjgΛw) = m′q(wj)ψ0
w(Λw) = q(wj)ψ̂0

w(Λw).

Now assume that w splits in K. Let s ∈ T` be the vertex corresponding to Λw,
and let u correspond to (αΛ)w.

If s is idealistic, so is u, and we see that

ψ0
w(s) = χ̂(s)θs,µ(s) = χ̂(s) = χ(Λ) = χ(αΛ) = χ̂(u) = χ̂(u)θu,µ(u) = ψ0

w(u).

If s is nonidealistic, then so is u, and u = gs for some g ∈ GL(2,Qw). Suppose
s lies in the open cohort C(t) of the idealistic vertex t corresponding to Iw, where
I is an ideal of w-power index in O. By Lemma 10.1(3), u is in the open cohort
C(t1) of the idealistic point t1 corresponding to (I1I)w, where αO = I1I2, with I1
having norm a power of w, and I2 having norm relatively prime to w. In addition,
the distance from s to t is the same as the distance from u to t1. Hence,

χ̂(t1) = χ(I1I) = χ(I1)χ(I) = χ(I1)χ̂(t)

and

θt,µ(s) = θt1,µ(u).

Therefore,

ψ̂0
w((αΛ)w) = m′ψ0

w(u)

= m′χ̂(t1)θt1,µ(u)

= m′χ(I1I)θt1,µ(u)

= m′χ(I1)χ̂(t)θt,µ(s)

= χ(I1)ψ̂0
w(Λw).

In all of this, the fractional ideal I1 depends on w; we will call it Iα(w). Then
Iα(w) is a product of powers of primes lying over w; if w is inert, it is clear that
Iα(w) is principal with a generator βα(w) in Z×(pdN), so that χ(Iα(w)) = 1.

Since α ∈ K(M, q), α is relatively prime to pdN , so that

αO =
∏

w-pdN

Iα(w) =

( ∏
w inert

Iα(w)

) ∏
w split

Iα(w)

 .
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Setting β =
∏
w inert βα(w), we have

βO =

( ∏
w inert

Iα(w)

)
.

Since α ∈ K(M, q), q(α) = 1. Because q depends only on inert prime factors, and
the powers of inert primes dividing α and β are equal, we see that

1 = q(α) = q(β).

In addition, we have that χ(βO) = 1, since β is a product of powers of elements of
Z×(pdN), and we have assumed that χ is trivial on ideals generated by elements of

Z×(pdN). Hence, we see that ∏
w split

Iα(w)

is principal, with generator α/β, so∏
w split

χ(Iα(w)) =
χ(αO)

χ(βO)
= χ(αO) = 1,

since we have assumed that χ is trivial on principal ideals generated by elements
of K(M, q).

Hence, we obtain

Φ(αΛ) =
∏

w-pdN

ψ̂0
w((αΛ)w)

=

( ∏
w inert

ψ̂0
w((αΛ)w)

) ∏
w split

ψ̂0
w((αΛ)w)


=

( ∏
w inert

q(βα(w))ψ̂0
w(Λw)

) ∏
w split

χ(Iα(w))ψ̂0
w(Λw)


= q(β)

 ∏
w split

χ(Iα(w))

 ∏
w-pdN

ψ̂0
w(Λw)

= Φ(Λ),

so Φ is K(M, q)-invariant.
Next, if α ∈ Z×(pdN), it is a product of powers of primes not dividing pdN . We

may thus assume that α is such a prime. The q-homogeneity of Φ then follows by
Lemma 8.3 from the homogeneity of the individual ψ0

w functions (see Theorem 9.1
for inert primes, and note that homogeneity is trivial for split primes).

Finally, K(M, q)-invariance and q-homogeneity imply that Φ isH(M, q)-invariant.
�

11. Galois representations

We now define the Galois representations to which our main theorem below
applies.

As before, we let K be a real quadratic field of discriminant d, cut out by the
Dirichlet character θ. Let F be a field of characteristic 0 (in which case we set
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p = 1) or a field of odd characteristic p, let GK be the absolute Galois group of
K (i.e. Gal(Q̄/K)), and let χ : GK → F× be a character of GK with finite image.
By class field theory, we can think of χ as a character on the group of the nonzero
fractional ideals of K relatively prime to N for some positive N ∈ Z. Let L be the
fixed field of the kernel of χ. Then L/K is Galois. We fix a positive integer M that
divides pdN and define K×(pdN) and K(M) as in Definition 3.3, and K(M, q) as in

Definition 3.7.
We place the following conditions on the character χ.

(1) χ is trivial on the principal fractional ideals of K generated by elements of
K(M, q).

(2) χ is trivial on the principal fractional ideals of K generated by elements of
Q that are prime to pdN .

(3) [L : K] is odd.
(4) L/Q is Galois.

As mentioned in the introduction, any ring class character of an order of K that
cuts out a Galois extension of Q of odd degree over K will satisfy these conditions,
for appropriate choices of M and N . As a special case of this, any unramified
character of odd order will satisfy these conditions.

Let ρ : GQ → GL(2,F) be the induced representation

ρ = Ind
GQ
GK

χ.

Note that this representation will factor through Gal(L/Q). We have an exact
sequence

1→ Gal(L/K)→ Gal(L/Q)→ Gal(K/Q)→ 1;

since [L : K] is odd, this sequence splits, so there is an element τ of order 2 in
Gal(L/Q) mapping to the nonidentity element of Gal(K/Q); we can lift it to an
element τ ∈ GQ, and we have that τ2 is the identity modulo GL.

With respect to a suitable basis, it is easy to see that for g ∈ GQ, we have the
following:

(a) If g ∈ GK , then

ρ(g) =

(
χ(g) 0

0 χ(g′)

)
,

where g′ = τ−1gτ .
(b) If g /∈ GK , then g = hτ for some h ∈ GK , and

ρ(g) =

(
0 χ(h′)

χ(hτ2) 0

)
,

where h′ = τ−1hτ .

If we now let g be a Frobenius element in GQ for some prime ` of Q not dividing
pdN (so that ` is unramified in L/Q), then we have the following two cases.

If ` splits in K and ` - N , then g ∈ GK . If we write `O = λλ′ with λ, λ′ primes in
K, then we may take g to be a Frobenius element in GK of λ; a Frobenius element
of λ′ will be g′. Hence, we have

Tr(ρ(g)) = χ(g) + χ(g′) = χ(λ) + χ(λ′),

and
det(ρ(g)) = χ(g)χ(g′) = χ(λ)χ(λ′) = χ(λλ′) = χ(`O) = 1

by condition (2) on the character χ.
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On the other hand, if ` is inert in K and ` - N , write g = hτ as above. Then

Tr(ρ(g)) = 0

and det(ρ(g)) = −χ(hτ2)χ(h′) with h′ = τ−1hτ . We note that g2 is a Frobenius
element of `O in GK . Hence, we have

det(ρ(g)) = −χ(hτ2)χ(h′) = −χ(hτ2h′) = −χ((hτ)2) = −χ(g2) = −χ(`O) = −1,

where we have again used condition (2) on χ.
Note that in each case, when g is a Frobenius element in GQ of `, we have

det(ρ(g)) = θ(`).
Now we check that ρ is even. Let c ∈ GQ be a complex conjugation. Since c has

order 2 and χ has odd order, χ(c) = χ(τ−1cτ) = 1. From the explicit description
of the matrices ρ(g) above, since c ∈ GK , ρ(c) is the identity matrix.

Theorem 11.1. Let K be a real quadratic field of discriminant d, let F be a field
of characteristic 0 or a finite field of odd characteristic. In the first case set p = 1
and in the second case let p be the characteristic of F. Let χ : GK → F× be a
character with finite image. Let L be the fixed field of the kernel of χ and choose
N ∈ Z so that L/K is unramified outside primes of K dividing N . Let M be a
positive divisor of pdN , θ the Dirichlet character cutting out K, q the extension
of θ defined in Definition 3.5, and M(M, q) the module defined in Definition 4.2.
Assume

(1) χ is trivial on the principal fractional ideals of K generated by elements of
K(M, q).

(2) χ is trivial on the principal fractional ideals of K generated by elements of
Q× that are prime to pdN .

(3) [L : K] is odd.
(4) L/Q is Galois.

Then ρ : GQ → GL(2,F) given by ρ = Ind
GQ
GK

χ is an even Galois representation,

and is attached to a Hecke eigenclass in H1(GL(2,Z),M(M, q)∗).

Proof. Recall that for w inert in K and prime to pN , we have constructed a function
ψ0
w in the proof of Theorem 9.1, and for w split in K and prime to pN , we defined

a function ψ0
w in Definition 9.9. Given χ satisfying the conditions of the theorem,

we define an F-valued function Φ on lattices,

Φ(Λ) =
∏

w-pdN

ψ̂0
w(Λw)

where ψ̂0
w is the transform (see Definition 8.4) of the function ψ0

w.
By Theorem 10.2, Φ is H(M, q)-invariant and q-homogeneous. Hence, by Lemma

6.3 we may consider it as an element of H1(GL(2,Q),M(M, q)∗). By Corollary 8.9,
combined with Lemma 9.10 and Theorem 9.1 we see that for all ` prime to pdN ,
Φ is an eigenvector for T` and T`,`, and that the eigenvalues of T` match the trace
of ρ(Frob`). The q-homogeneity of Φ shows that the eigenvalues of T`,` match the
determinant of ρ(Frob`) for all ` prime to pdN . Hence, Φ is attached to ρ. �
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