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Abstract. Given two irreducible Galois representations with relatively
prime conductors, each attached to a Hecke eigenclass in an appropriate
homology group, we prove that their direct sum is also attached to
a Hecke eigenclass in a homology group, and that if the two Galois
representations have weight, level, and nebentype predicted by a Serre-
type conjecture of the authors and David Pollack, then so does the
direct sum. Our methods utilize a study of Γ0(n,N)-orbits of flags of
subspaces of Qn, reducibility results for Galois representations attached
to cohomology of parabolic subgroups of GLn, and a spectral sequence
derived from the Tits building. In addition, we use the spectral sequence
to prove two results about the degrees of homology to which irreducible
Galois representations can be attached.

1. Introduction

The Serre-type conjecture of [6], refined in [13], asserts that an odd Ga-
lois representation ρ : GQ → GLn(Fp) is attached to a Hecke eigenclass in
the cohomology of a congruence subgroup Γ of SLn(Z) (see section 2 for
terminology and definitions). Using the duality between homology and co-
homology, this conjecture can be stated in terms of group homology. The
proof of the case when n > 2 and ρ is irreducible seems to be well beyond
any current techniques.

In [4, 5], we prove the conjecture in its homological form (given certain
conditions) for Galois representations ρ = ρ1 ⊕ ρ2, where ρ1 and ρ2 are
irreducible n-dimensional Galois representations with squarefree conductor,
and assuming that the conjecture holds for ρ1 and ρ2.

In this paper, we extend the results of [4, 5] to apply to ρ = ρ1 ⊕ ρ2,
where the dimensions of ρ1 and ρ2 may be different. For reasons which will
be apparent, we slightly enlarge the group with respect to which we take
homology from the subgroup Γ0(n,N) of SLn(Z) to the subgroup Γ±0 (n,N) of
GLn(Z). The latter group contains matrices of determinant −1 and contains
Γ0(n,N) with index 2.

Our main theorem (Theorem 12.1) says that for p sufficiently large, given
two odd irreducible Galois representations ρ1 and ρ2 of dimensions n1 and
n2 such that ρ1 and ω−n1ρ2 are attached to Hecke eigenclasses in the homol-
ogy of Γ±0 (ni, Ni) for two relatively prime squarefree Ni and some coefficient
modules Mi, then ρ1 ⊕ ρ2 is attached to a Hecke eigenclass in the homology
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of Γ±0 (n1 + n2, N1N2) with some coefficient module M . For the exact rela-
tionship between M1 M2 and M , see the full statement of Theorem 12.1. If
the levels Ni and the coefficient modulesMi are those predicted by the main
conjecture of [6] for ρ1 and ω−n1ρ2, then the level N1N2 and the coefficient
module M are as predicted in [6] for ρ1 ⊕ ρ2.

With our current techniques, we are unable to handle Galois representa-
tions ρ which are sums of three or more irreducible constituents. The reason
for this comes from the spectral sequence we use to prove the main theorem.
When ρ is the sum of two or more irreducible constituents, each of which is
attached to a homology class, we can show that ρ shows up in a certain term
of the first page of the spectral sequence. If ρ survives to the infinity page,
it is attached to homology in a certain degree. There are two ways that it
can fail to survive, however. First, in the passage to the second page, it can
map to a nonzero element. In this case, when ρ is a sum of two irreducible
constituents we are able to show that ρ is attached to a homology class in a
different degree. Second, as we move from the first page to the infinity page,
it can be in the image of some other term of the spectral sequence. Because
of the construction of the spectral sequence, this cannot happen when ρ is
a sum of two irreducible constituents, since all eigenclasses that could map
to it must have attached Galois representations that are sums of three or
more irreducible constituents. If ρ were to have three or more irreducible
constituents, there would be other ways for a class attached to ρ in the first
page of the spectral sequence to fail to survive to the infinity page, and we
are unable to account for this.

A complete understanding of how reducible mod p Galois representations
are attached to the homology of a congruence subgroup Γ would require a
thorough understanding of the mod p homology of the Borel-Serre boundary
of the locally symmetric space X for Γ and its relations to the mod p homol-
ogy of X. Such an understanding is well beyond the limits of any current
knowledge of the subject. In our work we use spectral sequences of various
kinds to get partial information which suffices for the theorems we can prove.
At one point of the argument we make crucial use of Scholze’s results [15]
that imply that a mod p Hecke eigenclass in the homology of Γ always has
a mod p Galois representation attached to it.

To prove the desired theorem, we utilize three new results of independent
interest. The first is that a Galois representation attached to the homol-
ogy of a parabolic subgroup of type (m1, . . . ,mk) has at least k irreducible
components. Although this may seem “obvious,” the only proof we found is
rather intricate. A large part of this paper is devoted to this proof. We need
this result to show that certain differentials in a spectral sequence vanish.

Since this takes up so much space in our paper, it is worth explaining
roughly what makes it hard to prove. Let Q be a parabolic subgroup of
GLn(Q) with unipotent radical U . Suppose we have a Hecke eigenclass in
the homology of a ΓQ = Γ ∩ Q with coefficients in an admissible module
M , with attached Galois representation σ. We first need to show that σ
is attached to a class z in the Levi quotient ΓL of ΓQ. (ΓL is isomorphic
to a direct product of arithmetic subgroups ∆i for GLm’s with m < n.)
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To do this we have to analyze the Hecke action on the Lyndon-Hochschild-
Serre spectral sequence attached to the exact sequence whose quotient is ΓL.
Then we have to show that the homology of Γ ∩ U with coefficients in M
is an admissible ΓL-module, in particular that ΓL acts on it via reduction
modulo p. This is not at all obvious. After we have z, we have to use
a Hecke-equivariant version of the Künneth formula to show that σ is the
direct sum of constituents each of which is attached to the homology of ∆i.
To do this, we have to reduce to the case where the coefficient module M
is one-dimensional. (This is similar to what Scholze has to do in his paper
[15].) In our context this is quite arduous.

The second new tool is a new spectral sequence which is easier to work with
than the spectral sequence used in [4, 5]. In addition to our main theorem,
the new spectral sequence also yields two interesting results on the degrees
of homology to which irreducible Galois representations can be attached;
Theorem 10.2 states that an irreducible degree n Galois representation with
squarefree conductor cannot be attached to homology in degree below n−1,
and Theorem 10.3 proves that an irreducible n-dimensional Galois represen-
tation with squarefree conductor that is attached to homology in degree k
must also be attached to homology in degree (n+ 2)(n− 1)/2− k.

The third new tool in our proofs is the main result of [2], which says
that certain classes in the E2 page of a Lyndon-Hochschild-Serre spectral
sequence related to our Galois representations must persist to the infinity
page. The main theorems of [4, 5] proved this persistence in special cases,
but knowing this persistence more generally allows us to prove the much
better Theorem 12.1 of this paper.

The outline of the paper is as follows. In section 2 we define some basic
terminology. In section 3 we describe the Γ±0 (n,N)-orbits of flags of sub-
spaces in Qn and define canonical representative parabolic subgroups. In
our earlier work we did this for flags whose stabilizers are maximal parabolic
subgroups. Now we need this for all parabolic subgroups.

In section 4 we define a Hecke pair which acts as a parabolic version of the
principal congruence Hecke pair. In section 5 we compare this Hecke pair
to others, and show that they are compatible. Sections 6 and 7 generalize
results of [4] to Γ±0 (n,N), leading up to section 8, in which we finish the
proof of the first new result mentioned above. Note that the results of
Section 6 are necessary in order to use Scholze’s theorem that attaches Galois
representations to homology with admissible representations as coefficients
in the proof of Theorem 12.1.

In section 9 we describe the new spectral sequence that we use to prove
our main result. In section 10 we prove some theorems concerning irreducible
Galois representations and homology classes that follow easily from the new
spectral sequence. In section 11 we state the main result of [2], which is used
in the proof of our main theorem. In section 12 we prove the main theorem
and give some examples and consequences of it.

As a sample here, the main theorem implies the following new result (see
Example 12.5):
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Theorem 1.1. Let p > 16 be prime, and let

ρ1 : GQ → GL5(Fp) and ρ2 : GQ → GL3(Fp)
be odd irreducible Galois representations such that ρ1 ⊕ ρ2 is odd. Assume
that

(1) ρ1 has level N1, nebentype ε1, and one of its predicted weights is
M1 = F (a1 + 3, . . . , a5 + 3), and ρ2 has level N2, nebentype ε2, and
one of its predicted weights is M2 = F (a6, a7, a8);

(2) (a1, . . . , a8) is chosen so that 0 ≤ a5 − a6 ≤ p − 1 and N1N2 is
squarefree;

(3) ρ1 is attached to a Hecke eigenclass in

H7(Γ0(5, N1), (M1)ε1)

and ρ2 is attached to a Hecke eigenclass in

H2(Γ0(3, N2), (M2)ε2).

Let M = F (a1, . . . , an) and ε = ε1ε2. Then ρ1 ⊕ ρ2 is attached to a Hecke
eigenclass in either

H24(Γ0(8, N1N2),Mε)

or
H10(Γ0(8, N1N2),Mε)

or both. Moreover, N1N2, ε, and M are the level, nebentype, and a predicted
weight for ρ1 ⊕ ρ2.

All modules in this paper will be right modules unless otherwise noted.
Throughout this paper we fix a rational prime number p. We write F for a
fixed algebraic closure of Fp.

2. Galois representations and homology

A Galois representation is a continuous homomorphism ρ : GQ → GLn(F).
We say that a Galois representation ρ is odd, if the image of complex conju-
gation under ρ is conjugate to an upper triangular matrix with alternating
ones and minus ones on the diagonal.

Definition 2.1. Let n > 1, and let N be a positive integer prime to p.
(1) S±0 (n,N) consists of the set of all n×n matrices with integer entries

and nonzero determinant prime to pN whose first row is congruent
to (∗, 0, . . . , 0) modulo N .

(2) S0(n,N) consists of elements of S±0 (n,N) with positive determinant.
(3) Γ±0 (n,N) = S±0 (n,N) ∩GL(n,Z).
(4) Γ0(n,N) = S0(n,N) ∩ SL(n,Z).

Let (Γ, S) be equal to either (Γ0(n,N), S0(n,N)) or (Γ±0 (n,N), S±0 (n,N)).
Then (Γ, S) is a Hecke pair (see [1]), and we denote its Fp-Hecke algebra by
H(Γ, S). In each case, the Hecke algebra is commutative, and contains the
double cosets of matrices

s(`, n, k) = diag(1, . . . , 1︸ ︷︷ ︸
n−k

, `, . . . , `︸ ︷︷ ︸
k

),
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for 0 ≤ k ≤ n as ` runs through all primes not dividing pN .
The algebra H(Γ, S) acts on the homology and cohomology of Γ with

coefficients in any Fp[S]-module M . When the double coset of s(`, n, k) acts
on homology or cohomology we call it a Hecke operator and denote it by
Tn(`, k).

Definition 2.2. Let V be any H(Γ, S)-module, and suppose that v ∈ V is
a simultaneous eigenvector of all the Tn(`, k) for ` - pN , with eigenvalues
a(`, k) ∈ F. Suppose that ρ : GQ → GL(n,F) is a Galois representation
unramified outside pN . We say that ρ is attached to v if, for all ` - pN ,

det(I − ρ(Fr`)X) =
n∑
k=0

(−1)k`k(k−1)/2a(`, k)Xk.

The level N of a Galois representation ρ is the prime to p part of the
Artin conductor of ρ. We denote the cyclotomic character modulo p by ω,
and note that we can factor the determinant of ρ as det ρ = ωkε, where ε is
a character modulo N . We call ε the nebentype of ρ.

We parameterize the irreducible GLn(Fp)-modules as in [12].

Definition 2.3. We say that an n-tuple of integers (a1, . . . , an) is p-restricted
if

0 ≤ ai − ai+1 ≤ p− 1, for 1 ≤ i ≤ n− 1,

and

0 ≤ an < p− 1.

Proposition 2.4. [12] The set of isomorphism classes of irreducible GLn(Fp)-
modules is in one-to-one correspondence with the collection of all p-restricted
n-tuples.

We denote the irreducible module corresponding to the n-tuple (a1, . . . , an)
by F (a1, . . . , an).

Given an odd Galois representation ρ : GQ → GLn(F), [6] describes a
collection of irreducible GLn(Fp)-modules (which are called weights) related
to ρ, and predicts that if N is the level of ρ, ε the nebentype, and M any
one of these predicted weights, then ρ is attached to a Hecke eigenclass in

H∗(Γ0(n,N),Mε),

where Mε = M ⊗ Fε, and Fε denotes the one-dimensional space on which
s ∈ S0(n,N) acts via multiplication by ε(s11), where s11 denotes the (1, 1)
entry of s.

Definition 2.5. If a level N , a nebentype ε or a weight M are predicted by
Conjecture 3.1 of [6] for a Galois representation ρ, we call them a predicted
level, predicted nebentype and predicted weight for ρ.

We use this definition also when ρ is attached to a homology class for
Γ±0 (n,N) rather than Γ0(n,N).
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3. Representative flags of parabolic subgroups

In this section, we determine representatives for the Γ0(n,N)-orbits of
flags of subspaces of the vector space of row vectors Qn. These representa-
tives will be used in defining our spectral sequence in section 9.

The next two theorems (Theorems 3.1 and 3.3) are proved in [4].

Theorem 3.1. [4, Theorem 5.1] Let 0 < k < n and let N be a positive
squarefree integer. Then the Γ0(n,N)-orbits of k-dimensional subspaces of
Qn are in one-to-one correspondence with the set of positive divisors of N ,
where the orbit corresponding to the divisor d contains the k-dimensional
subspace spanned by

e1 + dek+1, e2, e3, e4, . . . , ek,

where ei denotes the standard basis element of Qn with a 1 in the ith column,
and 0’s elsewhere.

Right multiplication by elements of S±0 (n,N) preserves the Γ0(n,N)-orbits.

Note that the last sentence in this theorem implies that the Γ0(n,N)-orbits
are equal to the Γ±0 (n,N)-orbits.

We will let W k
d be the representative subspace of Qn described in the

theorem. We define P kd to be the maximal parabolic subgroup of GL(n,Q)

that is the stabilizer of W k
d . Typically, we will omit the k if it is understood

from context. If we define the matrix gd to be the n × n identity matrix
with the (1, k+ 1)-entry replaced by d, P0 = gdPdg

−1
d is the stabilizer of the

subspace Span(e1, . . . , ek).
The subgroup P0 consists of block matrices

g =

(
A 0
B C

)
,

where A is an invertible k × k matrix, C is an invertible (n − k) × (n − k)
matrix, B is an arbitrary (n − k) × k matrix, and 0 represents a block of
zeros. We now define two homomorphisms from Pd to smaller matrix groups.

Definition 3.2. For a block matrix

g =

(
A 0
B C

)
∈ P0,

we define ψ1
0(M) = A and ψ2

0(M) = B. For a matrix s ∈ Pd, gdsg−1
d ∈ P0

and for i = 1, 2, we define

ψid(s) = ψi0(gdsg
−1
d ).

Clearly ψ1
0 : P0 → GL(k,Q), ψ2

0 : P0 → GL(n−k,Q), ψ1
d : Pd → GL(k,Q)

and ψ2
d : Pd → GL(n− k,Q) are surjective group homomorphisms.

We have the following facts about the maps ψid.

Theorem 3.3. [4, Theorem 5.2] Let d be a positive divisor of N and assume
that (d,N/d) = 1.

(1) If s ∈ Pd ∩S±0 (n,N), then ψ1
d(s)11 ≡ s11 (mod d) and ψ2

d(s)11 ≡ s11

(mod N/d).
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(2) ψ1
d(Pd ∩ S

±
0 (n,N)) ⊂ S±0 (k, d).

(3) ψ2
d(Pd ∩ S

±
0 (n,N)) ⊂ S±0 (n− k,N/d).

(4) There is an exact sequence of groups

1→ Ud ∩ Γ±0 (n,N)→ Pd ∩ Γ±0 (n,N)
ψ1
d×ψ

2
d−→ Γ±0 (k, d)× Γ±0 (n− k,N/d)→ 1.

We now wish to extend our investigation to Γ0(n,N)-orbits of arbitrary
(not necessarily maximal) parabolic subgroups. We make the following def-
initions.

Definition 3.4. A flag in Qn is a sequence

0 = V0 ( V1 ( V2 ( · · ·Vt−1 ( Vt = Qn,

where each Vi is a subspace of Qn. We say that this flag has length t, and
define a basis for the flag to be an ordered basis of Qn such that for each i,
the first dim(Vi) vectors in the basis are a basis for Vi. The stabilizer of this
flag is a parabolic subgroup of GLn(Q), also said to be of length t.

Thus a standard parabolic subgroup of length t has t blocks down the
diagonal, and a maximal parabolic subgroup has length 2. To facilitate
inductive proofs of some results, we will consider the full group GLn(Q) to
be a parabolic subgroup Q stabilizing the trivial flag 0 = V0 ( V1 = Qn of
length 1, which is consistent with the terminology in [9].

Note that multiplication of a flag of subspaces on the right by an element
of GLn(Q) yields another flag of subspaces with the same dimensions. Hence,
given a collection 0 = k0 < k1 < · · · < kt = n of dimensions, we see that
GLn(Q) acts on the right on the collection of all flags 0 = V0 ( V1 ( · · · (
Vt = Qn in which each Vi has dimension ki.

Theorem 3.5. Let N be a squarefree positive integer, and let n ≥ 1. Given
a list of integers 0 = k0 < k1 < · · · < kt−1 < kt = n, there is a one-to-one
correspondence between the set of Γ0(n,N)-orbits of flags of subspaces

0 = V0 ( V1 ( · · · ( Vt−1 ( Vt = Qn,

in which each Vi has dimension ki and the set of ordered factorizations N =
d1d2 · · · dt.

The orbit corresponding to the ordered factorization N = d1d2 · · · dt con-
tains the flag with basis

e1 + d1ek1+1, e2, . . . , ek1 ,

ek1+1 + d2ek2+1, . . . , ek2 ,

...

ekt−2+1 + dt−1ekt−1+1, · · · , ekt−1 ,

ekt−1+1, · · · , ekt ,
where each Vi is the span of the first ki vectors in this basis.

Remark 3.6. In an ordered factorization N = d1 . . . dt, any or all of the di
may be equal to 1. Sometimes we will drop the adjective “ordered”.
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Proof. We begin by proving that each orbit contains a flag of the desired
form. We will then establish that distinct flags of the desired form are not
equivalent.

We proceed by induction on the length t of the flag. For t = 2, the result
follows from Theorem 3.1. Assume, then, that t > 2 and that for any N ,
any flag of length less than t is Γ0(n,N)-equivalent to a flag of the desired
form.

Let

0 = V0 ( V1 ( · · · ( Vt−1 ( Vt = Qn

be a flag of length t, in which each Vi has dimension ki. For 1 ≤ i ≤ t, set
`i = ki−ki−1. When we talk about a block diagonal/lower triangular/upper
triangular matrix, the diagonal blocks will have sizes `1, . . . , `t. Set Zd to
be a matrix (whose size will be determined by context) whose entries are all
zero, except for a d in the (1, 1) position. Note that with this notation, the
matrix whose rows are the basis described above is a block upper triangular
matrix of the form

W =


I`1 Zd1
0 I`2 Zd2

0 0
. . .

...
0 0 0 I`t−1 Zdt−1

0 0 0 0 I`t

 .

Let M be an n × n matrix with the property that for each i, the first ki
rows of M are a basis for Vi. Multiplying M on the left by a block lower
triangular matrix Q will give another matrix QM whose first ki rows are a
basis for Vi. Hence, our goal is to find such a Q and a γ ∈ Γ0(n,N) so that
QMγ = W , for some factorization d1 · · · dt = N .

By Theorem 3.1, we can find a block diagonal Q1 = Q′1 ⊕ In−k1 with
Q′1 ∈ GLk1(Q) and a γ1 ∈ Γ0(n,N) so that the first ki rows of Q1Mγ1 are
the first ki basis elements listed above (for some choice of d1). Then there
is a block lower triangular R1 of the form

R1 =

(
Ik1 0
∗ In−k1

)
,

such that R1Q1Mγ1 has the form(
Ik1 Zd1
0 M1

)
.

Now the rows of M1 give a basis for the flag

0 ( V2γ1/V1γ1 ⊆ Vt−1γ1/V1γ1 ⊆ Vtγ1/V1γ1
∼= Qn−k1 ,

so by the induction hypothesis, we can find a block lower triangular Q2 ∈
GLn−k1(Q) and a γ2 ∈ Γ0(n − k1, N/d1) so that (for some factorization
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d2 · · · dt = N/d1)

Q2M1γ2 =


I`2 Zd2

0
. . .

...
0 0 I`t−1 Zdt−1

0 0 0 I`t

 .

Now we see that

(Ik1 ⊕Q2)R1Q1M γ1(Ik1 ⊕ γ2) =


I`1 P
0 I`2 Zd2

0 0
. . .

...
0 0 0 I`t−1 Zdt−1

0 0 0 0 I`t

 ,

where the entries of the block P are all zeros, except for the first row, which
is d1 times the first row of γ2.

Since γ2 ∈ Γ0(n,N/d1), we find that the entries of the first row of P
(except for the first entry) are all multiples of N . The first entry of the first
row of P is of the form αd1, where α is relatively prime to N/d1.

Let γ3 ∈ Γ0(n,N) be the matrix that performs column operations using
the pivot 1 in the (1, 1) entry of I`1 to zero out all but the first entry of the
first row of P .

Finally, let S =

(
s11 s22

s21 s22

)
∈ Γ0(2, N) be the matrix constructed in the

proof of [4, Theorem 5.1] for a = 1 and b = αd1. It has the property that(
1 αd1

0 1

)
S =

(
1 d1

s21 s22

)
=

(
1 d1

s21 1 + d1s21

)
.

The last equality holds because detS = 1.
Let γ4 ∈ Γ0(n,N) be the identity matrix with the (1, 1), (1, k1 + 1), (k1 +

1, 1), and (k1+1, k1+1) entries replaced by s11, s12, s21, and s22, respectively.
Finally, let R2 be the matrix for the row operation that subtracts s21 times
row 1 from row k1 + 1.

Setting Q = R2(Ik1 ⊕ Q2)R1Q1 and γ = γ1(Ik1 ⊕ γ2)γ3γ4, we see that
QMγ has the desired form.

To prove uniqueness, we note that we have proven that Vi is Γ0(n,N)-
equivalent to the ki-dimensional space spanned by the first ki basis elements
of the desired form. Using the methods of Theorem 3.1 one can check that
the space spanned by these basis elements is Γ0(n,N)-equivalent to the rep-
resentative subspace of dimension ki corresponding to the divisor d1 . . . di.
Thus, the Γ0(n,N)-orbit of each Vi uniquely determines the divisor d1 . . . di
of N , so Γ0(n,N)-orbit of the flag uniquely determines the ordered factor-
ization d1 . . . dt = N . �

Corollary 3.7. Right multiplication by elements of S±0 (n,N) preserves the
Γ0(n,N)-orbits.

Proof. Let
0 = V0 ( V1 ( V2 ( · · ·Vt−1 ( Vt = Qn,
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be a flag whose orbit corresponds to the factorization d1 . . . dt = N , and
let s ∈ S±0 (n,N). Then each subspace Vis is Γ0(n,N)-equivalent to Vi by
Theorem 3.1, and hence corresponds to the same divisor of N . Hence, the
flag

0 = V0s ( V1s ( V2s ( · · ·Vt−1s ( Vts = Qn,

corresponds to the same factorization of N , and is in the same orbit. �

Definition 3.8. We call a flag

0 = V0 ( V1 ( · · · ( Vt−1 ( Vt = Qn

with a basis of the form described in Theorem 3.5 a representative flag.

Definition 3.9. For a representative flag

0 = V0 ( V1 ( · · · ( Vt−1 ( Vt = Qn,

let ki = dim(Vi) for each i, and let d1d2 · · · dt = N be the corresponding
factorization of N . Write D = (d1, d2, . . . , dt). Define the matrix gD ∈
GLn(Z) by

gD = ĝdt−1 · · · ĝd2 ĝd1 ,
where ĝdi is the n× n matrix which is the identity matrix except with di in
the (1 + ki−1, 1 + ki)-place.

Theorem 3.10. With notation as in Definition 3.9, for all i, Wi = Vig
−1
D ,

where Wi is the space spanned by the first ki standard basis vectors.

Proof. This is easy to check. �

Definition 3.11. The stabilizer of a representative flag will be called a
representative parabolic subgroup. If the representative flag corresponds to
the factorization d1d2 · · · dt = N , we will set D = (d1, d2, . . . , dt), and denote
the stabilizer of the flag by QD. (Note that we suppress the dimensions of
the subspaces comprising the flag in this notation.)

Since every flag is Γ0(n,N)-equivalent to a representative flag, every para-
bolic subgroup is Γ0(n,N)-conjugate to a representative parabolic subgroup.

Theorem 3.12. Let

0 = V0 ( V1 ( · · · ( Vt−1 ( Vt = Qn

be a representative flag in which ki = dim(Vi) for each i, and let d1d2 . . . dt =
N be the corresponding factorization of N . For 1 ≤ i ≤ t, define `i =
ki − ki−1. If Q is the stabilizer in GLn(Q) of this representative flag, then
gDQg

−1
D is a standard parabolic subgroup consisting of block lower triangular

matrices, with blocks of size `1, . . . , `t on the diagonal.

Proof. The group gDQg−1
D is the stabilizer of the flag

0 = V0g
−1
D ( V1g

−1
D ( · · · ( Vt−1g

−1
D ( Vtg

−1
D = Qn,

and so, by Theorem 3.10, has the desired property. �
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Theorem 3.13. Let N be a squarefree positive integer prime to p, fix integers
0 = k0 < k1 < · · · < kt = n and a factorization d1d2 · · · dt = N , and let
QD be the representative parabolic subgroup of GLn(Q) corresponding to this
factorization. For 1 ≤ i ≤ t, define `i = ki − ki−1. Let UD be the unipotent
radical of QD. Then there is an exact sequence

0→ UD ∩ Γ±0 (n,N)→ QD ∩ Γ±0 (n,N)
ψD−→

t∏
i=1

Γ±0 (`i, di)→ 0,

where ψD is the map taking an element s ∈ QD to the Cartesian product of
the diagonal blocks of gDsg−1

D .

Proof. We first note that this is true when t = 2 (i.e. for a maximal rep-
resentative parabolic subgroup) by Theorem 3.3. Assume that it is true for
all representative parabolic subgroups fixing a flag of length less than t (for
some t > 2). Let QD be a representative parabolic subgroup fixing a flag

0 = V0 ( V1 ( V2 ( · · ·Vt−1 ( Vt = Qn

corresponding to the factorization d1d2 · · · dt = N .
Then ψ2

d1
(QD) is the representative parabolic subgroup corresponding to

the flag

0 = V1g
−1
d1
/V1g

−1
d1

( V2g
−1
d1
/V1g

−1
d1

( · · ·Vt−1g
−1
d1
/V1g

−1
d1

( Vtg
−1
d1
/V1g

−1
d1
∼= Qn−k1 ,

of length t− 1 corresponding to the factorization d2 · · · dt = N/d1. Call this
subgroup QD2 , whereD2 = (d2, . . . , dt). We note that ψQ = ψ1

d1
×(ψD2◦ψ2

d1
)

(since conjugation by g̃di for i > 1 does not change the top left k1×k1 block
of a matrix).

Now let

(γ2, . . . , γt) ∈
t∏
i=2

Γ±0 (`i, di) and γ1 ∈ Γ±0 (`1, d1).

Then, by our inductive hypothesis, there is a matrix B ∈ Γ0(n − k1, N/d1)
such that ψD2(B) = (γ2, . . . , γt). Then (γ1, B) ∈ ψd1(γ) for some γ ∈
Pd1 ∩ Γ0(n,N). We claim that γ ∈ PD. To see this, notice that the matrix
gD2 = ĝt · · · ĝ2 in the definition of ψD2 is an (n − k1) × (n − k1) matrix.
Write g̃D2 = Ik1⊕gD2 . We have that gD2Bg

−1
D2

is block lower triangular with
γ2, . . . , γt as the diagonal blocks. Now the matrix gD in the definition of ψD
is equal to g̃D2 ĝd1 , so we have

gDγg
−1
D = g̃D2(ĝd1γĝ

−1
d1

)g̃−1
D2

= g̃D2

(
γ1 0
∗ B

)
g̃−1
D2

=

(
γ1 0
∗ gD2Bg

−1
D2

)
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=


γ1 0 . . . 0
∗ γ2 . . . 0

∗ ∗ . . .
∗ ∗ . . . γt

 ∈ P0,

so γ ∈ g−1
D Q0gD = QD. Hence, γ ∈ QD∩Γ0(n,N), and ψD(γ) = (γ1, . . . , γt),

so ψD is surjective.
One then checks easily that the kernel of ψD is UD ∩ Γ±0 (n,N). �

Definition 3.14. If T is a subsemigroup of GLn(Q), let TN denote the
subsemigroup of t ∈ T such that det(t) is prime to N .

Theorem 3.15. Let N be a squarefree positive integer prime to p, fix integers
0 = k0 < k1 < · · · < kt = n, and a factorization d1d2 · · · dt = N , and let
QD be the representative parabolic subgroup of GLn(Q) corresponding to this
factorization. For 1 ≤ i ≤ t, define `i = ki− ki−1. Then there is a surjective
map

QD ∩ S±0 (n,N)
ψD−→

t∏
i=1

S±0 (`i, di)N ,

where ψD is the map taking an element s ∈ QD to the Cartesian product of
the diagonal blocks of gDsg−1

D .
In fact any element in the product has a preimage s such that gDsg−1

D is
block diagonal modulo p.

Proof. We will prove this for t = 2. The proof for general t follows by
induction, in a similar fashion to the proof of Theorem 3.13, and will be
omitted. Let d = d1. Then we wish to prove that the map

QD ∩ S±0 (n,N)
ψ1
d×ψ

2
d−→ S±0 (`1, d)N × S±0 (`2, N/d)N → 0

is surjective. Parts (2) and (3) of Theorem 3.3 show that the image of
ψ1
d × ψ2

d is contained in S±0 (`1, d)N × S±0 (`2, N/d)N . (The determinants of
the two components are prime to N because the determinant of the image
of s ∈ S0(n,N) is prime to N and is the product of the two determinants of
the matrices comprising the image of s.) Hence, the map ψ1

d ×ψ2
d has image

contained in the indicated codomain.
We now prove surjectivity. Let A = (aij) ∈ S±0 (`1, d)N and B = (bij) ∈

S±0 (`2, N/d)N . We define an `2 × `1 matrix C = (cij) as follows:
• For i > 1 and for all j, cij = 0.
• c11 is a solution to the congruence c11d ≡ a11−b11 (mod N/d). Note
that since d is a unit modulo N/d, this congruence has a unique
solution modulo N/d. Using the Chinese remainder theorem, we
may also choose c11 ≡ 0 (mod p).
• For i = 1 and j > 1, choose cij ≡ aij/d (mod N/d). Note that
since A ∈ S±0 (`1, d), aij/d ∈ Z. In addition, we may use the Chinese
remainder theorem to choose cij ≡ 0 (mod p).

Construct the block matrix

X =

(
A 0
C B

)
,
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and set s = g−1
d Xgd. Then s ∈ S±0 (n,N) ∩ QD. The determinant of s is

prime to pN since det(A) and det(B) are prime to pN . Further, s has been
constructed so that ψ1

d × ψ2
d maps s to (A,B). We note that since we have

chosen C ≡ 0 (mod p), we have that gdsg−1
d is block diagonal modulo p. �

4. Parabolic congruence subgroups

In this section we correct an error in [4]. In [4, Definition 7.1], ΓP (N) and
SP (N) are defined, and in [4, Lemma 7.13] the Hecke pairs (ΓP (pN), SP (pN))
and (Γ ∩ P, S ∩ P ) are asserted to be compatible, where (Γ, S) is a certain
Hecke pair. The proof of this assertion is flawed when the flag stabilized by
P has a one-dimensional subquotient. In this section we rectify the situation
by defining replacements for ΓP (N) and SP (N) which serve our purpose of
proving that a Galois representation attached to the homology of a parabolic
subgroup of length t has at least t irreducible components (see Theorems 8.3
and 8.5).

Definition 4.1. Let N be a positive squarefree integer prime to p. Let M
be a positive divisor of N , and let

0 = V0 ( V1 ( · · · ( Vt−1 ( Vt = Qn

be a representative flag for Γ0(n,M), with ki = dim(Vi) for 0 ≤ i ≤ t,
and d1 . . . dt = M the factorization of M corresponding to the flag. Set
~k = (k1, . . . , kt), and D = (d1, . . . , dt), and let Q be the stabilizer of the flag.

We make the following definitions.
(1) Γ(p) is the set of A ∈ SLn(Z) such that A ≡ In modulo p.
(2) S~k(p) is the set of matrices A ∈Mn(Z) with determinant prime to p

such that A ≡ diag(1, 1, . . . , ∗, 1, . . . , ∗, . . .) (mod p), with a ∗ in the
ki position for each 1 ≤ i ≤ t. If ~k has length 1, we omit it and write
merely S(p).

(3) S0(n,M)+
Q is the set of s ∈ S0(n,M)N ∩ Q such that the diagonal

blocks of gDsg−1
D all have positive determinant (necessarily prime to

pN).
(4) SQ(p,M) = {s ∈ S0(n,M)+

Q : gDsg
−1
D ∈ S~k(p)}.

(5) Γ0(n,M)+
Q is the set of x ∈ Γ0(n,M) ∩ Q such that the diagonal

blocks of gDxg−1
D all have positive determinant (necessarily equal to

1).
(6) ΓQ(p,M) = Γ(p) ∩ Γ0(n,M)+

Q.

Remark 4.2. If t = 1 (so that Q = GLn(Q)), we take gD = In, so that
S0(n,M)+

Q = S0(n,M)N and SQ(p,M) = S0(n,M)N ∩ S(p).

Remark 4.3. Note that both SQ(p,M) and S0(n,M)+
Q have an implicit

dependence on N , even though the notation does not indicate this.

Lemma 4.4. With notation as above,
(a) ΓQ(p,M) = {s ∈ SQ(p,M) : det(s) = 1}.
(b) ΓQ(p,M) is a normal subgroup of finite index in both Γ0(n,M) ∩Q

and Γ±0 (n,M) ∩Q.
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Proof. (a) Clearly the left hand side is a subset of the right. Let s ∈
{SQ(p,M) : det(s) = 1}. Then s has integer entries and determinant 1,
and since s ∈ S0(n,M) ∩Q, we see that s ∈ Γ0(n,M) ∩Q. Further, the de-
terminants of the diagonal blocks of gDsg−1

D are all positive, and the product
of these determinants is 1, so they are all equal to 1. Finally each diagonal
block is congruent to diag(1, . . . , 1, ∗) (mod p); since each diagonal block
has determinant 1, the ∗ must be 1 modulo p, so that s ∈ Γ(p). Hence,
s ∈ ΓQ(p,M).

(b) ΓQ(p,M) is the intersection of the kernel of the map taking a matrix
x ∈ Γ0(n,M)± ∩ Q to the tuple of determinants of the diagonal blocks of
g−1
D xgD, and the kernel of the map taking x to its mod p reduction. Hence,
it is normal in Γ±0 (n,M) ∩ Q. Since the image of each map is finite, the
intersection of the kernels has finite index in Γ±0 (n,M) ∩Q. The statement
about Γ0(n,M) ∩Q follows immediately since ΓQ(p,M) ⊆ Γ0(n,M) ∩Q ⊂
Γ±0 (n,M) ∩Q. �

A key point in the definition of SQ(p,M), and the reason that it needs to
be defined with the implicit dependence on N , is that this definition lends
itself to induction, via the following theorem.

Theorem 4.5. Let N be a positive squarefree integer prime to p. Let M be
a positive divisor of N , and let

0 = V0 ( V1 ( · · · ( Vt−1 ( Vt = Qn

be a representative flag for Γ0(n,M), with ki = dim(Vi) for 0 ≤ i ≤ t,
and d1 . . . dt = M the factorization of M corresponding to the flag. Set
~k = (k1, . . . , kt), and D = (d1, . . . , dt).

Then the map ψ1
d1
×ψ2

d1
: SQ(p,M)→ S±0 (k1, d1)N × S±0 (n− k1,M/d1)N

has image (S0(k1, d1)N ∩ S(p)) × SQ′(p,M/d1), where Q′ is the parabolic
subgroup fixing the flag

0 = V1g
−1
d1
/V1g

−1
d1

( V2g
−1
d1
/V1g

−1
d1

( · · · ( Vtg
−1
d1
/V1g

−1
d1
∼= Qn−k1 .

Further, the map

ψ1
d1 × ψ

2
d1 : ΓQ(p,M)→ Γ±0 (k1, d1)× Γ±0 (n− k1,M/d1)

has image (Γ0(k1, d1)N ∩ Γ(p))× ΓQ′(p,M/d1).

Proof. As in the proof of Theorem 3.15, is easy to see that the image is
contained in the given semigroup. To prove the other containment, let A ∈
S0(k1, d1)N ∩ S(p), and let B ∈ SQ′(p,M/d1). Then A ∈ S±0 (k1, d1)N and
B ∈ S±0 (n− k1,M/d1)N . Choosing C as in the proof of Theorem 3.15 (with
N there replaced by M), and noting that we have chosen C ≡ 0 (mod p),
we see that

s = g−1
d1

(
A 0
C B

)
gd1

is in S0(n,M)+
Q, and that gDsg−1

D ∈ S~k(p) and is block diagonal with deter-
minant prime to pN . Thus, s ∈ SQ(p,M) and the image of s under ψ1

d1
×ψ2

d1
is (A,B).
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The assertion about ΓQ(p,M) follows immediately by restricting to ma-
trices of determinant 1. �

5. Compatibility of Some Hecke Pairs

We recall the definition of a Hecke pair, and of compatible Hecke pairs.

Definition 5.1. [1, page 238] We say that (Γ, S) is a Hecke pair in GLn(Q)
if Γ is a subgroup of G, S is a subsemigroup of G, and

(1) Γ ⊆ S,
(2) for each s ∈ S, the groups Γ and s−1Γs are commensurable.

Definition 5.2. [8, Definition 1.1.2] A Hecke pair (Γ, S) is said to be com-
patible to the Hecke pair (Γ′, S′) if

(1) Γ ⊆ Γ′ and S ⊆ S′,
(2) Γ′ ∩ S−1S = Γ,
(3) SΓ′ = S′.

We will typically indicate that (Γ, S) is compatible to (Γ′, S′), by saying that
the Hecke pairs (Γ, S) ⊆ (Γ′, S′) are compatible.

The significance of compatible Hecke pairs arises from [8, p. 194], where
it is shown that if (Γ′, S′) ⊆ (Γ, S) are compatible, then the natural map
H(Γ, S) → H(Γ′, S′) of Hecke algebras is an injective algebra homomor-
phism. This allows us to consider anyH(Γ′, S′)-module as aH(Γ, S)-module.
If we take (Γ, S) to be (Γ0(n,N), S0(n,N)) or (Γ±0 (n,N), S±0 (n,N)), this
allows us to apply the definition of an attached Galois representation to
H(Γ′, S′)-modules.

The following two lemmas are probably well known; we include proofs
here for completeness.

Lemma 5.3. If (Γ, S) is a Hecke pair, and Γ′ ⊆ Γ is a subgroup of finite
index, and S′ is any semigroup with Γ′ ⊆ S′ ⊆ S, then (Γ′, S′) is a Hecke
pair.

Proof. It is well known [14, Lemma I.3.2] that commensurability of subgroups
is an equivalence relation. Writing commensurability with a ∼, we have for
any s ∈ S′, Γ′ ∼ Γ ∼ s−1Γs ∼ s−1Γ′s. �

Lemma 5.4. Suppose (Γi, Si), i = 1, 2, 3, are Hecke pairs, with Γi ⊆ Γi−1

and Si ⊆ Si−1 for i = 2, 3.
(a) Suppose that (Γ3, S3) is compatible to (Γ1, S1) and (Γ2, S2) is compat-

ible to (Γ1, S1). Then (Γ3, S3) is compatible to (Γ2, S2).
(b) Suppose that (Γ3, S3) is compatible to (Γ2, S2) and (Γ2, S2) is compat-

ible to (Γ1, S1). Then (Γ3, S3) is compatible to (Γ1, S1).

Proof. (a) :
(1) Γ3 ⊆ Γ2 and S3 ⊆ S2 is given.
(2) Γ2 ∩ S−1

3 S3 = Γ3 because Γ2 ⊆ Γ1.
(3) S3Γ2 = S2: One inclusion is obvious. For the other, suppose s2 ∈ S2.

Since S2 ⊆ S1 and S3Γ1 = S1, we can write s2 = s3γ1 for some
s3 ∈ S3 and γ1 ∈ Γ1. Then γ1 = s−1

3 s2 ∈ Γ1 ∩ S−1
2 S2 = Γ2.
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(b) :
(1) Γ3 ⊆ Γ1 and S3 ⊆ S1 is given.
(2) Γ1∩S−1

3 S3 = Γ3 because Γ1∩S−1
2 S2 = Γ2 and then Γ2∩S−1

3 S3 = Γ3.
(3) S3Γ1 = S1: One inclusion is obvious. For the other, suppose s1 ∈ S1.

Then s1 = s2γ1 for some s2 ∈ S2 and γ1 ∈ Γ1. Then s2 = s3γ2 for
some s3 ∈ S3 and γ2 ∈ Γ2. So s1 = s3γ2γ1. �

Definition 5.5. If T is a subsemigroup of GLn(Q) and Q is a parabolic
subgroup of GLn(Q), define TQ = T ∩Q.

Theorem 5.6. If Γ is a subgroup of finite index in GLn(Z) and S is a
subsemigroup of GLn(Q) and Γ ⊆ S and Q is a parabolic subgroup, then
(ΓQ, SQ) is a Hecke pair.

Proof. Obviously ΓQ ⊂ SQ. The given conditions imply that for any s ∈ S,
we we have that Γ and s−1Γs are commensurable.

Let s ∈ SQ. We must show the groups ΓQ and s−1ΓQs are commensurable.
Since conjugation by s is an automorphism of the ambient group GLn(Q),
and s ∈ Q, we have s−1(Γ ∩ Q)s ∩ (Γ ∩ Q) = s−1Γs ∩ s−1Qs ∩ Γ ∩ Q =
s−1Γs ∩ Γ ∩Q. We must show this has finite index in Γ ∩Q and in s−1(Γ ∩
Q)s = s−1Γs ∩Q.

Since Γ and s−1Γs are commensurable, Γ contains a normal subgroup ∆
of finite index such that ∆ ⊂ Γ ∩ s−1Γs. Clearly Γ ∩ Q/∆ ∩ Q → Γ/∆ is
injective. Thus Γ ∩ Q contains the normal subgroup ∆ ∩ Q of finite index
and ∆ ∩Q ⊂ s−1Γs ∩ Γ ∩Q.

The proof that the other index is finite is similar. �

Theorem 5.7. Let N be a squarefree positive integer prime to p, and let M
be a positive divisor of N . Let Q be a representative parabolic subgroup for
Γ0(n,M) and let

(Γ, S) = (Γ0(n,M), S0(n,M)N ) or (Γ±0 (n,M), S±0 (n,M)N ).

(a) (ΓQ(p,M), SQ(p,M)) is a Hecke pair.
(b) The Hecke pairs (ΓQ(p,M), SQ(p,M)) ⊆ (ΓQ, SQ) are compatible.

Proof. Recall that the matrix g = gD ∈ GLn(Z) from Definition 3.9 is such
that Q0 = gQg−1 is a standard parabolic subgroup (i.e. block lower trian-
gular).

(a) We know that (Γ0(n,M), S0(n,M)N ) is a Hecke pair. Hence, by
Theorem 5.6, (Γ0(n,M) ∩ Q,S0(n,M) ∩ Q) is a Hecke pair. Now
Γ0(n,M)+

Q has finite index inside Γ0(n,M) ∩Q (being the kernel of
the map that takes a matrix x to the vector of determinants of its
diagonal blocks of gxg−1, all of which are ±1). Hence, by Lemma 5.3,
(Γ0(n,M)+

Q, S0(n,M)+
Q) is a Hecke pair. Finally, ΓQ(p,M) has finite

index in Γ0(n,M)+
Q (being the kernel of reduction modulo p). Thus,

by Lemma 5.3 again, (ΓQ(p,M), SQ(p,M)) is a Hecke pair.
(b) We have three conditions to prove compatibility. We do both cases

(Γ, S) = (Γ0(n,M), S0(n,M)N ) and (Γ, S) = (Γ±0 (n,M), S±0 (n,M)N )
simultaneously.
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(1) We have already seen that containment holds.
(2) We need to prove:

SQ(p,M)−1SQ(p,M) ∩ ΓQ = ΓQ(p,M).

The right hand side is obviously in the left hand side. Conversely,
suppose

x ∈ SQ(p,M)−1SQ(p,M) ∩ ΓQ.

Recall that SQ(p,N) = {s ∈ S0(n,N)+
Q : gDsg

−1
D ∈ S~k(p)} and

ΓQ(p,M) = Γ(p) ∩ Γ0(n,M)+
Q.

Obviously x ∈ Γ and x ∈ Q and the diagonal blocks of gDxg−1
D

have positive determinant, so x ∈ Γ0(n,M)+
Q. We must therefore

show x ∈ Γ(p). But gDxg−1
D ∈ S~k(p). Since the diagonal blocks are

congruent to diag(1, 1, . . . , ∗) modulo p and have determinant 1, we
see that ∗ ≡ 1 (mod p), so x ∈ Γ(p). Hence x ∈ Γ0(n,M)+

Q ∩Γ(p) =

ΓQ(p,M).
(3) We must prove:

SQ(p,M)ΓQ = SQ.

The left hand side is obviously contained in the right hand side.
Conversely, suppose s ∈ SQ.

We first assume that det(s) is positive (this will always be the case
if S = S0(n,M)N ). We must find γ ∈ ΓQ such that sγ ∈ SQ(p,M).
We do this by induction on the length t of the flag defining Q.

In the case where t = 1, we see that Q = GLn(Q), so ΓQ(p,M) =
Γ0(n,M)N ∩ Γ(p), and SQ(p,M) = S0(n,M)N ∩ S(p). Let s ∈ SQ.
By the Chinese Remainder Theorem, we may choose γ ∈ SLn(Z)
modulo p and modulo M independently. We will choose γ to be
congruent to the identity moduloM , so that sγ ≡ s (mod M). Then
clearly sγ ∈ S0(n,M)N . We also choose γ congruent modulo p to
s−1 diag(1, . . . , 1, det(s)). Then sγ ∈ S(p) and det(sγ) = det(s) > 0,
so sγ ∈ SQ(p,M), as desired.

If det(s) < 0 (which can only happen if (Γ, S) = (Γ±0 (n,M), S±0 (n,M)N )),
then we choose a γ′ ∈ Γ±0 (n,M) with det(γ′) = −1. Then sγ′ has
positive determinant, so we can (as above) find a γ ∈ Γ0(n,M) such
that sγ′γ ∈ SQ(p,M). Since γ′γ ∈ Γ±0 (n,M), we are done.

We now assume that t > 1, and the theorem is true for all flags
of length less than t, and suppose that Q stabilizes a representative
flag of length t.

Let Q′ be the parabolic subgroup stabilizing the representative
flag

0 = V1g
−1
d1
/V1g

−1
d1

( V2g
−1
d1
/V1g

−1
d1

( · · ·Vtg−1
d1
/V1g

−1
d1
∼= Qn−k1

corresponding to the factorization d2 · · · dt = M/d1.
Let s ∈ SQ. Then

gd1sg
−1
d1

=

(
s1 0
∗ s2

)
,
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where s1 ∈ S±0 (k1, d1)N , and s2 ∈ S±0 (n − k1,M/d1)N . By the
inductive hypothesis, we may find γ1 ∈ Γ±0 (k1, d1) and γ2 ∈ Γ±0 (n−
k1,M/d1) so that s1γ1 ∈ S0(k1, d1)N∩S(p) and s2γ2 ∈ SQ′(p,M/d1).
By the surjectivity of the map in Theorem 3.13, we may find γ ∈
Γ±0 (n,M)N such that

gd1γg
−1
d1

=

(
γ1 0
∗ γ2

)
.

Hence, γ ∈ Γ±0 (n,M) ∩ Q. We note that if det(s) is positive, then
det γ must also be positive, since det s1γ1 and det s2γ2 must both
be positive, so we see that γ is in ΓQ (regardless of whether Γ =

Γ0(n,M) or Γ = Γ±0 (n,M)). Then

gd1sγg
−1
d1

=

(
A 0
Y B

)
∈Mn(Z)

for some A ∈ S0(k1, d1)N ∩ S(p), B ∈ SQ′(p,M/d1), and Y ∈
Mn−k1,k1(Z). Since B has determinant prime to p, the matrix B−1

has entries in Zp, and we can choose an integer matrix B′ such that
B′ ≡ B−1 mod p. Then

γ′ = g−1
d1

(
Ik1 0
−B′Y In−k1

)
gd1

is in ΓQ, and we see that

gd1sγγ
′g−1
d1

=

(
A 0
Y B

)(
Iki 0
−B′Y In−k1

)
=

(
A 0

Y −BB′Y B

)
≡
(
A 0
0 B

)
(mod p),

so that sγγ′ ∈ SQ(p,M). �

We now prove a lemma to simplify the proofs of Theorem 5.9 and 5.10,
and a second lemma needed for the proof of Theorem 5.9.

Lemma 5.8. Let (Γ, S) = (Γ0(n,N), S0(n,M)N ). For each s ∈ S, the
double coset ΓsΓ contains a matrix D = diag(c1, . . . , cn) with c1|c2| · · · |cn.

The same conclusion holds if (Γ, S) = (Γ±0 (n,N), S±0 (n,M)N ).

Proof. We follow [16, p. 66]. Let (Γ′, S′) = (SLn(Z),∆N ), where

∆N = {x ∈Mn(Z) : det(x) > 0, gcd(detx, pN) = 1}.
Let a bar denote the reduction map modulo N from ∆N to GLn(Z/N). Let
G be the subgroup of GLn(Z/N) consisting of matrices whose first row has
the form (∗, 0, . . . , 0).

Let
Φ = {α ∈ ∆N : Γα = αΓ}.

Let α ∈ S. Then α ∈ G. For any γ ∈ Γ, γα ∈ G. Further, α−1 ∈ G,
so α−1γα ∈ G. Now det(α−1γα) = 1, so it lifts to a γ′ ∈ Γ′ such that
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α−1γα = γ′. Since γ′ ∈ G, we see that γ′ ∈ Γ and γα = αγ′. This shows
that Γα ⊆ αΓ. The reverse inclusion is proven similarly. Thus, S ⊆ Φ.

Now let s ∈ S and suppose that we have a coset decomposition

ΓsΓ =
∐
i

Γsi

with each si ∈ S. By Shimura, Lemma 3.29(5), we see that

Γ′sΓ′ =
∐
i

Γ′si.

By Smith Normal Form, we know that Γ′sΓ′ contains a diagonal matrix D
as in the statement of the lemma. Hence, D = γ′si for some i and some
γ′ ∈ Γ′. Since both D, si ∈ G, we see that γ′ ∈ G, so that γ′ ∈ Γ. Then
D ∈ Γsi ⊆ ΓsΓ, as desired.

The final sentence holds since, if (Γ, S) = (Γ±0 (n,M), S±0 (n,M)N ), each
double coset ΓsΓ contains an element s′ ∈ S0(n,M)N . Then

ΓsΓ = Γs′Γ ⊃ Γ0(n,M)s′Γ0(n,M),

and this last double coset contains a matrix of the desired form. �

Theorem 5.9. Let P be a maximal parabolic subgroup, and let

(Γ, S) = (Γ0(n,N), S0(n,N)) or (Γ±0 (n,N), S±0 (n,N)).

Then the Hecke pairs
(ΓP , SP ) ⊆ (Γ, S)

are compatible.

Proof. We first prove the theorem for (Γ, S) = (Γ0(n,N), S0(n,N)).
Let (Γ, S) = (Γ0(n,N), S0(n,N)). There are three conditions to prove for

compatibility.
(1) We must show that ΓP ⊂ Γ and SP ⊂ S. This is obvious.
(2) We must show that Γ∩S−1

P SP = ΓP . Since SP , S−1
P ⊂ P , the left side

is clearly contained in the right side. The other containment follows from
the fact that ΓP ⊆ Γ ∩ SP , and I ∈ S−1

P .
(3) We must show that SPΓ = S. We note that SPΓ ⊆ S is obvious.

Hence, let s ∈ S. Then by Lemma 5.8, the double coset ΓsΓ contains a
diagonal matrix γisγj that is a product of matrices of the form s(`, k) =
diag(1, . . . , 1, `, . . . , `) where ` is a prime, ` - pN , and there are k `’s, where
k can vary.

In [4, Theorem 8.6], we show that we can write

Γs(`, k)Γ =
∐
i

tiΓ,

with the ti ∈ SP . Then the top of page 52 in Shimura [16, Section 3.1] shows
that the single coset representatives of ΓsΓ can be chosen to be products of
coset representatives in SP of the single cosets in Γs(`, k)Γ for the various
s(`, k), and so can all be chosen to be in SP . (Take into account the fact
that Shimura uses right cosets and we use left cosets.) Since s is contained
in one of these single cosets, we have that s = s′γ for some s′ ∈ SP and some
γ ∈ Γ. Hence, the theorem is true for (Γ, S) = (Γ0(n,N), S0(n,N)).
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If (Γ, S) = (Γ±0 (n,N), S±0 (n,N)), conditions (1) and (2) are true with the
same proof as above. For condition (3), we wish to prove that SPΓ = S. The
containment SPΓ ⊆ S is obvious. For the other containment, let s ∈ S, and
choose an element γ1 ∈ Γ such that det(sγ1) > 0. Then sγ1 ∈ S0(n,N), and
by the first part of the theorem, it has the form s′γ2 with s′ ∈ S0(n,N)∩P ⊂
SP , and γ2 ∈ Γ0(n,N) ⊂ Γ. Then s = s′(γ2γ

−1
1 ) with γ2γ

−1
1 ∈ Γ, as desired.

Note that for both possible choices of (Γ, S), the element s′ ∈ SP that we
find has positive determinant. �

Theorem 5.10. Let Q be a representative parabolic subgroup of length t
stabilizing the flag

0 = V0 ( V1 ( · · · ( Vt = Qn

and corresponding to the factorization d1 · · · dt = N . Let P be the stabilizer
of the flag 0 ( V1 ( Qn. Set (Γ, S) = (Γ0(n,N), S0(n,N)) or (Γ, S) =
(Γ±0 (n,N), S±0 (n,N)). Then

(a) The Hecke pair (ΓQ, SQ) is compatible with (Γ, S).
(b) The Hecke pair (ΓQ, SQ) is compatible with (ΓP , SP ).

Proof. Let d = d1, and let Q′ be the parabolic subgroup stabilizing the flag

0 = V1g
−1
d /V1g

−1
d ⊆ V2g

−1
d /V1g

−1
d ⊆ · · · ⊆ Vtg

−1
d /V1g

−1
d
∼= Qn−k1 .

Note that Q′ corresponds to the factorization d2 · · · dt = N/d and has length
t− 1.

(a) We prove this by induction on the length t of Q. The case when
t = 1 is trivial (since ΓQ = Γ and SQ = S), and the case when t = 2
is Theorem 5.9.

Let t > 2, and assume that the theorem is true for all represen-
tative parabolic subgroups of length less than t (in particular, the
theorem is true for Q′). We prove conditions (1), (2), and (3) of
compatibility.

(1) Clearly ΓQ ⊆ Γ and SQ ⊆ S.
(2) We need to prove that Γ ∩ SQS−1

Q = ΓQ. That the right side
is contained in the left is clear.

To prove the other containment, let s ∈ Γ ∩ SQS−1
Q . Then s is

contained in both Γ and Q, so s ∈ ΓQ.
(3) We wish to prove that SQΓ = S. Clearly, SQΓ ⊆ S. Now let

s ∈ S. By Theorem 5.9, since (ΓP , SP ) and (Γ, S) are compatible,
we have that SPΓ = S, so that there is some γ1 ∈ Γ with s = s1γ1

and s1 ∈ SP . If det(s1) is negative, we may choose an element
γ′ ∈ ΓP ⊂ Γ of determinant −1, and replace s1 by s1γ

′ ∈ SP and γ1

by (γ′)−1γ1 ∈ Γ, so we may as well assume that det(s1) is positive.
Then

gd1s1g
−1
d1

=

(
A 0
B C

)
,

with A ∈ S±0 (k1, d1) and C ∈ S±0 (n − k1, N/d1). Since det(s1) > 0,
we see that det(A) and det(C) have the same sign.

Note that γ2 = diag(−1, 1, · · · , 1,−1, · · · , ) (with −1 in the 1 and
k1 + 1 positions) commutes with gd1 and is in Γ. If det(A) and
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det(C) are negative, replacing s1 by s1γ2 (and replacing γ1 with
γ−1

2 γ1) will make det(A) and det(C) positive, so that A ∈ S0(k1, d1)
and C ∈ S0(n− k1, N/d1).

By the inductive hypothesis, there is some γ3 ∈ Γ0(n− k1, N/d1)
such that Cγ3 ∈ S0(n− k1, N/d1) ∩Q′. Let

γ4 = g−1
d1

(
I 0
0 γ3

)
gd1 ∈ Γ.

Set s2 = s1γ4. Then s2 ∈ SQ, since Cγ3 ∈ Q′. Then s = s2(γ−1
4 γ1),

and γ−1
4 γ1 ∈ Γ, as desired. �

(b) follows from Lemma 5.4.

For use in the next section, we prove:

Lemma 5.11. Let Q be a parabolic subgroup of GLn(Q), with U the unipo-
tent radical of Q. Suppose (Γ, S) ⊆ (Γ±0 (n,N), S±0 (n,N)) are compatible
Hecke pairs. Then SU = ΓU .

Proof. First note that Γ = {x ∈ S : detx = ±1}. This is because if x ∈ Γ
then it is in S and has determinant ±1. Conversely, if x ∈ S has determinant
±1 then since the entries of x are integers, x ∈ GLn(Z). But x ∈ S ⊂
S±0 (n,N), so x ∈ Γ±0 (n,N). But compatibility implies that Γ±0 (n,N) ∩
S−1S = Γ, and clearly Γ±0 (n,N) ∩ S ⊂ Γ±0 (n,N) ∩ S−1S. Thus, x ∈ Γ.

Since the elements of U all have determinant 1 it follows that S ∩ U is
contained in Γ ∩ U . Since Γ ⊂ S, the other inclusion is trivial. �

6. Admissibility of certain group actions

In this section, we review the definition of an admissible module, and
prove that certain homology groups are admissible modules. Because we use
the Hecke pair (ΓQ(p,N), SQ(p,N)) in this paper, we must reprove some of
the Lemmas in [4] for this Hecke pair. In particular, [4, Theorem 7.10] needs
to be revised, and we also give a more detailed proof of [4, Theorem 11.3].

We recall the definition of an admissible module.

Definition 6.1. A (p,N)-admissible S-module M is an F[S]-module of the
formM ′⊗Fε, whereM ′ is an F[S]-module on which S ⊂ GLn(Q)∩GLn(Zp)
acts via its reduction modulo p, and ε : S → F× is a character which factors
through the reduction of S modulo N . Here Fε is the vector space F, with
S acting as multiplication via ε. Moreover, if S ⊆ S±0 (n,N) then we require
ε to be defined by ε(s) = η(s11), for some homomorphism η : (Z/N)× → F×
(where s11 denotes the (1, 1)-entry of s). If p and N are understood from
the context, we will just use the term admissible.

The following theorem proves the equivalent of [4, Theorem 7.10] for the
Hecke pair (ΓQ(p,N), SQ(p,N)).

Theorem 6.2. Let Q be a representative parabolic subgroup, and let P = Pd
be a representative maximal parabolic subgroup containing Q. Let U be
the unipotent radical of P . Let (Γ, S) be either (Γ0(n,N), S0(n,N)) or
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(ΓQ(p,N), SQ(p,N)). Let z ∈ H∗(Γ ∩ U,M). Then the action of individ-
ual elements of S ∩ P on H∗(Γ ∩ U,M) described in [4, Def. 7.2] yields a
semigroup action of S ∩ P under which S ∩ U acts trivially.

Proof. By the Lemmas preceding [4, Thm. 7.10], we need only show that
S ∩ P lies in a subgroup T of GLn(Q) such that every element of T ∩ U(Q)
is congruent modulo p to an element of Γ ∩ U .

For (Γ, S) = (Γ0(n,N), S0(n,N)), we take T to be the group of all rational
matrices in P with determinant prime to pN , coefficients having denominator
prime to pN , and top row congruent to (∗, 0, · · · , 0) modulo N . Then for
t ∈ T ∩ U , we have that (in block form)

gdtg
−1
d =

(
I 0
A I

)
,

where A is a rational matrix with coefficients having denominators prime to
pN . Each entry of A is then congruent to some integer modulo p, so A is
congruent to an integer matrix modulo p.

Now any g ∈ Γ ∩ U , has the form

g = g−1
d

(
I 0
B I

)
gd,

where B is an integer matrix such that the top row of B is congruent to 0
modulo N/d. Since there is no restriction on B modulo p, we can choose it
to have the same mod p reduction as A above. Then t will be congruent to
g modulo p.

For (Γ, S) = (ΓQ(p,N), SQ(p,N)), we first remark that ΓP = Γ and
SP = S. Take T to be the group of all matrices t ∈ Q(Q) with determinant
prime to pN and denominators prime to pN such that gDtg−1

D is diagonal
modulo p, and the top row of t is congruent to (∗, 0, . . . , 0) modulo N .
Clearly, S ⊆ T .

We note that any g ∈ Γ ∩ U is congruent to 1 modulo p. Hence, we need
to show that every t ∈ T ∩U is congruent to 1 modulo p. Let t ∈ T ∩U , and
let y be the mod p reduction of gDtg−1

D , which is a diagonal matrix. Since
t ∈ U , gDtg−1

D is lower triangular with all diagonal entries equal to 1, so all
of its eigenvalues are 1. Hence the eigenvalues of its mod p reduction are all
1, so y is the identity mod p. Hence, t is congruent to the identity modulo
p, as desired. �

Remark 6.3. In either of the two cases considered, we apply [4, Corollary
7.9] to our situation, and we find that there is a semigroup action of T ∩ P
(and hence of S∩P ) onHk(ΓU ,M). Moreover, the action of t ∈ T∩P is given
by a certain Hecke operator as described below in the proof of Theorem 6.4.
Note that since T is a group, and the identity element clearly acts trivially,
we have an actual group action of T ∩ P on Hk(ΓU ,M).

Now, [4, Theorem 11.3] implies Theorem 6.4. Because the proof in [4] is
very brief, we give additional details here.

Theorem 6.4. Let Q, P , and U be as in the previous theorem, and let
(Γ, S) = (ΓQ(p,N), SQ(p,N)). Note that SP = S. Let ξ be a character
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S → F× such that ξ|ΓU
= 1. Then Hk(ΓU ,Fξ) is an admissible S-module,

with the action of S described in [4, Definition 7.2].
Moreover, the S-action on Hk(ΓU ,Fξ) is diagonalizable, so that Hk(ΓU ,Fξ)

is isomorphic as an S-module to a direct sum of one-dimensional modules
Fχ where χ runs over some sequence of characters of S that are trivial on
SU .

Proof. First of all, since ξ|ΓU
= 1, there is a canonical isomorphism φ :

Hk(ΓU ,F) → Hk(ΓU ,Fξ) as F-vector spaces. Let z ∈ Hk(ΓU ,F) and s ∈ S.
Directly from [4, Definition 7.2], we see that

φ(z)s = ξ(s)zs.

So without loss of generality we may assume ξ = 1.
Let s ∈ S. By [4, Lemma 7.4], for any coefficient module M , the S-action

on Hk(ΓU ,M) is given by (1/es)[ΓUsΓU ], where es = [ΓU : ΓU ∩ sΓUs−1]
and [ΓUsΓU ] denotes the Hecke action of this double coset on the homology.

In [4, Lemma 11.2], we show that for an element u ∈ ΓU = H1(ΓU ,Z),
the action of the Hecke operator [ΓUsΓU ] on u is given by

u[ΓUsΓU ] = s−1(ues)s.

Consider ΓU as a free abelian group A written additively. Then right
conjugation by s on ΓU induces a map A→ A which (in terms of a Z-basis
of A) is given by a matrix M(s) ∈ GLn(Q), all of whose denominators must
divide es (because M(s) maps esA to A. Also, all the denominators of the
entries of M(s) are prime to p. To see this, note that M(s) is the same as
the matrix that describes the action of s (in terms of the same basis) on
U(Q). Now s and u ∈ U satisfy

gdsg
−1
d =

(
A 0
C B

)
,

gds
−1g−1

d =

(
A−1 0
C ′ B−1

)
,

gdug
−1
d =

(
I 0
Z I

)
.

So

gds
−1usg−1

d =

(
I 0

(C ′ +B−1Z)A I

)
.

Since the determinant of s is prime to pN , the denominators in the entries of
s−1 are prime to p, as are the entries of s−1us. Further, the entries of M(s)
are given by polynomials in the entries of s and s−1 with integer coefficients.

It follows from the preceding sentence that if s ≡ s′ (mod p), thenM(s) ≡
M(s′) (mod p).

Let M(s) denote the mod p reduction of M(s). Then the conjugation
action of s on A is given by the matrix esM(s) and the action defined by
[4, Definition 7.2] of s on H1(ΓU ,F) = H1(ΓU ,Z) ⊗ F = A ⊗ F, which is
1/es times the previous action, is given by M(s). Therefore this action is
admissible.
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Extending this action via the wedge product toHk(ΓU ,F) = ∧kH1(ΓU ,F),
we find that s acts via the Pontrjagin product as ∧kM(s), and thus yields an
admissible action of S on Hk(ΓU ,F). We need to show that this extension
of the action via the Pontrjagin product matches the action defined by [4,
Definition 7.2]. If the Hecke operators were induced by some homomorphism
of the group ΓU , this would follow from naturality of the Pontrjagin product,
but unfortunately they are not so induced.

Let H = ΓU ∩ sΓUs−1, and recall that es = [ΓU : H]. Then the action of
the Hecke operator [ΓUsΓU ] is given on Hk(ΓU ,Z) ∼= ΓU by the composition

Hk(ΓU ,Z)
transfer−→ Hk(H,Z)

α−→Hk(s
−1Hs,Z)

ι−→Hk(ΓU ,Z),

where the first map is the transfer, the second is induced by conjugation
by s on H, and the third is induced by inclusion of s−1Hs into ΓU . The
last two are induced by group homomorphisms, but the transfer map is not
induced by a group homomorphism. Hence, naturality does not apply to
it. There is one case, however, in which the transfer is induced by a group
homomorphism; namely when es = 1, so that the transfer is just the identity
map. In this case the action of s on Hk(Γ,F) = Hk(Γ,Z)⊗ F, which equals
(1/es)[ΓUsΓU ], will match the action via ∧kM(s), and will depend only on
the mod p reduction of s.

In the proof of the previous theorem, we defined a group T containing
SQ(p,N), and from Remark 6.3 we know that the action of T∩P onHk(Γ,F)
via the Hecke operators is a group action. We will now show that T ∩ P is
generated by elements t that have et = 1, so that the action via the Hecke
operators matches the action via the wedge product. Since the action of
elements of T ∩ P is a group action, this will show that these two actions
are the same for every element of T ∩P , so that every element of T ∩P acts
admissibly.

Lemma 6.5. Let T be the group of all matrices t ∈ Q(Q) with determinant
prime to pN and denominators prime to pN such that gDtg−1

D is diagonal
modulo p, and the top row of t is congruent to (∗, 0, . . . , 0) modulo N . Then
T ∩ P is generated as a group by elements t that have et = 1.

Proof. Recall that Γ = ΓQ(p,N). Let f : GLn(Q) → GLn(Q) be given by
f(t) = gDtg

−1
D . Then f is an isomorphism. Define K = f(ΓU ) = f(Γ∩U) =

f(Γ) ∩ f(U) = f(Γ) ∩ U0. Set T0 = f(T ∩ P ) = f(T ) ∩ P0.
For t ∈ T , note that et = 1 if tΓU t−1 ⊆ ΓU , which happens if and only if

f(t)f(ΓU )f(t)−1 ⊆ f(ΓU ).
Then T0 consists of all matrices m ∈ P (Q) with determinant prime to pN

and denominators prime to pN such that m is diagonal mod p and the top
row of g−1

D mgD ≡ (∗, 0, . . . , 0) (mod N).
On the other hand, K consists of matrices of the form

k =

(
1 0
B 1

)
,

such that
(1) the entries of B are in Z,
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(2) B ≡ 0 (mod p),
(3) the top row of B is congruent to 0 modulo N/d,

(so that f−1(k) ∈ ΓQ(p,N) ⊆ Γ0(n,N)).
Now choose any element m ∈ T0, and write it in block form as

m =

(
r 0
u s

)
.

Then
mkm−1 =

(
I 0

(u+ sB)r−1 − ur−1 I

)
=

(
I 0
B′ I

)
,

where B′ = sBr−1. Note that since B ≡ 0 (mod p) we see that B′ ≡ 0
(mod p).

Let µ be the least common multiple of the denominators of coefficients
of r−1 and s. Then µ is prime to pN , and for any integer e ≥ 2, µeB′ has
integer entries. Let b = ϕ(pN) so that µb ≡ µ−b ≡ 1 (mod pN), and let
∆ = diag(µ−bIk, µ

bIn−k). Then ∆ ∈ T0 since ∆ is congruent to the identity
matrix modulo pN .

Set
u = ∆mkm−1∆−1

Again, because ∆ is congruent to the identity matrix modulo pN , we see
that u ∈ K = f(ΓU ). Hence, setting zm = ∆m, we have

zmkz
−1
m = u ∈ f(ΓU ).

Since k ∈ f(ΓU ) was arbitrary, we see that zmf(ΓU )z−1
m ⊆ f(ΓU ). Hence

ezm = 1.
Similarly, for any k ∈ K, ∆k∆−1 ∈ f(ΓU ), so ∆f(ΓU )∆−1 ⊆ f(ΓU ), and

e∆ = 1. Since m is arbitrary, and is equal to ∆−1zm, we see that T0 is
generated as a group by elements t with et = 1, as desired. �

It remains to prove the claim about diagonalizability. Let overline denote
reduction modulo p. We have shown that the S-action on Hk(ΓU ,Fξ) factors
through the reduction of S modulo pN and if we tensor this action with Fξ−1 ,
it factors through S. Since ΓU acts trivially, and by Lemma 5.11 ΓU = SU ,
it factors through S/SU (note that SU is actually trivial). This latter group
is finite and is isomorphic to a group of invertible diagonal matrices mod
p of order prime to p, so this action on the F-vector space Hk(ΓU ,Fξ) is
diagonalizable. Since S/SU is abelian, Hk(ΓU ,Fξ) is isomorphic as an S-
module to a direct sum of one-dimensional modules Fχ where χ runs over
some sequence of characters of S that are trivial on SU . �

7. Hecke operators and the Künneth formula

Because we have changed our Hecke pair to (ΓQ(p,N), SQ(p,N)), we need
to reprove [4, Theorem 10.5] in this new context.

Definition 7.1. Let (Γ, S) = (Γ0(n,N), S0(n,N)), let ` be a prime, and for
0 ≤ r ≤ n, let s = s(`, r, n) be the diagonal matrix with the first r diagonal
entries equal to 1, and the rest equal to `. We recall the definition of two
different sets of left coset representatives of ΓsΓ.
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(1) Tn(`, r) is the set of lower triangular coset representatives described
in [4, Theorem 8.1].

(2) T n(`, r) is the set of upper triangular coset representatives described
in [4, Theorem 8.1]

(3) For 0 < k < n, we define T (s, k) to be the collection of right coset
representatives of ΓsΓ described in [4, Theorem 8.4].

(4) Tn(`,m) is the Hecke operator corresponding to the double coset
Γs(`,m, n)Γ.

We note that if M is an S-module, and (Γ′, S′) ⊆ (Γ, S) is a compatible
Hecke pair, then Tn(`,m) acts naturally on H∗(Γ′,M)

In [4], we proved the following.

Theorem 7.2. [4, Theorem 8.6] Let d|N and let Pd be a representative
maximal parabolic subgroup of GLn(Q) that is the stabilizer of a subspace of
dimension k corresponding to the divisor d. For every t ∈ T (s, k), there is
an element γt ∈ Γ0(n,N) such that tγt ∈ Pd.

We also recall the following definition ([4, Definition 8.7]).

Definition 7.3. Let N and k be positive integers. Set Ck,N equal to the set
of left cosets of Γ0(k,N) inside S0(k,N). Denote by Fk,N the free Z-module
on the elements of Ck,N . For a collection S of matrices in S0(k,N) we will
write S for the element ∑

s∈S
sΓ0(k,N) ∈ Fk,N .

In [4], we proved the following theorem ([4, Theorem 8.8]; note that we
have corrected some minor typographical errors). We give a new (less com-
putational) proof of this theorem.

Theorem 7.4. Let (Γ, S) = (Γ0(n,N), S0(n,N)), and let P be a repre-
sentative maximal parabolic subgroup of type (k, n− k) corresponding to the
divisor d of N . Let ` be a prime number not dividing N , let 1 ≤ r ≤ n and
let s = s(`, r, n). Let T (s, k) be the set of left coset representatives of ΓsΓ
described in [4, Theorem 8.4]. Then in the tensor product Fk,d ⊗Z Fn−k,N/d,
we have∑
t∈T (s,k)

ψ1
d(tγt)Γ0(k, d)⊗ ψ2

d(tγt)Γ0(n− k,N/d)

=

min(r,k)∑
m=max(0,r−(n−k))

`(k−m)(r−m)T k(`,m)⊗ Tn−k(`, r −m),

where T k(`,m) is a collection of upper triangular left Γ0(k, d)-coset repre-
sentatives of s(`,m, k), and Tk(`,m) is a collection of lower triangular left
Γ0(k,N/d)-coset representatives of s(`,m, k).

Proof. We note that the coset representatives T (s, k) have the property that
they are also a complete system of right coset representatives for the double
coset GLn(Z)sGLn(Z).
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Now, we see that as t runs through T (s, k) the elements gdtγtg−1
d also run

through a complete set of right coset representatives of GLn(Z)sGLn(Z).
Hence, there is a permutation t 7→ t′ of the elements of T (s, k) such that
gdtγtg

−1
d = t′δt with δt ∈ GLn(Z). Since both gdtγtg−1

d and t′ are in P0, we
see that δt is as well. Further, we can write

t′ =

(
t1 0
∗ t2

)
with t1 ∈ Γ0(k, d) and t2 ∈ Γ0(n− k,N/d). Hence, δt has the form

δt =

(
A 0
B C

)
with A ∈ Γ0(k, d) and C ∈ Γ0(n− k,N/d).

Hence, ψ1
d(tγt) is equal to t1A ∈ t1Γ0(k, d) and similarly ψ2

d(tγt) is equal
to t2C ∈ t2Γ0(n − k,N/d). As t runs through T (s, k), so does t′. A given
pair (t1, t2), where t1 has m diagonal elements equal to ` and t2 has r −m
diagonal elements equal to `, will occur for exactly `(k−m)(r−m) different
representatives t′. The formula follows. �

Now we recall from Theorem 4.5 that ψ1
d(SQ(p,N)) = S0(k1, d)N ∩ S(p)

and ψ2
d(SQ(p,N)) = SQ1(p,M/d).

The Hecke pairs

(Γ0(k1, d1) ∩ Γk1(p), S0(k1, d)N ∩ S(p)) ⊂ (Γ0(k1, d1), S0(k1, d1))

and

(ΓQ1(p,N/d1), SQ1(p,N/d1)) ⊆ (Γ0(n− k1, N/d1), S0(n− k1, N/d1))

are compatible. The first assertion is the case t = 1 in Theorem 5.7, and the
second follows from Lemma 5.4, Theorem 5.7 and Theorem 5.10.

Therefore we may adjust the coset representatives in T k(`,m) to a set
Td1(`,m) ⊂ S0(k1, d)N ∩ S(p) and the coset representatives in Tn−k(`,m) to
a set TN/d1(`,m) ⊂ SQ1(p,N/d1).

Since the Hecke pairs (Γ0(k, d)∩Γ(p), S0(k, d)∩S(p)) ⊂ (Γ0(k, d), S0(k, d))
and (ΓQ1(p,N/d), SQ1(p,N/d)) ⊆ (Γ0(n−k,N/d), S0(n−k,N/d)) are com-
patible, we see that for s = s(`, r, n) and an element t ∈ T (s, k) we can find
δ1 ∈ Γ0(k, d) and δ2 ∈ Γ0(n − k,N/d) with ψ1

d(tγt)δ1 ∈ S0(k, d) ∩ S(p))
and ψ2

d(tγt)δ2 ∈ SQ1(p,N/d). By the surjectivity of the map in Theo-
rem 3.3(4), we can find a δt ∈ Γ±0 (n,N) with ψid(δt) = δi. Note that
since both δ1 and δ2 have positive determinant, so will δt. We note that
we then have ψ1

d(tγtδt) ∈ S0(k, d) ∩ S(p)) and ψ2
d(tγtδt) ∈ SQ1(p,N/d), and

γtδt ∈ Γ0(n,N).
Setting F1 to be the free Z-module on the left cosets of ΓL1 = ψ1

d(ΓQ(p,N)) =
Γ0(`1, d1) ∩ Γ`1(p), and F2 to be the free Z module on the left cosets of
ΓL2 = ψ2

D(ΓQ(p,N)) = ΓQ1(p,N/d1) in SQ1(p,N/d1), we get the following
corollary.

Corollary 7.5. Let (Γ, S) = (Γ0(n,N), S0(n,N)), and let P be a repre-
sentative maximal parabolic subgroup of type (k, n− k) corresponding to the
divisor d of N . Let ` be a prime number not dividing N , let 1 ≤ r ≤ n and
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let s = s(`, r, n). Let T (s, k) be the set of left coset representatives of ΓsΓ
described in [4, Theorem 8.4]. Then in F1 ⊗Z F2, we have∑
t∈T (s,k)

ψ1
d(tγt)ΓL1 ⊗ ψ2

d(tγt)ΓL2

=

min(r,k)∑
m=max(0,r−(n−k))

`(k−m)(r−m)Td1(`,m)⊗ TN/d1(`, r −m),

The Kúnneth theorem allows us to write

Hk(ΓL,M1 ⊗M2) ∼=
⊕
i+j=k

Hi(ΓL1 ,M1)⊗Hj(ΓL2 ,M2).

As in [4, Section 10], we obtain the following theorem (compare [4, Theorem
10.5]).

Theorem 7.6. Let Q be a representative parabolic subgroup stabilizing the
flag

{0} = V0 ⊆ V1 ⊆ · · · ⊆ Vt = Qn

associated to the factorization d1 · · · dt = N . Let P be the representative
maximal parabolic subgroup stabilizing

{0} = V0 ⊆ V1 ⊆ Qn.

Note that P corresponds to the factorization d1(N/d1) = N .
Write ΓL1 = ψ1

d1
(ΓQ(p,N)) and ΓL2 = ψ2

d1
(ΓQ(p,N)), and ΓL = ψP (ΓQ(p,N)).

Let M1 be an admissible S0(k1, N)-module, and let M2 be an admissible
S0(n− k1, N)-module.

As in [4, Section 10], since

(ΓQ(p,N), SQ(p,N)) ⊂ (Γ0(n,N)∩P, S0(n,N)∩P ) ⊆ (Γ0(n,N), S0(n,N)),

are compatible, there is a natural action of Tn(`, r) ∈ H(Γ0(n,N), S0(n,N))
on

Ht(ΓL,M1 ⊗M2).

It is given on the Künneth component

Hr(ΓL1 ,M1)⊗Ht−r(ΓL2 ,M2)

by

(f1⊗f2)|Tn(`, r) =

min(r,k)∑
m=max(0,r−(n−k))

`(k−m)(r−m)f1|Tk1(`,m)⊗f2|Tn−k1(`, r−m).

Corollary 7.7. If f ∈ Ht(ΓL,M1 ⊗M2) is an eigenvector with system of
eigenvalues Φ, then f = f1 ⊗ f2 for some f1 ∈ Hr(ΓL1 ,M1) and f2 ∈
Ht−r(ΓL2 ,M2) eigenvectors of the Hecke algebras H(Γ0(k1, d1), S0(k1, d1))
and H(Γ0(n− k1, N/d1), S0(n− k1, N/d1)), respectively.

In addition, if f1 and f2 have attached Galois representations ρ1 and ρ2,
respectively, then f has an attached Galois representation ρ1 ⊕ ωk1ρ2.

Proof. The proof of this theorem and corollary mimics the proofs of Theo-
rems 10.1, and 10.2 in [4], substituting Theorem 7.4 in place of [4, Theorem
8.8]. �
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8. Reducibility of Galois Representations Attached to
Parabolic Homology

In this section, our goal is to prove that for any parabolic subgroup Q
of GLn(Q) stabilizing a flag of length t, any homology eigenclass in the
homology of Γ±0 (n,N) ∩ Q is attached to a Galois representation that is a
sum of at least t irreducible Galois representations. We assume throughout
this section that N is a squarefree positive integer prime to p.

Lemma 8.1. Let (Γ, S) be any Hecke pair in GLn(Q) such that the deter-
minants and denominators of matrices in S are relatively prime to pN , and
let P a maximal parabolic subgroup of GLn(Q). Let M be an admissible
S-module. Let U be the unipotent radical of P , SP = S ∩ P , ΓP = Γ ∩ P
SU = S ∩ U , ΓU = Γ ∩ U , ΓL = ΓP /ΓU . Suppose that SU = ΓU . Then

(1) for every s ∈ SU , [ΓUsΓU ] acts trivially on H∗(ΓU ,M);
(2) the actions of the individual s ∈ SP on H∗(ΓU ,M) given by [4, Defi-

nition 7.2] compile into a semi-group action under which SU acts trivially;
(3) the Hecke algebraH(ΓP , SP ) acts equivariantly on the Lyndon-Hochschild-

Serre spectral sequence

E2
ij = Hi(ΓL, Hj(ΓU ,M)) =⇒ Hi+j(ΓP ,M)

and a given packet of Hecke eigenvalues occurs in Hk(ΓP ,M) if and only if
it appears in ⊕

i+j=k

E∞ij .

Proof. Statement (1) is obvious, since for s ∈ SU = ΓU , the Hecke operator
[ΓUsΓU ] is the identity. Statements (2) and (3) follow, using (1), exactly as
in the proofs of [4, Corollary 7.9] and [4, Theorem 7.11]. �

Theorem 8.2. Let Q be a representative parabolic subgroup, and let (Γ, S) =
(Γ0(n,N), S0(n,N)) or (Γ±0 (n,N), S±0 (n,N)). Assume that (∆, T ) ⊂ (ΓQ, SQ) ⊂
(Γ, S) are compatible Hecke pairs, with ∆ normal of finite index in ΓQ. Then
any system of Hecke eigenvalues occurring in Hk(ΓQ,M) also appears in
Hj(∆,M) for some j ≤ k.

Proof. The Hochschild Serre spectral sequence for the exact sequence 0 →
∆→ ΓQ → ΓQ/∆→ 0 computes Hi(ΓQ,M) in two different ways (as in [10,
VII.7.6] and [3, Theorem 4.6]) by using two spectral sequences to compute
the total homology of the double complex

F• ⊗ΓQ/∆ (C• ⊗∆ M),

where F• is the standard resolution of Z over the finite group ΓQ/∆, and C•
is the standard resolution of Z over GL(n,Q).

Let H denote the Hecke algebra H(Γ, S). By compatibility, any H(∆, T )-
module is a H(Γ, S) module.

Then H acts on the double complex by its natural action on C• ⊗∆ M
(with the trivial action on F•). This action commutes with the differentials
of the double complex, and hence the spectral sequence is Hecke equivari-
ant. Therefore, any system of Hecke eigenvalues appearing in the abutment
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Hk(ΓQ,M) of the first spectral sequence must occur in the E1 page of the
other, i.e., in Fi⊗ΓQ/∆Hj(∆,M) for some i+ j = k. This uses the fact that
Fi has finite rank over Z for each i, and the finite-dimensionality of each
Hj(∆,M). Since the Hecke algebra acts trivially on Fi, the desired system
of eigenvalues must appear in Hj(∆,M) for some j ≤ k. �

Our application of this theorem will set (∆, T ) = (ΓQ(p,N), SQ(p,N)).
We note that ΓQ(p,N) is normal of finite index in ΓQ, by Lemma 4.4.

To facilitate the inductive proof of the next theorem we will consider
the full group GLn to be a representative parabolic subgroup Q stabiliz-
ing the trivial flag 0 = V0 ( V1 = Qn of length 1. This is consistent
with the terminology of Borel and Serre in [9]. In this case we note that
(ΓQ(p,N), SQ(p,N)) equals (Γ0(n,N) ∩ Γ(p), S0(n,N) ∩ Sn(p)).

Theorem 8.3. Let Q be any representative parabolic subgroup stabilizing
a flag of length t. Assume that Φ is a packet of H(ΓQ(p,N), SQ(p,N))-
eigenvalues that appears in

H∗(ΓQ(p,N),M).

Then Φ has an attached Galois representation that is the direct sum of at
least t irreducible Galois representations. In particular, for t > 1, the Galois
representation attached to Φ is reducible.

Remark 8.4. Note that this theorem is an improvement on [4, Theorem
11.5], which only applied to maximal representative parabolic subgroups.

Proof. The proof proceeds by an inductive argument on the length t of the
flag stabilized by Q, using many of the same techniques as the proof of [4,
Theorem 11.5]. The base case of t = 1 is a consequence of [15], so let t > 1.

Let V1 be the smallest subspace in the flag stabilized by Q and denote its
dimension by k. Let P be the stabilizer of the flag 0 ( V1 ( Qn. Then P is a
maximal parabolic subgroup of GLn(Q). Denote by U the unipotent radical
of P . For any congruence subgroup Γ of GLn(Z), note that ΓU = Γ∩U is a
free abelian group of finite rank.

Since Q is a representative parabolic subgroup, P is a representative max-
imal parabolic subgroup of GLn(Q).

By Theorem 5.10, we have compatibility of the Hecke pairs

(Γ0(n,N)∩Q,S0(n,N)∩Q) ⊂ (Γ0(n,N)∩P, S0(n,N)∩P ) ⊂ (Γ0(n,N), S0(n,N)).

By Theorem 5.7 we have compatibility of the Hecke pairs

(ΓQ(p,N), SQ(p,N) ⊂ (Γ0(n,N) ∩Q,S0(n,N) ∩Q).

If the dimension of Vi in the flag is ki, let `i = ki − ki−1. Since ΓU is a
normal subgroup of ΓP , ΓU is a normal subgroup of ΓQ. From Theorem 3.13
in the case t = 2, it follows that we have the exact sequence

0→ U ∩ Γ±0 (n,N)→ P ∩ Γ±0 (n,N)
ψP

−→Γ±0 (`1, d1)× Γ±0 (n− `1, N/d1)→ 0.
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From the same theorem we have

0→ Ru(Q) ∩ Γ±0 (n,N)→ Q ∩ Γ±0 (n,N)
ψQ

−→
t∏
i=1

Γ±0 (`i, di)→ 0,

where Ru(Q) is the unipotent radical of Q.
Since ψP is given by conjugation with ĝd1 and ψQ is given by conjugation

with gD = ĝdt−1 · · · ĝd1 , it follows that we have the exact sequence

0→ U∩Γ±0 (n,N)→ Q∩Γ±0 (n,N)
ψP

−→Γ±0 (`1, d1)×(Q1∩Γ±0 (n−`1, N/d1))→ 0,

where Q1 is a representative parabolic subgroup of GLn−`1 corresponding to
the factorization N/d1 = d2 · · · dt.

In a similar way, from Theorem 3.15 we obtain a surjective map

Q ∩ S±0 (n,N)
ψP

−→S±0 (`1, d1)N × (Q1 ∩ S±0 (n− `i, N/d1)N .

Clearly, x, y ∈ Q ∩ S±0 (n,N) have the same image under ψP if and only if
xy−1 ∈ U .

Now let Γ = ΓQ(p,N) and S = SQ(p,N). Set ΓL1 = Γ0(`i, d1)N ∩ Γ(p)
and ΓL2 = ΓQ1(p,N/d1). Then

Γ/ΓU ∼= ΓL1 × ΓL2 .

There is a Lyndon-Hochschild-Serre spectral sequence for the exact sequence

1→ ΓU → Γ→ ΓL1 × ΓL2 → 1,

namely
E2
ij = Hi(ΓL1 × ΓL2 , Hj(ΓU ,M)) =⇒ Hi+j(Γ,M).

Lemma 5.11 says that S∩U = Γ∩U . Then by Lemma 8.1, the semigroup
action of S = SP on H∗(ΓU ,M), when restricted to SU , is trivial. So S acts
on H∗(ΓU ,M), with SU acting trivially.

Lemma 8.1(3) says that H(Γ, S) acts equivariantly on the spectral se-
quence, and a given packet of eigenvalues occurs in Hk(Γ,M) if and only if
it appears in the infinity page of the spectral sequence.

Because each term of the E2-page of the spectral sequence is finite di-
mensional, we see that since Φ appears in the infinity page of the spectral
sequence, it must appear in some term of the E2-page.

So, we can now assume that Φ appears as a system of H(Γ, S)-eigenvalues
in some

Hi(ΓL1 × ΓL2 , Hj(ΓU ,M)).

Let overline denote reduction modulo p. By the definition of S = SQ(p,N),
we see that S̄/SU is isomorphic to a group of invertible diagonal matrices
modulo p, and thus that S/SU is a finite abelian group, of order prime to p.

Since M is admissible, M = M ′ ⊗ Fε as in Definition 6.1. Since any
element of ΓU is congruent to the identity modulo p, it acts trivially on
M ′. Since SU = ΓU the S-action on M ′ factors through S̄/SU and therefore
is diagonalizable. Therefore M ′ is isomorphic as an S-module to a direct
sum of one-dimensional modules Fξ′ where ξ′ runs over some sequence of
characters of S. Moreover, each ξ′ is trivial when restricted to ΓU .
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We now claim that ε is trivial on ΓU . To see this, note that by the
definition of admissibility, ε(s) = η(s11) for some character η : (Z/N)× →
F×. If s ∈ ΓU , then s ∈ U and the characteristic polynomial of s is (x− 1)n.
On the other hand, since s ∈ S0(n,N), its characteristic polynomial mod N
vanishes on s11. Since N is squarefree, we deduce that s11 ≡ 1 modulo N ,
and therefore ε(s) = η(s11) = 1.

Let ξ = ξ′ ⊗ ε. Then M is isomorphic as an S-module to a direct sum of
one-dimensional modules Fξ and each ξ is trivial when restricted to ΓU .

By Theorem 6.4, for each ξ, Hj(ΓU ,Fξ) is a (p,N)-admissible S-module
and the S-action on Hj(ΓU ,Fξ) is itself diagonalizable, so that Hj(ΓU ,Fξ) is
isomorphic as an S-module to a direct sum of one-dimensional modules Fχ
where χ runs over some sequence of characters of S.

Since S ∩U acts trivially on Hj(ΓU ,Fξ), it makes sense to view the latter
as a module for ΓL1 × ΓL2 . By linear algebra, we deduce that Φ appears as
a system of eigenvalues in

Hi(ΓL1 × ΓL2 ,Fχ)

for some χ. We may factor χ = χ1 · χ2, as in the proof of [4, Thm 11.5].
Applying Corollary 7.7, we have that Φ appears in⊕

r+t=i

Hr(ΓL1 ,Fχ1)⊗Ht(ΓL2 ,Fχ2)

and that Φ arises from some eigenvector f1 ⊗ f2 with

fi ∈ Hi(ΓLi ,Fχi),

and each fi an eigenvector of the appropriate Hecke algebra.
By Scholze [15], we know that f1 has an attached Galois representation

ρ1 : GQ → GL(k, F̄p), and by the inductive hypothesis, f2 has an attached
Galois representation ρ2 : GQ → GL(n−k, F̄p) that is a sum of at least t− 1
irreducible constituents. As in [4, Theorem 10.2], we see that f1 ⊗ f2 has
ρ1⊕ωkρ2 attached. Hence, ρ1⊕ωkρ2 is reducible with at least t irreducible
constituents. �

Theorem 8.5. Let Q be a Q-parabolic subgroup of GL(n,Q) of length t,
and let (Γ, S) = (Γ0(n,N), S0(n,N)) or (Γ±0 (n,N), S±0 (n,N)). Let M be an
irreducible (p,N)-admissible F[S]-module, and let Φ be a system of H(Γ, S)-
eigenvalues occurring in H∗(ΓQ,M). Then there is a Galois representation
ρ attached to Φ, and ρ has at least t irreducible constituents.

Proof. Conjugating by an element of Γ, we may assume that Q is a represen-
tative parabolic subgroup of length t. By Theorem 5.7, (ΓQ(p,N), SQ(p,N)) ⊂
(ΓQ, SQ) are compatible Hecke pairs, and by Lemma 4.4(b), ΓQ(p,N)C ΓQ
with finite index, so by Theorem 8.2, Φ appears in

H∗(ΓQ(p,N),M).

Finally, by Theorem 8.3, Φ has an attached Galois representation that is
reducible with at least t irreducible constituents. �
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9. The Tits building and its spectral sequence

Let X be a finite dimensional vector space over a field K with n =
dim(X) ≥ 2. We review the construction of the Tits building T of X,
and the Steinberg module St(X).

The Tits building is the (dim(X) − 2)-dimensional simplicial complex T
whose vertices are nonzero proper subspaces of X and whose i-simplices con-
sist of sequences of i+ 1 nonzero proper subspaces V1, V2, . . . , Vi+1 satisfying

0 6= V1 ( · · · ( Vi+1 6= X.

We denote by Ti the free Z-module generated by the i-simplices.
An i-simplex is a face of a j-simplex if and only if the subspaces comprising

it are a subset of those comprising the j-simplex. We choose an orientation
on each simplex by ordering the vertices of each simplex by containment.

There is a natural action of GL(X) on T inherited from its action on X.
Note that the stabilizer of an i-simplex under this action is the parabolic
subgroup of type (n1, . . . , ni+2), with n1 + · · ·+ni+2 = n, stabilizing the flag

0 = V0 ( V1 ( · · · ( Vi+1 ( Vi+2 = X

corresponding to the i-simplex in question, and we set nj = dim(Vj) −
dim(Vj−1). Our chosen ordering of the vertices in a simplex is clearly pre-
served by the action of GL(X).

By the Solomon-Tits theorem [17], the reduced homology of the Tits build-
ing is trivial in all dimensions except dimension n−2. We define the Steinberg
module

St(X) = H̃n−2(T,Z).

Note that the Steinberg module inherits an action of GL(X) from the action
of GL(X) on T . The additive group of the Steinberg module is free abelian.

From now on, assume that n ≥ 3. The homology of the Tits building
in dimension 0 is H0(T,Z) = Z. For our purposes, it will be better to use
reduced homology; rather than using the homology of the complex

0→ Tn−2 → Tn−3 → · · · → T0 → 0,

we use the homology of the augmented complex

0→ Tn−2 → Tn−3 → · · · → T0 → Z→ 0,

where Z is acted on trivially by GL(X). We will call this augmented complex
C, and note that

Ci =

{
Ti−1 for i > 0,

Z for i = 0.

We then have that

Hi(C) =

{
St(X) for i = n− 1,

0 for i 6= n− 1.

For a subgroup Γ ⊂ GL(X) and i > 0, we can choose a set of representa-
tives of Γ-orbits of simplices in Ci = Ti−1. Let Pi be the set of stabilizers in
GL(X) of these flags; so Pi is a set of parabolic subgroups of GL(X). Note
that P1 consists of maximal parabolic subgroups of GLn(Q); in general, for
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i > 0, Pi consists of stabilizers of flags of length i + 1. For i = 0, we may
take P0 = {GL(X)}, since C0 is generated by a single element stabilized by
GL(X). With this notation, we find that as a Γ-module,

Ci =
⊕
P∈Pi

IndΓ
Γ∩P Z.

From now on set X = Qn, and let (Γ, S) be a Hecke pair contained in
GL(X) = GLn(Q) with Γ ⊆ GLn(Z). Let W be a Z[S]-module. We get a
complex C ⊗ZW on which S acts with the diagonal action. We also choose
a projective resolution F of Z as a GLn(Q)-module.

Now the double complex (C⊗ZW )⊗Γ F has two spectral sequences asso-
ciated to it, as in [10, VII.5, p. 169]. The first of these is obtained by taking
the homology in the C direction first, so we get

E1
ij = Hj(C ⊗Z W )⊗Γ Fi ∼=

{
(St(X)⊗Z W )⊗Γ Fi if j = n− 1,

0 if j 6= n− 1.

Here, we have used the universal coefficient theorem [18, Theorem 3.6.2],
which states that

Hj(C ⊗Z W ) ∼= Hj(C)⊗Z W ⊕ TorZ1 (Hj−1(C),W ).

Since each Hj−1(C) is either 0 or free abelian, the second term vanishes, and
we get Hj(C ⊗Z W ) ∼= Hj(C)⊗W .

At this point, the spectral sequence has collapsed, with nonzero terms
only when j = n−1. To pass to page 2 of the spectral sequence, we take the
homology in the F direction and find that the only nonzero terms on this
page are

E2
i(n−1) = Hi(Γ,St(X)⊗Z W ).

Taking the abutment of the spectral sequence, we find that the total homol-
ogy of the original double complex in dimension k is 0 for k < n− 1, and is
given by

Hk−(n−1)(Γ, St(X)⊗Z W ),

for k ≥ n− 1.
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For the second spectral sequence, we first take the homology in the F
direction, and so obtain

E1
ij = Hi(Γ, Cj ⊗Z W )

= Hi

Γ,
⊕
P∈Pj

IndΓ
Γ∩P Z⊗Z W


=
⊕
P∈Pj

Hi

(
Γ,Z[Γ]⊗Z[Γ∩P ] Z⊗Z W

)
=
⊕
P∈Pj

Hi

(
Γ,Z[Γ]⊗Z[Γ∩P ] W

)
=
⊕
P∈Pj

Hi

(
Γ, IndΓ

Γ∩P W
)

=
⊕
P∈Pj

Hi(Γ ∩ P,W ),

where we use Shapiro’s lemma for the last step.
Since this spectral sequence also converges to the total homology of the

double complex, we see that

E1
ij =

⊕
P∈Pj

Hi(Γ∩P,W ) =⇒

{
0 if i+ j < n− 1,

Hi+j−(n−1)(Γ,St(X)⊗Z W ) if i+ j ≥ n− 1.

We note that the action of S commutes with both differentials in the
original double complex, so the action of the Hecke operators commutes
with the differentials in each of the spectral sequences. In fact, if the S-
orbits and Γ-orbits of flags in Qn are equal, we see that the Hecke operators
act on the individual summands of each E1

ij . Assume this equality of or-
bits (which holds in particular for (Γ, S) = (Γ±0 (n,N), S±0 (n,N)) and for
(Γ, S) = (Γ0(n,N), S0(n,N)) by Theorem 3.1). Assume now that W is a
(p,N)-admissible F[S]-module. Then Theorem 8.5 implies that the Hecke
eigenvectors in E1

ij are attached to Galois representations that have at least
j+1 irreducible constituents. In addition, any system of Hecke eigenvalues in
E1
ij that survives to the infinity page of the spectral sequence appears in the

abutment, and hence for some k = i+j ≥ n−1 in Hk−(n−1)(Γ, St(X)⊗ZW ).
We summarize all this in a theorem for the arithmetic groups we are

especially interested in.

Theorem 9.1. Let (Γ, S) = (Γ±0 (n,N), S±0 (n,N)) or (Γ0(n,N), S0(n,N)).
Then there is a spectral sequence

E1
ij =

⊕
P∈Pj

Hi(Γ∩P,W ) =⇒

{
0 if i+ j < n− 1,

Hi+j−(n−1)(Γ,St(X)⊗Z W ) if i+ j ≥ n− 1.

Let W be a (p,N)-admissible F[S]-module. Then the Hecke eigenvectors in
E1
ij are attached to Galois representations that have at least j + 1 irreducible

constituents. Any system of Hecke eigenvalues that survives to the infinity
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page of the spectral sequence appears in Hk−(n−1)(Γ,St(X)⊗Z W ) for some
k = i+ j ≥ n− 1.

Definition 9.2. We call the spectral sequence in Theorem 9.1 the Tits spec-
tral sequence.

10. First consequences of the Tits spectral sequence

Definition 10.1. Say that a Galois representation fits a Hecke module Y if
it is attached to a Hecke eigenvector in Y .

Theorem 10.2. Let N be a positive squarefree integer prime to p, and let
n > 1. Let 0 ≤ k < n − 1, let (Γ, S) = (Γ0(n,N), S0(n,N)) or (Γ, S) =
(Γ±0 (n,N), S±0 (n,N), and let M be an admissible F[S]-module. Any Galois
representation fitting Hk(Γ,M) must be reducible.

Proof. Let 0 ≤ k < n − 1. The E1
k0 term of the Tits spectral sequence with

coefficient module M is equal to Hk(Γ,M). Because the spectral sequence
converges to the total homology of the double complex, which is 0 in degree
less than n− 1, we see that all Hecke eigenvectors in E1

k0 = Hk(Γ,M) must
fail to persist to the infinity page. However, they can only be killed by the
differentials if there are Hecke eigenvectors in some E∗ij with j > 0 with the
same package of eigenvalues. Any Galois representation fitting such an E∗ij
must fit E1

ij , and since j > 0, it is reducible, by Theorem 8.5. Hence, any
Galois representations fitting Hk(Γ,M) must be reducible. �

Next, we use the Tits spectral sequence to prove a type of duality theo-
rem for systems of eigenvalues appearing in homology and corresponding to
irreducible Galois representations.

Theorem 10.3. Let N be a positive squarefree integer prime to p, and let
n > 1. Assume that p is not a torsion prime for Γ±0 (n,N). Let (Γ, S) =
(Γ0(n,N), S0(n,N)) or (Γ, S) = (Γ±0 (n,N), S±0 (n,N), and let M be an ad-
missible F[S]-module. If ρ : GQ → GLn(F) is an irreducible Galois repre-
sentation fitting Hk(Γ,M) for some k ∈ Z and coefficient module M , then ρ
also fits H`−k(Γ,M), where ` = (n+ 2)(n− 1)/2.

Proof. Suppose that ρ is attached to z ∈ Hk(Γ,M). We note thatHk(Γ,M) =
E1
k0 in the Tits spectral sequence. Since ρ is irreducible, it cannot be killed

off by elements of any E1
ij with j ≥ 1, since any eigenclass in E1

ij is at-
tached to a reducible Galois representation with at least j + 1 irreducible
constituents. Hence z survives to the infinity page, and contributes to the
abutment; hence, there is an eigenclass in Hk−(n−1)(Γ, St(Qn) ⊗M) with
ρ attached. Then by Borel-Serre duality([9, Theorem 11.4.2] and [7, Theo-
rem 2]) and [3, Lemma 2.4] (which says that if a Galois representation fits
H i(Γ,M) it also fits Hi(Γ,M)), we find that ρ is attached to an eigenclass
in Hν−k+(n−1)(Γ,M), where ν = n(n − 1)/2. Since ν + (n − 1) = `, the
theorem follows. �

Remark 10.4. This theorem can also be derived using Lefschetz duality and
the homology of the Borel-Serre boundary of the locally symmetric space for
Γ, given Theorem 8.5.
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11. The Lyndon-Hochschild-Serre spectral sequence

We recall the main result of [2]. We will then use this in the next section.

Definition 11.1. Let P be a parabolic subgroup of GLn(Q) with unipotent
radical U . Let Γ be a subgroup of GLn(Z), and let G = Γ ∩ P . A (U, p)-
admissible G-module M is a G-module of the form V ⊗ Fε where V is an
irreducible module for FGLn(Z/p) on which G acts via its reduction modulo
p, and ε : G→ F× is a character that is trivial on G ∩ U .

Theorem 11.2. Let Γ be a subgroup of GLn(Z) determined by congruence
conditions modulo an integer N such that p does not divide N . Let P = LU
be a maximal Q-parabolic subgroup of GLn, where U is its unipotent radical
and L is a Levi-factor. Let G = P ∩ Γ, H = U ∩ Γ, Q = G/H. Let M be a
(U, p)-admissible G-module.

(a) For any m, the natural map Hm(G,MH)→ Hm(G,M) is injective.

(b) If M ′ is any submodule of M , consider the LHS spectral sequence
E(M ′) with coefficients in M ′ for the exact sequence

1→ H → G→ Q→ 1.

Let d be the rank of the free abelian group H, and assume that p > d + 1.
Suppose there is a nonzero z ∈ E2

jd(M
H) = Hj(Q,Hd(H,M

H)) for some j.
Then z survives to a nonzero element of E∞jd (MH).

Let P be a representative maximal parabolic subgroup, and let Γ =
Γ0(n,N) or Γ = Γ±0 (n,N). Given a character e : Z/N → F×, we obtain
a nebentype character ε : Γ → F× by defining ε(γ) = e(γ11). Using The-
orem 3.3(1), and the fact that for γ ∈ Γ ∩ U , both ψ1

d(γ) and ψ2
d(γ) are

the identity, we see that ε is trivial on Γ ∩ U , so that the (p,N)-admissible
modules that we have been dealing with are (U, p)-admissible.

Corollary 11.3. Let P be a representative maximal parabolic subgroup,
set G = Γ ∩ P , and define Q and H as in Theorem 11.2. Let (Γ, S) =
(Γ±0 (n,N), S±0 (n,N)) and let M be an (N, p)-admissible S-module that is
also (U, p)-admissible. Let z ∈ Hj(Q,Hd(H,M)) be an eigenclass of the
Hecke algebra for the Hecke pair (Γ, S). Then there is an eigenclass z′ ∈
Hj+d(G,M) with the same system of Hecke eigenvalues as z.

Proof. As in [4, Theorem 9.1], Hd(H,M) ∼= Hd(H,M
H) as SP -modules.

Hence, there is a Hecke-equivariant isomorphism

Hj(Q,Hd(H,M)) ∼= Hj(Q,Hd(H,M
H)).

We identify z with its image under this map.
As in [4, Section 7], the Lyndon-Hochschild-Serre spectral sequenceE(MH)

is Hecke-equivariant. Since z persists to the infinity page of this spectral se-
quence by Theorem 11.2(b), z contributes to the abutment; hence, there is
some z′ ∈ Hj+d(G,M

H) with the same system of Hecke eigenvalues as z.
The natural map Hj+d(G,M

H)→ Hj+d(G,M) is Hecke equivariant, and
by Theorem 11.2(a), it is injective. Identifying z′ with its image, this yields
the desired element of Hj+d(G,M). �
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12. Sums of Galois representations

We now prove the main theorem of this paper. The term “predicted” was
defined in Section 2. Recall that a Galois representation ρ is called “odd”
if and only if p is even or p is odd and the eigenvalues of ρ(c) are equal to
±(1,−1, 1,−1, . . . ), where c is complex conjugation.

Theorem 12.1. Let n1, n2 be positive integers, n = n1 + n2, p > max(n1 +
n2 + 1, n1n2 + 1), and for i = 1, 2, let

ρi : GQ → GLni(Fp)
be odd irreducible Galois representations such that:

(1) ρ1 has predicted level N1, predicted nebentype ε1, and predicted weight
M1 = F (a1 + n2, . . . , an1 + n2), and ρ2 has predicted level N2, pre-
dicted nebentype ε2, and predicted weight M2 = F (an1+1, . . . , an);

(2) the n-tuple (a1, . . . , an) is chosen so that 0 ≤ an1 − an1+1 ≤ p − 1
and N1N2 is squarefree;

(3) ρ1 is attached to a Hecke eigenclass in

Hs1(Γ±0 (n1, N1), (M1)ε1)

and ρ2 ⊗ ω−n1 is attached to a Hecke eigenclass in

Hs2(Γ±0 (n2, N2), (M2 ⊗ det−n1)ε2).

Set k = s1 +s2 +n1n2 and ν = n(n−1)
2 . Let M = F (a1, . . . , an) and ε = ε1ε2.

Then ρ1 ⊕ ρ2 is odd, and is attached to a Hecke eigenclass in at least one
of

Hk(Γ
±
0 (n,N1N2),Mε)

or
Hν−k+n−2(Γ±0 (n,N1N2),Mε).

Moreover, N1N2, ε, andM are the predicted level, nebentype, and a predicted
weight for ρ1 ⊕ ρ2.

Proof. We begin by demonstrating that under the given assumptions, ρ1⊕ρ2

is odd.
Note that by hypothesis p is odd. By the main result of [11], neither ρ1

or ρ2 can be even, so we may assume that both are odd. Also, if either n1 or
n2 is even, then ρ1 ⊕ ρ2 is automatically odd. So we may assume that both
n1 and n2 are odd.

Let m be odd and let W be an irreducible GLm(Fp)-module with central
character η. Then −I ∈ Γ±0 (m,M), so it acts trivially on H∗(Γ±0 (m,M),W ),
but −I also centralizes Γ±0 (m,M) so it acts on the homology only through
its action onW via the central character η. Hence, if H∗(Γ±0 (m,M),W ) 6= 0,
we must have η(−I) = 1.

Now, let c denote complex conjugation, and suppose that σ is attached to
some eigenclass in H∗(Γ±0 (m,M),W ). Then

detσ(c) = (−1)m(m−1)/2η(−I) = (−1)m(m−1)/2

because of the attachment (see [5, Lemma 3.3]). By [11] we know σ is odd.
If m ≡ 1 (mod 4), then we have that detσ(c) = 1, and we see that the
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alternating eigenvalues of σ(c) must be 1,−1, · · · , 1. On the other hand, if
m ≡ 3 (mod 4), then detσ(c) = −1, and again, the alternating eigenvalues
of σ(c) must be 1,−1, · · · , 1.

Apply this to ρ1 and ω−n1ρ2. The eigenvalues of ρ1(c) are 1,−1, . . . , 1
and the eigenvalues of ω−n1(c)ρ2(c) are also 1,−1, . . . , 1. Since ω(c) = −1
and n1 is odd, the eigenvalues of ρ2(c) are −1, 1, . . . ,−1. Therefore ρ1 ⊕ ρ2

is odd.
We now proceed to the proof that ρ1 ⊕ ρ2 is attached to a homology

eigenclass.
Let Γ± = Γ±0 (n,N1N2) and let P = Pn1

N1
be the representative maximal

parabolic subgroup of GLn(Q) with unipotent radical U and Levi quotient L
corresponding to the divisorN1 ofN1N2. Then Γ±L is isomorphic to the direct
product of the two components Γ±L1

∼= Γ±0 (n1, N1) and Γ±L2

∼= Γ±0 (n2, N2).
Let M ′2 = M2 ⊗ det−n1 . Since ρ1 is attached to an eigenclass in

Hs1(Γ±
L1 , (M1)ε1),

and ρ2 ⊗ ω−n1 is attached to an eigenclass in

Hs2(Γ±
L2 , (M

′
2)ε2),

then by [4, Corollary 10.2], we see that ρ1 ⊕ ρ2 is attached to an eigenclass
in

Hs1+s2(Γ±L , (M1 ⊗M ′2)ε).

By [4, Theorem 9.1], we see that Mε
∼= Hn1n2(Γ±U , (M1 ⊗M ′2)ε). Taking

G = Γ±P , H = Γ±U , and thus Q = Γ±L , it follows that ρ1 ⊕ ρ2 is attached to
an eigenclass in

Hs1+s2(Q,Hn1n2(H,Mε)).

This homology group is the term E2
s2+s2,n1n2

of the Lyndon-Hochschild-Serre
spectral sequence for the exact sequence 1→ H → G→ Q→ 1. Since n1n2

is the rank of the free abelian group H, and p > 1+n1n2, Theorem 11.2 and
Corollary 11.3 apply, and we see that ρ1 ⊕ ρ2 is attached to an eigenclass z
in

Hs1+s2+n1n2(Γ±P ,Mε).

This homology group is a summand of the term E1
1,s1+s2+n1n2

of the first
page of the Tits spectral sequence.

Note that z (or any nonzero descendants in higher pages of the spectral
sequence) cannot be in the image of any of the higher differentials, since the
higher differentials mapping to z would have source in column j of the spec-
tral sequence for j ≥ 2, and any eigenclass w in column j would be attached
to a Galois representation with at least j+1 ≥ 3 irreducible constituents (by
Theorem 8.5). Therefore the package of eigenvalues of w could not match
with the eigenvalues of z. (This uses the Chebotarev density theorem and
Scholze’s theorem that w has an attached Galois representation.)

Hence, either z is in the kernel of the differential d1 and survives to the
infinity page of the spectral sequence, or else d1(z) is nonzero and hence
d1(z) is an eigenvector in

E0,s1+s2+n1n2 = Hs1+s2+n1n2(Γ±,Mε)
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that has ρ1 ⊕ ρ2 attached.
If z survives to the infinity page, then we find that ρ1 ⊕ ρ2 is attached to

an eigenvector in the abutment, and hence to an eigenvector in

Hs1+s2+n1n2+1−(n−1)(Γ
±, St(X)⊗Z Mε).

Note that this can only happen when s1 + s2 + n1n2 + 1 − (n − 1) ≥ 0, or
equivalently when s1 + s2 + n1n2 > n − 2. By Borel-Serre duality (which
requires p > n1 + n2 + 1) and [3, Lemma 2.4] which permits us to switch
homology and cohomology in the same degree, we find that ρ1⊕ρ2 is attached
to an eigenvector in

Hν−s1−s2−n1n2+n−2(Γ±,Mε).

Hence, we see that ρ1 ⊕ ρ2 is attached to an eigenvector in either

Hs1+s2+n1n2(Γ±,Mε)

or
Hν−s1−s2−n1n2+n−2(Γ±,Mε).

The level and nebentype of ρ1 ⊕ ρ2 are N1N2 and ε, and one easily checks
that M is a predicted weight for ρ1 ⊕ ρ2. �

We now apply this theorem in several examples. The first two of these
examples have n1 = n2, and are already proven in [4, 5]. The remaining ex-
amples are new, taking advantage of the fact that our new spectral sequence
deals easily with the case where n1 6= n2.

In each of these examples, we will specify values for n1, n2, s1, s2, and
assume that ρ1 is attached to an eigenclass in H1(Γ±0 (n1, N1), (M1)ε1), and
ω−n1ρ2 is attached to an eigenclass inH1(Γ±0 (n2, N2), (M2⊗det−n1)ε2) where
Ni, εi, and Mi are predicted for ρi.

Example 12.2. Let n1 = n2 = 2 so that n = 4 and ν = 6. Choose p > 5.
Since ρ1 and ρ2 are irreducible, they can only fit homology with degree 1, so,
we take s1 = s2 = 1. Then s1+s2+n1n2 = 6 and ν−s1−s2−n1n2+n−2 = 2.
Hence, we have that ρ1⊕ρ2 appears in Hk(Γ

±
0 (4, N1N2), (M1⊗M2)ε1ε2) with

k = 2 or k = 6. This matches the result of [4, Theorem 12.1].

Example 12.3. Let n1 = n2 = 3 so that n = 6 and ν = 15. Choose p > 10.
Since ρ1 and ρ2 are irreducible, they fit homology only in degree 2 or 3 [1,
Theorems 4.1.4 and 4.1.5], so we have that s1 and s2 are either 2 or 3. There
are then three possibilities.

(1) If s1 = s2 = 3, then k1 = s1 + s2 +n1n2 = 15 and k2 = ν − s1− s2−
n1n2 + n− 2 = 4.

(2) If one of s1, s2 equals 3 and the other equals 2, then k1 = s1 + s2 +
n1n2 = 14 and k2 = ν − s1 − s2 − n1n2 + n− 2 = 5.

(3) If s1 = s2 = 2, then k1 = s1 + s2 +n1n2 = 13 and k2 = ν − s1− s2−
n1n2 + n− 2 = 6.

In each case, ρ1 ⊕ ρ2 is attached to an eigenclass in

Hk(Γ
±
0 (6, N1N2), (M1 ⊗M2)ε1ε2)
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for k = k1 or k = k2. This is consistent with, but stronger than, the results
of [5, Corollary 8.3], when we take into account the fact that ρ1 is attached
to homology in degree 3 if and only if it is attached to homology in degree 2
(by Theorem 10.3 above).

Example 12.4. Let n1 = 3 and n2 = 2, so that n = 5 and ν = 10. Choose
p > 7. Then, as above, s1 = 2 or 3, and s2 = 1. There are thus two cases:

(1) s1 = 3, s2 = 1. Then k1 = s1 + s2 + n1n2 = 10 and k2 = ν − s1 −
s2 − n1n2 + n− 2 = 3.

(2) s1 = 2, s2 = 1. Then k1 = s1 + s2 +n1n2 = 9 and k2 = ν− s1− s2−
n1n2 + n− 2 = 4.

In both cases, we have that ρ1 ⊕ ρ2 is attached to an eigenclass in

Hk(Γ
±
0 (5, N1N2), (M1 ⊗M2)ε1ε2)

for k = k1 or k = k2. This result is new, since the techniques of [4, 5]
required n1 = n2.

Example 12.5. Let n1 = 5 and n2 = 3, so that n = 8 and ν = 28. Choose
p > 16. It is likely that an irreducible Galois representation can fit only
cuspidal degrees of homology (this is plausible but not known for n ≥ 4).
Then ρ1 may fit homology of degree 6, 7, or 8 (the cuspidal degrees for
n1 = 5) and ρ2 may fit homology of degree 2 or 3. We thus get 6 possible
cases, which we summarize in the following table:

s1 s2 k1 k2

6 2 23 11
6 3 24 10
7 2 24 10
7 3 25 9
8 2 25 9
8 3 26 8

For each row of the table, we find that if ρ1 appears in degree s1, and ρ2

appears in degree s2, then ρ1 ⊕ ρ2 appears in

Hk(Γ
±
0 (8, N1N2), (M1 ⊗M2)ε1ε2)

for k = k1 or k = k2. As in the previous example, this result is new.

If n1 = n2 = 2, we proved in [4] a version of Theorem 12.1 for Γ0(n,N) (as
opposed to Γ±0 (n,N)). The proof uses a theorem of Khare and Wintenberger
(i.e. Serre’s conjecture) plus some elementary properties of classical modular
forms. The problem with proving a version of Theorem 12.1 for Γ0(n,N)
when one or both of n1, n2 is even and greater than 2 is that we do not know
that a package of Hecke eigenvalues for Γ0(n,N) also appears in Γ±0 (n,N).
Although a similar statement is known for cuspidal automorphic forms, we
don’t know how to derive it for mod p homology. But if both n1 and n2

are odd, we can prove a version of Theorem 12.1 for Γ0(n,N), instead of
Γ±0 (n,N). (If one of n1 and n2 is odd and the other equals 2 then there is a
similar theorem, which we leave to the reader to formulate.)
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Theorem 12.6. Let n1, n2 be positive odd integers, n = n1 + n2, p >
max(n1 + n2 + 1, n1n2 + 1), and for i = 1, 2, let

ρi : GQ → GLni(Fp)

be odd irreducible Galois representations such that ρ1 ⊕ ρ2 is odd. Further,
assume that

(1) ρ1 has level N1, nebentype ε1, and one of its predicted weights is
M1 = F (a1 + n2, . . . , an1 + n2), and ρ2 has level N2, nebentype ε2,
and one of its predicted weights is M2 = F (an1+1, . . . , an);

(2) that the n-tuple (a1, . . . , an) is chosen so that 0 ≤ an1−an1+1 ≤ p−1
and that N1N2 is squarefree;

(3) ρ1 is attached to a Hecke eigenclass in

Hs1(Γ0(n1, N1), (M1)ε1)

and ρ2 is attached to a Hecke eigenclass in

Hs2(Γ0(n2, N2), (M2)ε2).

Set k = s1 +s2 +n1n2 and ν = n(n−1)
2 . Let M = F (a1, . . . , an) and ε = ε1ε2.

Then ρ1 + ρ2 is attached to a Hecke eigenclass in at least one of

Hk(Γ0(n,N1N2),Mε) or Hν−k+n−2(Γ0(n,N1N2),Mε).

Moreover, N1N2, ε, and M are the level, nebentype, and a predicted weight
for ρ1 ⊕ ρ2.

Proof. By [3, Lemma 2.4] and [6, Theorem 3.6], if a Galois representation τ
fits Hk(Γ0(n,N),Mε) then τ ⊗ ω fits Hk(Γ0(n,N),Mε ⊗ det).

Hence, since n1 is odd, we may assume (by twisting both ρ1 and ρ2 by
ω if needed – this uses the fact that the main conjecture of [6] is preserved
under twisting by ω, which is [6, Theorem 3.6]) that −I acts trivially onM1.
By the same argument as at the beginning of the proof of Theorem 12.1, we
see that the eigenvalues of ρ1(c) are 1,−1, . . . , 1. Since ρ1 ⊕ ρ2 is odd the
eigenvalues of ρ2(c) must be −1, 1, . . . ,−1. Since n1 is odd, the eigenvalues of
(ω−n1ρ2)(c) are 1,−1, . . . , 1. Therefore −I also acts trivially onM2⊗det−n1 .

Then by [5, Theorem 3.5], we see that ρ1 is attached to an eigenclass in

Hs1(Γ±0 (n1, N1), (M1)ε1),

and ω−n1ρ2 is attached to an eigenclass in

Hs2(Γ±0 (n2, N2), (M2 ⊗ det−n1)ε2).

So by Theorem 12.1, ρ1 ⊕ ρ2 is attached to an eigenclass in at least one of

Hk(Γ
±
0 (n,N1N2),Mε) or Hν−k+n−2(Γ±0 (n,N1N2),Mε).

Finally, by use of the corestriction from Γ0 to Γ±0 as in the proof of [4,
Theorem 10.4], we obtain that ρ1⊕ρ2 is attached to an eigenclass in at least
one of

Hk(Γ0(n,N1N2),Mε) or Hν−k+n−2(Γ0(n,N1N2),Mε). �
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