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1. Introduction and statement of results

Let j(z) be the modular function for SL2(Z) defined by

j(z) =
E4(z)3

∆(z)
= q−1 + 744 + 196884q + · · · ,

where q = e2πiz.
Let d ≡ 0, 3 (mod 4) be a positive integer, so that −d is a negative discriminant.

Denote by Qd the set of positive definite integral binary quadratic forms Q(x, y) =
ax2 + bxy + cy2 = [a, b, c] with discriminant −d = b2 − 4ac, including imprimitive forms
(if such exist). We let αQ be the unique complex number in the upper half plane H
which is a root of Q(x, 1) = 0.

Values of j at the points αQ are known as singular moduli. Singular moduli are alge-
braic integers which play prominent roles in number theory. For example, Hilbert class
fields of imaginary quadratic fields are generated by singular moduli, and isomorphism
classes of elliptic curves with complex multiplication are distinguished by singular mod-
uli. Because of the modularity of j, the singular modulus j(αQ) depends only on the
equivalence class of Q under the action of Γ = PSL2(Z).

We define ωQ ∈ {1, 2, 3} as

(1.1) ωQ =





2 if Q ∼Γ [a, 0, a],

3 if Q ∼Γ [a, a, a],

1 otherwise.

The Hurwitz-Kronecker class number H(d) is the number of equivalence classes of
forms of discriminant −d under the action of Γ, weighted by ωQ. Specifically, it is
defined as

(1.2) H(d) =
∑

Q∈Qd/Γ

1

ωQ

.

Following Zagier, we define the trace of the singular moduli of discriminant −d as

(1.3) Tr(d) =
∑

Q∈Qd/Γ

j(αQ)− 744

ωQ

.
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If we modify the standard Hilbert class polynomial slightly and define

Hd(X) =
∏

Q∈Qd/Γ

(X − j(αQ))1/ωQ ,

we can interpret H(d) and Tr(d) as the first two Fourier coefficients of the logarithmic
derivative of Hd(j(z)).

Borcherds [Bo] proved a striking theorem describing the full Fourier expansion of
Hd(j(z)) in terms of the coefficients of certain nearly holomorphic weight 1/2 modular
forms. Specifically, Borcherds proved the following theorem.

Theorem 1.1 (Borcherds). Let d > 0, d ≡ 0, 3 (mod 4). Then

Hd(j(z)) = q−H(d)

∞∏
n=1

(1− qn)A(n2,d),

where A(D, d) is the coefficient of qD in a certain nearly holomorphic modular form fd

of weight 1/2 for the group Γ0(4).

Note. We will give a precise description of the fd later in this section.

Zagier [Z] gave a new proof of Borcherds’ theorem and generalized it, using formulas
for traces of singular moduli and their generalizations. His proof uses a sequence of
nearly holomorphic modular forms gD of weight 3/2, which are closely related to the fd

of weight 1/2.
To generalize the trace of the singular moduli of discriminant −d, we let jm(z), for non-

negative integers m, be the unique holomorphic function on H/Γ with Fourier expansion
q−m + O(q). The jm(z) can be written as polynomials in j(z) of degree m with integer
coefficients. For example, we have

j0(z) = 1,

j1(z) = j(z)− 744 = q−1 + 196884q + 21493760q2 + · · · ,

j2(z) = j(z)2 − 1488j(z) + 159768 = q−2 + 42987520q + 40491909396q2 + · · · .

We can then define the mth trace Trm(d) of the singular moduli of discriminant −d as

(1.4) Trm(d) =
∑

Q∈Qd/Γ

jm(αQ)

ωQ

.

We can generalize the traces even further by adding a twist. Let D be a fundamental
discriminant. We define the genus character χD to be the character assigning a quadratic
form Q = (a, b, c), of discriminant divisible by D, the value

χD(Q) =

{
0 if (a, b, c, D) > 1,(

D
n

)
if (a, b, c, D) = 1,

where n is any integer represented by Q and coprime to D. This is independent of the
choice of n, and for a form Q of discriminant −dD, we have χD = χ−d if −d and D
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are both fundamental discriminants. Following Zagier, for fundamental discriminants
D > 0 we then define a “twisted trace” Trm(D, d) as

(1.5) Trm(D, d) =
∑

Q∈QdD/Γ

χD(Q)jm(αQ)

ωQ

.

We now define, again following Zagier, the two sequences of weakly holomorphic mod-
ular forms that relate to these traces. Let M !

λ+1/2 be the space of weight λ+1/2 weakly

holomorphic modular forms on Γ0(4), with Fourier expansion

f(z) =
∑

(−1)λn≡0,1 (mod 4)

a(n)qn.

Recall that a form is weakly holomorphic if its poles, if there are any, are supported at
the cusps.

For any 0 < D ≡ 0, 1 (mod 4), let gD(z) be the unique element of M !
3/2 with Fourier

expansion

(1.6) gD(z) = q−D + B(D, 0) +
∑

0<d≡0,3 (mod 4)

B(D, d)qd.

For 0 ≤ d ≡ 0, 3 (mod 4), let fd(z) be the unique form in M !
1/2 with expansion

(1.7) fd(z) = q−d +
∑

0<D≡0,1 (mod 4)

A(D, d)qD.

All of the coefficients A(D, d) and B(D, d) of the fd and gD are integers.
Applying Hecke operators (for definitions, see section 3.1 of [O]), we also define

Am(D, d) = the coefficient of qD in fd(z)
∣∣ T 1

2
(m2),

Bm(D, d) = the coefficient of qd in gD(z)
∣∣ T 3

2
(m2).

Zagier proved the following statements about the relationships between the coefficients
of the gD and fd.

Theorem 1.2 (Zagier). Assume the above notation.

(1) We have
Am(D, d) = −Bm(D, d).

(2) If m ≥ 1, then

Am(1, d) =
∑

n|m
nA(n2, d).

Zagier then proved the following theorem relating the traces of singular moduli to
these modular forms; his results play a central role in his work on Borcherds’ products.

Theorem 1.3 (Zagier). If m ≥ 1 and −d < 0 is a discriminant, then

Trm(d) = −Bm(1, d).
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Here we give a new proof of this theorem, using Kloosterman sums and the theory of
weakly holomorphic Poincaré series. More specifically, we relate formulas given by Duke
for the Trm(d) to the coefficients of certain Poincaré series computed by the author,
Bruinier, and Ono that appear in computing the Bm(1, d).

Remark. Our proof generalizes the proof of the m = 1 case given by Duke in [D].

Other coefficients of these modular forms can be interpreted in terms of twisted traces
in the following manner.

Theorem 1.4 (Zagier). If m ≥ 1,−d < 0 is a discriminant, and D > 0 is a fundamental
discriminant, then

Trm(D, d) = Am(D, d)
√

D.

Our second result is a new expression for twisted traces as an infinite series.

Theorem 1.5. If D,−d ≡ 0, 1 (mod 4) are a positive fundamental discriminant and a
negative discriminant, respectively, with D > 1, and m ≥ 1 is an integer, we have

Trm(D, d) =
∑

c≡0(4)

c>0

SD,d(m, c) sinh

(
4πm

√
dD

c

)
,

where

SD,d(m, c) =
∑

x(c)

x2≡−Dd(c)

χD

(
c

4
, x,

x2 + Dd

c

)
e

(
2mx

c

)
.

Note. Here we have written e(z) = e2πiz for convenience, and have written the sum over
all residue classes (mod c) as

∑
x(c). In addition, hereafter

∑
c≡0(4) will denote a sum

over positive integers c divisible by 4.

2. A New Proof of Theorem 1.3

We want to give a new proof that the mth trace can be written as a coefficient of a
modular form; specifically, we want to show that Trm(d) = −Bm(1, d). Duke [D] gives a
“Kloosterman sum” proof of the modularity of the traces for the m = 1 case by adapting
a method of Tóth [T]. Here we generalize this proof to all integers m ≥ 1.

We begin by defining, for λ ∈ Z, the generalized Kloosterman sum

(2.1) Kλ+1/2(m,n; c) =
∑

a(c)

(a,c)=1

(
c

a

)2λ+1

ε2λ+1
a e

(
ma + na

c

)
,

where for v odd, we define

(2.2) εv =

{
1 if v ≡ 1 (mod 4),

i if v ≡ 3 (mod 4).
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In addition, we define the function δodd on the integers by

δodd(v) =

{
1 if v is odd,

0 otherwise.

Using the theory of weakly holomorphic Poincaré series, Bruinier, the author, and
Ono ([BJO], Theorem 3.7) prove the following theorem.

Theorem 2.1. Let n be a positive integer with n ≡ 0, 1 (mod 4). Then the Fourier
coefficient B(n, d) with positive index d, where d ≡ 0, 3 (mod 4), is given by

B(n, d) = 24δ¤,nH(d)− (1 + i)
∑

c≡0 (4)

(
1 + δodd

( c

4

)) K3/2(−n, d; c)√
cn

sinh

(
4π

c

√
nd

)
.

Here δ¤,n = 1 if n is a square, and δ¤,n = 0 otherwise.

Duke shows ([D], Proposition 4) that

Theorem 2.2. For any positive integer m and discriminant −d,

Trm(d) = −24H(d)σ(m) +
∑

c≡0(4)

Sd(m, c) sinh

(
4πm

√
d

c

)
,

where

Sd(m, c) =
∑

x2≡−d(c)

e

(
2mx

c

)
.

We combine these two formulas to obtain a new proof of Theorem 1.3. We require
the following lemma.

Lemma 2.3. For d ≡ 0, 3 (mod 4) and k, n, c ≥ 1 with nc ≡ 0 (mod 4) and (c, k) = 1,
we have

Sd(nk, nc) =
∑

h|n
hc≡0(4)

(1 + i)

(
1 + δodd

(
hc

4

))
1√
hc

K3/2

(−h2k2, d; hc
)
.

Remark. This lemma can be obtained by slightly modifying work of Kohnen [K]; we
give instead a more direct and elementary proof depending only on classical facts about
Gauss sums.

As a preliminary to our proof of Lemma 2.3, we define the Gauss sum

(2.3) G(a, b; c) =
∑

x(c)

e

(
ax2 + bx

c

)
.

Note that G(a, b; c) vanishes if (a, c) > 1 unless (a, c)|b, in which case

(2.4) G(a, b; c) = (a, c)G

(
a

(a, c)
,

b

(a, c)
;

c

(a, c)

)
.
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For (a, c) = 1, we can evaluate ([BEW], Theorems 1.5.1, 1.5.2 and 1.5.4)

(2.5) G(a, 0; c) =





0 if 0 < c ≡ 2 (mod 4),

εc

√
c
(

a
c

)
if c odd,

(1 + i)ε−1
a

√
c
(

c
a

)
if a odd and 4|c.

We will also need the following basic lemma.

Lemma 2.4. For integers a, b, c with b odd and (a, 4c) = 1, we have G(a, b; 4c) = 0.

Proof. Replacing x with x + 2c in the sum defining G(a, b; 4c) simply rearranges the
sum. But this change of variables also introduces a factor e(b/2) = −1, so we must have
G(a, b; 4c) = 0. ¤
Proof of Lemma 2.3. Assume that d ≡ 0, 3 (mod 4) and k, n, c ≥ 1 with nc ≡ 0 (mod 4)
and (c, k) = 1.

Multiplied by nc, the right side of the equation we are trying to establish is
∑

h|n
hc≡0(4)

(1 + i)
n
√

c√
h

(
1 + δodd

(
hc

4

))
K3/2

(−h2k2, d; hc
)

=
∑

h|n
hc≡0(4)

(1 + i)
n
√

c√
h

K3/2

(−h2k2, d; hc
)

+
∑

h|n
hc
4

odd

(1 + i)
n
√

c√
h

K3/2

(−h2k2, d; hc
)
.

Write this as S0 + S1 for brevity. For hc/4 odd, we can rewrite the Kloosterman sum
K3/2(−h2k2, d; hc) as ([I], Lemma 2)
(2.6)

K3/2

(−h2k2, d; hc
)

=

(
cos

π(d− h2k2)

2
− sin

π(d− h2k2)

2

)
(1−i)εhc

4
S

(
−4h2k2, 4d;

hc

4

)
,

where S(m,n; q) =
∑

a(q)

(
a
q

)
e
(

ma+na
q

)
is a Salié sum. Since d ≡ 0, 3 (mod 4), the

cosine-sine term is 1 unless d ≡ 3 (mod 4) and hk is odd, in which case it is −1. We
thus have

S1 =
∑

h|n
hc
4

odd

2n
√

c√
h

(
e

(
d

2

))hk

εhc
4
S

(
−4h2k2, 4d;

hc

4

)
.

On the other hand, we have by definition that

ncSd(nk, nc) = nc
∑

x2≡−d(nc)

e

(
2kx

c

)
=

∑

x(nc)

e

(
2kx

c

) ∑

a(nc)

e

(
a(x2 + d)

nc

)

(2.7) =
∑

a(nc)

e

(
ad

nc

)
G(a, 2nk; nc).
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The properties of G in (2.4) allow this to be rewritten as

∑

A|(2nk,nc)

∑

(a,nc)=A

e

(
ad

nc

)
A·G

(
a

A
,
2nk

A
;
nc

A

)
=

∑

A|(2nk,nc)

∑

(b, nc
A

)=1

e

(
bd

nc/A

)
A·G

(
b,

2nk

A
;
nc

A

)
.

Since (c, k) = 1, we have (2nk, nc) = n if c is odd, and 2n if c is even.
We treat first the case in which c is odd. We have

ncSd(nk, nc) =
∑

A|n

∑

(b, nc
A

)=1

e

(
bd

nc/A

)
A ·G

(
b,

2nk

A
;
nc

A

)

=
∑

h|n

∑

(b,hc)=1

e

(
bd

hc

)
n

h
·G(b, 2hk, hc).

We complete the square in the definition of G(b, 2hk, hc) to see that this equals

∑

h|n

∑

(b,hc)=1

e

(
bd− bh2k2

hc

)
n

h
·G(b, 0, hc),

and apply (2.5) to get

ncSd(nk, nc) =
∑

h|n
4|hc

∑

(b,hc)=1

e

(
bd− bh2k2

hc

)
(1 + i)ε−1

b

n
√

c√
h

(
hc

b

)

+
∑

h′|n
h′c odd

∑

(b,h′c)=1

e

(
bd− bh′2k2

h′c

)
εh′c

n
√

c√
h′

(
b

h′c

)
.

Writing 4h′ = h in the second term, we get

∑

h|n
4|hc

(1 + i)
n
√

c√
h

K3/2(−h2k2, d; hc) +
∑

h|n
hc
4

odd

∑

(b, hc
4

)=1

e

(
bd− 16bh2k2

hc/4

)
εhc

4

2n
√

c√
h

(
b

hc/4

)
.

Replacing b by 4b shows that this precisely equals S0 + S1.
We now assume that 2|c, so that k is odd. We have

ncSd(nk, nc) =
∑

A|2n

∑

(b, nc
A

)=1

e

(
bd

nc/A

)
A ·G

(
b,

2nk

A
;
nc

A

)
.

If A|nk, then A|n since we also have A|nc; this lets us split the sum as
∑

A|2n

=
∑

A|n
+

∑

A|2n
2nk
A

odd
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and obtain

ncSd(nk, nc) = S0 +
∑

h′|2n

h′k odd

∑

(b, h′c
2

)=1

e

(
bd

h′c/2

)
2n

h′
·G

(
b, h′k;

h′c
2

)
,

where S0 is obtained from the first term as in the previous case.
In the case that c/2 is odd, we can complete the square and write

G

(
b, h′k;

h′c
2

)
= e

(−4bh′2k2

h′c/2

)
G

(
b, 0;

h′c
2

)
.

We again apply (2.5) to get

ncSd(nk, nc) = S0 +
∑

h′|2n

h′k odd

∑

(b, h′c
2

)=1

e

(
bd− 4bh′2k2

h′c/2

)
εh′c

2

n
√

2c√
h′

(
b

h′c/2

)
.

Writing 2h′ = h and replacing b by 4b shows that this again equals S0 + S1.
If 8|c, then S1 = 0, and Lemma 2.4 shows that ncSd(nk, nc) = S0.
The remaining case is c = 4w, for w odd. In this case, we have

S1 =
∑

h|n
h odd

4n
√

w√
h

e

(
d

2

)
εhw

∑

(b,hw)=1

(
b

hw

)
e

(
4bd− 4bh2k2

hw

)
,

ncSd(nk, nc) = S0 +
∑

h|n
h odd

∑

(b,2hw)=1

e

(
bd

2hw

)
2n

h

∑

x(2hw)

e

(
bx2 + hkx

2hw

)
.

But each b coprime to 2hw is equal (mod 2hw) to hw − 2z for some z coprime to hw,
so we have

ncSd(nk, nc) = S0 +
∑

h|n
h odd

∑

(b,hw)=1

e

(
(hw − 2b)d

2hw

)
2n

h

∑

x(2hw)

e

(
(hw − 2b)x2 + hkx

2hw

)
.

Simplifying, and noting that e
(

x2

2

)
= e

(
x
2

)
for all integers x, we have

ncSd(nk, nc) = S0 +
∑

h|n
h odd

∑

(b,hw)=1

e

(
d

2

)
e

(−bd

hw

)
2n

h
G(−2b, hk + hw; 2hw)

= S0 +
∑

h|n
h odd

∑

(b,hw)=1

e

(
d

2

)
e

(−bd

hw

)
4n

h
G(−b, 2hk; hw).
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Since hw is odd, we complete the square to get

G(−b, 2hk; hw) = e

(
16bh2k2

hw

)
G(−b, 0; hw) = e

(
16bh2k2

hw

)
εhw

√
hw

(−b

hw

)
.

Replacing b by −4b gives ncSd(nk, nc) = S0 + S1, proving the lemma. ¤

Proof of Theorem 1.3. From Theorem 1.2, we know that −Bm(1, d) = −∑
r|m rB(r2, d).

Applying Theorem 2.1 with n = r2, we find that

−Bm(1, d) =− 24H(d)σ(m)+

∑

r|m

∑

n|r

∑
rc
n
≡0(4)

(c,n)=1

(1 + i)
(
1 + δodd

( rc

4n

)) K3/2(−r2, d; rc
n
)√

rc
n

sinh

(
4πn

√
d

c

)
.

Writing r = hn, we get
∑

r|m
∑

n|r =
∑

n|m
∑

h|m
n
. Replace n by m/n inside the sum on

n, and write
∑

h|n
∑

hc≡0(4),(c, m
n

)=1 =
∑

nc≡0(4),(c, m
n

)=1

∑
h|n,hc≡0(4) to get

−Bm(1, d) = −24H(d)σ(m)+

∑

n|m

∑

nc≡0(4)

(c, m
n

)=1

∑

h|n
hc≡0(4)

(1 + i)

(
1 + δodd

(
hc

4

))
K3/2(

−h2m2

n2 , d; hc)√
hc

sinh

(
4πm

√
d

nc

)
.

We rewrite Theorem 2.2 as

(2.8) Trm(d) = −24H(d)σ(m) +
∑

n|m

∑

nc≡0(4)

(c, m
n

)=1

Sd(m,nc) sinh

(
4πm

√
d

nc

)
.

Letting m = nk in Lemma 2.3 shows that the coefficients of the hyperbolic sine
terms in the two expressions are equal, and we have Trm(d) = −Bm(1, d), proving the
theorem. ¤

3. New expressions for twisted traces

Going the other direction, we now derive an expression for twisted traces that is
analogous to the expression in Theorem 2.2 for the standard traces. Specifically, we
prove Theorem 1.5, which asserts that for discriminants D and −d, with D > 1 a
fundamental discriminant, and an integer m ≥ 1,

Trm(D, d) =
∑

c≡0(4)




∑

x(c)

x2≡−Dd(c)

χD

(
c

4
, x,

x2 + Dd

c

)
e

(
2mx

c

)

 sinh

(
4πm

√
dD

c

)
.
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Proof of Theorem 1.5. We know from Zagier’s work that

(3.1) Trm(D, d) = Am(D, d)
√

D.

We combine this with the generalization, for D fundamental, of the second part of
Theorem 1.2,

Am(D, d) =
∑

n|m
n

(
D
m
n

)
A(n2D, d),

and use the fact that Am(D, d) = −Bm(D, d) to see that

Trm(D, d) = −
∑

n|m

√
Dn

(
D
m
n

)
B(n2D, d).

We now apply Theorem 2.1 to write B(n2D, d) as an infinite sum, and obtain

Trm(D, d) =
∑

n|m

∑

c≡0(4)

(1+i)

(
D
m
n

) (
1 + δodd

( c

4

)) 1√
c
K3/2(−n2D, d; c) sinh

(
4πn

√
dD

c

)
.

Rewriting
∑

c≡0(4) as
∑

r|n
∑

rc≡0(4),(c,n/r)=1 and changing the order of summation as in
the previous section, this becomes

∑

c≡0(4)

∑

k|(m, c
4
)

(1 + i)

(
D

k

)(
1 + δodd

( c

4k

)) √
k

c
K3/2

(−m2D

k2
, d;

c

k

)
sinh

(
4πm

√
Dd

c

)
.

We use the following identity, proved by Kohnen ([K], Proposition 5): For integers
a,m, d ≥ 1 and fundamental discriminants D satisfying D, (−1)λd ≡ 0, 1 (mod 4), we
have

∑

b(4a)

b2≡(−1)λDd(4a)

χD

(
a, b,

b2 − (−1)λDd

4a

)
e

(
mb

2a

)
=(3.2)

∑

k|(m,a)

(1− (−1)λi)

(
D

k

) (
1 + δodd

(a

k

)) √
k

2
√

a
Kλ+1/2

(
(−1)λm2D

k2
, d;

4a

k

)
.

This identity is stated only for (−1)λdD > 0 in Kohnen’s paper, but the proof is virtually
unchanged for the more general case.

Applying the identity with λ = 1 and a = c/4, Theorem 1.5 follows immediately. ¤
Example. Let D = 5, d = 3,m = 1. There are two forms of discriminant −15; they are
Q1 = [1, 1, 4] and Q2 = [2, 1, 2], with χ5(Q1) = 1 and χ5(Q2) = −1. We have

j(αQ1) =
−191025− 85995

√
5

2
,

j(αQ2) =
−191025 + 85995

√
5

2
,
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and therefore Tr(D, d) = j(αQ1)− j(αQ2) = −85995
√

5.

If we compute the first 10 terms of the sum in Theorem 1.5 and divide by
√

5, we get
−85996.573 · · · . The first 100 terms give −85995.909 · · · , and the first 1000 terms give
−85994.9562 · · · .

Acknowledgements. The author thanks Ken Ono and the referee for many helpful
comments.
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