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Introduction
My research has focused on modular forms and Maass forms and their applications in number

theory. A modular form is a holomorphic function on the complex upper half plane satisfying
a transformation law

f

(
az + b

cz + d

)
= ε(a, b, c, d)(cz + d)kf(z),

for all

(
a b
c d

)
in a subgroup of SL2(Z). Here ε(a, b, c, d) has absolute value 1, the weight k is

in 1
2
Z, and f satisfies certain growth conditions. Writing q = e2πiz, a modular form f(z) has a

Fourier expansion

f(z) =
∞∑

n=n0

a(n)qn.

Maass forms are similar to modular forms, but are not holomorphic, and are required to be
eigenfunctions of the hyperbolic Laplacian.

Modular forms are objects of intense interest in number theory; most famously, they played
a vital role in Wiles’ proof of Fermat’s Last Theorem. The coefficients a(n) of these forms
play many different roles, appearing, for example, in the study of points on elliptic curves over
finite fields, representations of integers by quadratic forms, values of the partition function,
class numbers, the Birch and Swinnerton-Dyer conjecture, and values of L-functions.

These coefficients make a prominent and interesting appearance in work of Borcherds. To
explain, recall that many modular forms have simple infinite product expansions. For example,
the weight 12 modular form ∆(z) has the expansion

∆(z) = q

∞∏
n=1

(1− qn)24.

The weight 4 Eisenstein series E4(z) has the more complicated expansion

E4(z) = 1 + 240
∞∑

n=1

σ3(n)qn = (1− q)−240(1− q2)26760(1− q3)−4096240 · · · .

In his 1994 ICM lecture, Borcherds [2],[3] gave a striking description of the exponents in the
infinite product expansion of modular forms with Heegner divisor, of which these are two
examples, showing that the exponents in such an expansion appear as coefficients in the Fourier
expansion of another modular form of weight 1/2. In particular, the product expansions of ∆
and E4 above correspond to the weight 1/2 modular forms

12θ = 12 + 24q + 24q4 + 24q9 + · · · ,

G(z) = q−3 + 4− 240q + 26760q4 − 85995q5 + · · · − 4096240q9 + · · · .

The exponents of the (1−qn) in the infinite product expansions of ∆ and E4 equal the coefficients

of qn2
in 12θ and G(z). Borcherds also proved that this map between spaces of modular forms

is an isomorphism.
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Theorem 1 (Borcherds). Let f(z) be an integer weight meromorphic modular form on SL2(Z)
with Heegner divisor, integer coefficients, and leading coefficient 1. Then

f(z) = q−h

∞∏
n=1

(1− qn)A(n2),

where A(D) is the coefficient of qD in a certain nearly holomorphic modular form of weight 1/2
for the group Γ0(4).

Borcherds’ results are in fact more general, using automorphic forms on orthogonal groups.
One question posed in his paper is whether a proof of this theorem exists that uses only the
classical theory of modular forms. Zagier [28] answered this in the affirmative, and his work
has inspired my research to date. Zagier’s results are phrased in terms of singular moduli.

The usual j-function is the modular function for SL2(Z) with Fourier expansion

j(z) = q−1 + 744 + 196884q + · · · .

Values of j at quadratic irrational points of discriminant −d < 0 are known as singular moduli.
Singular moduli are algebraic integers which have been extensively studied in number theory;
for example, they generate ring class field extensions of imaginary quadratic number fields.

Zagier [28] initiated the study of Tr(d), the function giving the algebraic trace of a singular
modulus of discriminant −d, and its generalization Trm(d), and showed that these traces appear
as coefficients of a certain weight 3/2 nearly holomorphic modular form.

To make this more precise, define gD as the unique weight 3/2 modular form on Γ0(4) with
Fourier expansion

gD(z) = q−D + B1(D, 0) +
∑

0<d≡0,3 (mod 4)

B1(D, d)qd.

Applying the weight 3/2 Hecke operator T 3
2
(m2), let

Bm(D, d) = the coefficient of qd in gD(z)
∣∣ T 3

2
(m2).

Zagier proved the following theorem relating traces of singular moduli and the coefficients of
the gD.

Theorem 2 (Zagier). If m ≥ 1 and −d < 0 is a discriminant, then

Trm(d) = −Bm(1, d).

By exhibiting a striking duality between these coefficients Bm(D, d) and the coefficients of
another sequence of modular forms, this time of weight 1/2, Zagier was able to give a new proof
of Borcherds’ infinite product formulas (Theorem 1) with this theorem. However, although
Theorem 2 implies Borcherds’ theorem and provides the desired “modular form” proof, it does
not provide much new information about the Trm(d). For example, it does not give exact
formulas for calculating the coefficients Bm(D, d), or tell us about their p-divisibility.

My results
Combining properties of Kloosterman sums with the duality between coefficients of modular

forms of different weights, and using an expression for Trm(d) due to Duke [11], I gave a new
proof [16] of Theorem 2, thus giving a new “modular form” proof of Borcherds’ theorem.

An essential element in this new proof is an explicit expression for the coefficients B1(D, d)
of the modular form gD. This formula was derived in my work with Bruinier and Ono [8]
from certain results about weakly holomorphic Maass-Poincaré series. More precisely, if H(d)
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is the Hurwitz class number for the discriminant −d, σ(n) is the sum of the divisors of n, and
K(m,n; c) is a generalized Kloosterman sum, this expression for the coefficients, together with
Hecke operator relations, give the following exact formula for the traces Trm(d).

Theorem 3 (Bruinier-J.-Ono [8], Theorem 1.2). For discriminants −d < 0, we have

Trm(d) = −24σ(m)H(d) + (1 + i)
∑

n|m

∑
c>0

c≡0 (4)

(1 + δodd(c/4))
K(−n2, d; c)√

c
sinh

(
4πn

c

√
d

)
.

For a fundamental discriminant −d, the Hilbert class polynomial Hd(x) is the polynomial
whose roots are the singular moduli of discriminant −d. These irreducible polynomials generate
the Hilbert class field of Q(

√−d), and the problem of computing them and their roots has a long
history (for example, see [10] or [4]). Since the coefficients of these polynomials are symmetric
functions of singular moduli, the Newton-Girard formulas can be used to write the coefficients
in terms of sums of powers of singular moduli, which are easily computed from the Trm(d) for
1 ≤ m ≤ H(d). Thus, Theorem 3 has the following corollary.

Corollary 4. If −d < 0 is a fundamental discriminant, then we have an exact formula for the
Hilbert class polynomial Hd(x).

Zagier also defined “twisted” traces of singular moduli by multiplying values of j by a genus
character χD before adding them together. If D is a fundamental discriminant and α is a qua-
dratic irrational of discriminant −Dd, this twisted trace is related to the trace of the algebraic
integer j(α) from the Hilbert class field of Q(

√−Dd) to its real quadratic subfield Q(
√

D).
Values of these twisted traces are also encoded in the coefficients of the modular forms gD,
in a manner similar to Theorem 2. Bringmann and Ono [6] have extended this description of
twisted traces to more general weights by using Maass-Poincaré series.

With the following theorem, I generalized a result of Duke [11] on standard traces to get a
new exact formula [17] for twisted traces.

Theorem 5 (J. [17], Theorem 1.5). If D,−d ≡ 0, 1 (mod 4) are a positive fundamental dis-
criminant and a negative discriminant, respectively, with D > 1, and m ≥ 1 is an integer, we
have

Trm(D, d) =
∑

c≡0(4)

c>0

∑

x(c)

x2≡−Dd(c)

χD

(
c

4
, x,

x2 + Dd

c

)
e

(
2mx

c

)
sinh

(
4πm

√
dD

c

)
.

Suppose that p is an odd prime and that s is a positive integer. When p is inert or ramified
in particular quadratic number fields, Ahlgren and Ono [1] proved many congruences for traces
of singular moduli modulo ps. In addition, they gave an elementary argument that Tr(p2d) ≡ 0
(mod p) when p splits in Q(

√−d) (that is, when
(−d

p

)
= 1). In a recent preprint, Edixhoven

[13] extended their observation and proved that if
(−d

p

)
= 1, then

Tr(p2nd) ≡ 0 (mod pn).

In another paper, Boylan [5] exactly computed Tr(22nd), giving a stronger result when p = 2.
Using the duality between modular forms of weights 3/2 and 1/2, I proved the following

identity among the coefficients Bm(D, d) of the modular forms gD.
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Theorem 6 (J. [16], Theorem 1.1). If p is an odd prime and −d,D ≡ 0, 1 (mod 4) and n are
positive integers, then

B1(D, p2nd) =pnB1(p
2nD, d) +

n−1∑

k=0

(
D

p

)n−k−1 (
B1

(
D

p2
, p2kd

)
− pk+1B1

(
p2kD,

d

p2

))

+
n−1∑

k=0

(
D

p

)n−k−1 (((
D

p

)
−

(−d

p

))
pkB1(p

2kD, d)

)
,

where B1(M,N) = 0 if M or N is not an integer.

Taking D = 1 and recalling that Tr(d) = −B1(1, d), we have the following precise formula
which implies Edixhoven’s congruences.

Corollary 7. If
(−d

p

)
= 1, then Tr(p2nd) = −pnB1(p

2n, d) ≡ 0 (mod pn).

Future research
Singular moduli may be generalized by replacing the j-function with a modular function of

higher level, such as the Hauptmodul associated to other groups of genus zero, as in work of
Kim [18] [19]. Osburn [26] proved that Ahlgren and Ono’s congruence extends to this case,
suggesting that an analogue of Theorem 6 will also hold for higher levels and give information
about the p-divisibility of traces of p2nd for these functions. I expect to work out such a
generalization in the near future.

In addition, the entire framework underlying these results may be generalized by examining
modular forms of weights other than 3/2 or 1/2. Bringmann and Ono’s work [6] using Maass-
Poincaré series for these half-integral weight modular forms shows that similar duality theorems
hold, and Zagier discussed the interpretation of the coefficients of these forms as traces of non-
holomorphic modular functions. For example, the coefficients of certain modular forms of
weights 5/2 and −1/2 correspond to traces of the function

K(z) =
5

6
j(z)− 576 +

E∗
2(z)E4(z)E6(z)

6∆(z)
,

where E∗
2(z) is the non-holomorphic Eisenstein series of weight 2. A generalization of Theorem 6

would provide information about the p-adic properties of these traces, and should provide
an arithmetic interpretation in terms of isomorphism classes of elliptic curves with complex
multiplication. My preliminary work in this direction seems to confirm that an analogue of
Theorem 6 is true in much greater generality, and I hope to clarify this speculation. Such a
generalization would involve values of exceptional harmonic weak Maass forms at CM points.

Recently, Bruinier and Funke [7] obtained results on traces of modular functions that hold in
much greater generality; specifically, they removed the restriction to modular curves of genus
zero inherent in Zagier’s work. Their method involves integrating arbitrary modular functions
of weight zero against certain theta series to obtain modular forms whose positive Fourier
coefficients are the desired traces. In addition, they obtain geometric interpretations for the
constant term and negative Fourier coefficients, and recover Zagier’s results as special cases. I
am interested in using the techniques and ideas I have developed in my research thus far to
study the p-adic properties of these traces and their arithmetic interpretations.

Although my work to date has been mostly related to Borcherds’ and Zagier’s work and to
singular moduli, in the near future I plan to explore other questions. I am interested in the rela-
tionship between central critical values of quadratic twists of even weight modular L-functions
and the coefficients of associated cusp forms. This relates to the Birch and Swinnerton-Dyer



5

conjecture, one of the Clay Mathematics Institute Millennial Prize problems. The conjecture
is as follows.

Conjecture 8 (Birch and Swinnerton-Dyer). For an elliptic curve E/Q,

ords=1 L(E, s) = rank(E).

Moreover, if Etor is the torsion subgroup of E over Q, X(E) is the Shafarevich-Tate group of
E, Tam(E) is the Tamagawa number for E, Ω(E) is the real period of E, and R(E) is the
regulator of E/Q, then

lim
s→1

(
(s− 1)− rank(E)L(E, s)

)
=

2rank(E) · |X(E)| · Tam(E) · Ω(E) ·R(E)

|E2
tor|

.

Although this problem remains open, there have been some significant results in its direction.
The most famous result is due to Kolyvagin [23], who proved that if the order of the L-function
at s = 1 is 0 or 1, then

ords=1(L(E, s)) = rank(E) and |X(E)| < ∞.

This result was at first conditional, but the restrictions were removed by work of Gross and
Zagier [14] and of Bump, Friedberg and Hoffstein [9] on the nonvanishing of central critical
values of quadratic twists of L-functions. Further work in this direction has been done by
Murty and Murty [24], Iwaniec [15], Waldspurger [27], and Ono and Skinner [25].

Gross and Zagier’s work relates the central value of an L-function to the canonical height
of a Galois trace of a Heegner point; a natural question, then, would be whether the central
critical values themselves can be interpreted as traces. Work of Kohnen and Zagier [21], [20],
[22] and Waldspurger shows that central critical values of quadratic twists of L-functions can
be written in terms of the squares of certain Fourier coefficients of half integral weight cusp
forms. Using recent work of Bringmann and Ono [6] as a prototype, it should be possible to
adapt theorems on Maass-Poincaré series to cuspidal Poincaré series to describe these L-values
in terms of traces of some sort of modular invariant evaluated at CM points or their equivalent.
I intend to explore this relationship thoroughly.

I am also interested in learning more about equidistribution results, such as those arising
in Duke’s work [12]. His theorems have interesting applications to the asymptotic behavior of
Tr(d). More specifically, we may approximate the j-function by the q−1 term in its Fourier

expansion and examine the average difference G(d)−Tr(d)
H(d)

between traces of singular moduli and

their approximations G(d) arising from this truncation. Some care is required to define G(d)
properly, as some “small” CM points are actually counted with multiplicity two. Since H(163) =
1, computing this difference for d = 163 gives the famous classical observation that

eπ
√

163 − 262537412640768744 = −0.0000000000007499 . . .

and suggests that this average should be “small”. Duke was able to use methods he developed
in [12] concerning the distribution of CM points to prove the following theorem [11], where ζ(s)
is the Riemann zeta function.

Theorem 9 (Duke). As −d ranges over negative fundamental discriminants, we have

lim
−d→−∞

Tr(d)−G(d)

H(d)
= −24 =

2

ζ(−1)
.

I plan to develop several results of this kind with respect to generic CM points and singular
moduli problems; the idea will be to determine when such limiting distributions come from
values of zeta functions.
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