p-ADIC PROPERTIES FOR TRACES OF SINGULAR MODULI

PAUL JENKINS

Abstract

We examine the p-adic properties of Zagier's traces $\operatorname{Tr}(d)$ of the singular moduli of discriminant $-d$. In a recent preprint, Edixhoven proved that if p is prime and $\left(\frac{-d}{p}\right)=1$, then $$
\operatorname{Tr}\left(p^{2 n} d\right) \equiv 0 \quad\left(\bmod p^{n}\right)
$$

We compute an exact formula for $\operatorname{Tr}\left(p^{2 n} d\right)$ which immediately gives Edixhoven's result as a corollary.

1. Introduction and statement of results

As usual, let $j(z)$ be the modular function for $\mathrm{SL}_{2}(\mathbb{Z})$ defined by

$$
j(z)=\frac{E_{4}(z)^{3}}{\Delta(z)}=q^{-1}+744+196884 q+\cdots
$$

where $q=e^{2 \pi i z}$.
Let $d \equiv 0,3(\bmod 4)$ be a positive integer, so that $-d$ is a negative discriminant. Denote by \mathcal{Q}_{d} the set of positive definite integral binary quadratic forms $Q(x, y)=$ $a x^{2}+b x y+c y^{2}=[a, b, c]$ with discriminant $-d=b^{2}-4 a c$, including imprimitive forms (if such exist). Write α_{Q} for the unique complex number in the upper half plane \mathfrak{H} satisfying $Q\left(\alpha_{Q}, 1\right)=0$. Values of j at the points α_{Q} are known as singular moduli. Because of the modularity of j, the singular modulus $j\left(\alpha_{Q}\right)$ depends only on the equivalence class of Q under the action of $\Gamma=\mathrm{PSL}_{2}(\mathbb{Z})$.

Define $\omega_{Q} \in\{1,2,3\}$ as

$$
\omega_{Q}= \begin{cases}2 & \text { if } Q \sim_{\Gamma}[a, 0, a] \tag{1.1}\\ 3 & \text { if } Q \sim_{\Gamma}[a, a, a] \\ 1 & \text { otherwise }\end{cases}
$$

Following Zagier [Z], we define the trace of the singular moduli of discriminant - d as

$$
\begin{equation*}
\operatorname{Tr}(d)=\sum_{Q \in \mathcal{Q}_{d} / \Gamma} \frac{j\left(\alpha_{Q}\right)-744}{\omega_{Q}} . \tag{1.2}
\end{equation*}
$$

Zagier related these traces of singular moduli to the coefficients of a certain weight $3 / 2$ modular form. We let $M_{\lambda+1 / 2}^{!}$be the space of weight $\lambda+1 / 2$ weakly holomorphic

[^0]modular forms on $\Gamma_{0}(4)$ with Fourier expansion
$$
f(z)=\sum_{(-1)^{\lambda} n \equiv 0,1} a(n) q^{n} .
$$

Recall that a form is weakly holomorphic when its poles, if there are any, are supported on the cusps.

For any $0<D \equiv 0,1(\bmod 4)$, let $g_{D}(z)$ be the unique element of $M_{3 / 2}^{!}$with Fourier expansion

$$
\begin{equation*}
g_{D}(z)=q^{-D}+B_{1}(D, 0)+\sum_{0<d \equiv 0,3}^{(\bmod 4)} B_{1}(D, d) q^{d} . \tag{1.3}
\end{equation*}
$$

For $0 \leq d \equiv 0,3(\bmod 4)$, let $f_{d}(z)$ be the unique form in $M_{1 / 2}^{!}$with expansion

$$
\begin{equation*}
f_{d}(z)=q^{-d}+\sum_{0<D \equiv 0,1}(\bmod 4)<1(D, d) q^{D} \tag{1.4}
\end{equation*}
$$

All of the coefficients $A_{1}(D, d)$ and $B_{1}(D, d)$ of the f_{d} and g_{D} are integers.
We apply Hecke operators (for definitions, see Section 3.1 of $[\mathrm{O}]$) to the f_{d} and g_{D} and define

$$
\begin{align*}
& A_{m}(D, d)=\text { the coefficient of } q^{D} \text { in } f_{d}(z) \left\lvert\, T_{\frac{1}{2}}\left(m^{2}\right)\right. \tag{1.5}\\
& B_{m}(D, d)=\text { the coefficient of } q^{d} \text { in } g_{D}(z) \left\lvert\, T_{\frac{3}{2}}\left(m^{2}\right) .\right.
\end{align*}
$$

Using this notation, Zagier ([Z], Theorem 5) proved that

$$
\begin{equation*}
A_{m}(D, d)=-B_{m}(D, d) \tag{1.6}
\end{equation*}
$$

This duality between coefficients of modular forms of different weights is central to the result in this paper. Zagier also identified singular moduli with these coefficients by proving that if $-d<0$ is a discriminant, then

$$
\begin{equation*}
\operatorname{Tr}(d)=-B_{1}(1, d) \tag{1.7}
\end{equation*}
$$

Suppose that p is an odd prime and that s is a positive integer. When p is inert or ramified in particular quadratic number fields, Ahlgren and Ono [AO] proved many congruences for traces of singular moduli modulo p^{s}. In addition, they gave an elementary argument that $\operatorname{Tr}\left(p^{2} d\right) \equiv 0(\bmod p)$ when p splits in $\mathbb{Q}(\sqrt{-d})$. In a recent preprint, Edixhoven $[\mathrm{E}]$ extended their observation and proved that if $\left(\frac{-d}{p}\right)=1$, then

$$
\begin{equation*}
\operatorname{Tr}\left(p^{2 n} d\right) \equiv 0 \quad\left(\bmod p^{n}\right) \tag{1.8}
\end{equation*}
$$

In another recent preprint, Boylan $[B]$ exactly computes $\operatorname{Tr}\left(2^{2 n} d\right)$, giving an analogous result when $p=2$.

Remark. The aim of Edixhoven's paper is to show that p-adic geometry of modular curves can be used to study p-adic properties of traces of $f \in \mathbb{Z}[j]$, of which Zagier's trace is one. The congruences we cite are a special case of his more general result.

In this paper we obtain an exact formula for the coefficient $B_{1}\left(D, p^{2 n} d\right)$ of $q^{p^{2 n} d}$ in g_{D}, allowing us to obtain Edixhoven's congruences as a corollary.

Theorem 1.1. If p is an odd prime and $-d, D \equiv 0,1(\bmod 4)$ and n are positive integers, then

$$
\begin{aligned}
B_{1}\left(D, p^{2 n} d\right)= & p^{n} B_{1}\left(p^{2 n} D, d\right)+\sum_{k=0}^{n-1}\left(\frac{D}{p}\right)^{n-k-1}\left(B_{1}\left(\frac{D}{p^{2}}, p^{2 k} d\right)-p^{k+1} B_{1}\left(p^{2 k} D, \frac{d}{p^{2}}\right)\right) \\
& +\sum_{k=0}^{n-1}\left(\frac{D}{p}\right)^{n-k-1}\left(\left(\left(\frac{D}{p}\right)-\left(\frac{-d}{p}\right)\right) p^{k} B_{1}\left(p^{2 k} D, d\right)\right)
\end{aligned}
$$

where $B_{1}(M, N)=0$ if M or N is not an integer.
The following corollaries follow immediately.
Corollary 1.2. For an odd prime p and positive integers n and $-d, D \equiv 0,1(\bmod 4)$, if $\left(\frac{D}{p}\right)=\left(\frac{-d}{p}\right) \neq 0$, then $B_{1}\left(D, p^{2 n} d\right)=p^{n} B_{1}\left(p^{2 n} D, d\right)$.
Corollary 1.3. If $\left(\frac{-d}{p}\right)=1$, then $\operatorname{Tr}\left(p^{2 n} d\right)=-p^{n} B_{1}\left(p^{2 n}, d\right)$.
Remark. These results can easily be extended to Zagier's generalized traces $\operatorname{Tr}_{m}(d)$.

2. Proof of Theorem

To give the proof of Theorem 1.1, we need the following formulas for the action of the Hecke operators, given in Section 6 of $[Z]$. For an odd prime p, we have

$$
\begin{align*}
A_{p}(D, d) & =p A_{1}\left(p^{2} D, d\right)+\left(\frac{D}{p}\right) A_{1}(D, d)+A_{1}\left(\frac{D}{p^{2}}, d\right) \tag{2.1}\\
B_{p}(D, d) & =B_{1}\left(D, p^{2} d\right)+\left(\frac{-d}{p}\right) B_{1}(D, d)+p B_{1}\left(D, \frac{d}{p^{2}}\right) \tag{2.2}
\end{align*}
$$

Combining Zagier's formula (1.6) with equation (2.1), we get

$$
B_{p}(D, d)=p B_{1}\left(p^{2} D, d\right)+\left(\frac{D}{p}\right) B_{1}(D, d)+B_{1}\left(\frac{D}{p^{2}}, d\right)
$$

Apply equation (2.2) to get

$$
\begin{equation*}
B_{1}\left(D, p^{2} d\right)=p B_{1}\left(p^{2} D, d\right)+\left(\frac{D}{p}\right) B_{1}(D, d)+B_{1}\left(\frac{D}{p^{2}}, d\right)-\left(\frac{-d}{p}\right) B_{1}(D, d)-p B_{1}\left(D, \frac{d}{p^{2}}\right) . \tag{2.3}
\end{equation*}
$$

These observations alone suffice to prove Theorem 1.1.
Proof of Theorem 1.1. We prove the theorem by induction on n. The $n=1$ case is just equation (2.3). For $n>1$, assume the theorem holds up to $n-1$.

Replacing d by $p^{2 n-2} d$ in equation (2.3) gives
$B_{1}\left(D, p^{2 n} d\right)=p\left(B_{1}\left(p^{2} D, p^{2 n-2} d\right)-B_{1}\left(D, p^{2 n-4} d\right)\right)+B_{1}\left(\frac{D}{p^{2}}, p^{2 n-2} d\right)+\left(\frac{D}{p}\right) B_{1}\left(D, p^{2 n-2} d\right)$.
Note that for $1 \leq k \leq n-2$, replacing D with $p^{2 k} D$ and d with $p^{2 n-2 k-2} d$ in (2.3) gives

$$
\begin{align*}
& p^{k}\left(B_{1}\left(p^{2 k} D, p^{2 n-2 k} d\right)-B_{1}\left(p^{2 k-2} D, p^{2 n-2 k-2} d\right)\right) \tag{2.5}\\
= & p^{k+1}\left(B_{1}\left(p^{2 k+2} D, p^{2 n-2 k-2} d\right)-B_{1}\left(p^{2 k} D, p^{2 n-2 k-4} d\right)\right)
\end{align*}
$$

Making a similar replacement in (2.3) with $k=n-1$, we get

$$
\begin{align*}
& p^{n-1}\left(B_{1}\left(p^{2 n-2} D, p^{2} d\right)-B_{1}\left(p^{2 n-4} D, d\right)\right) \tag{2.6}\\
= & p^{n} B_{1}\left(p^{2 n} D, d\right)-p^{n} B_{1}\left(p^{2 n-2} D, \frac{d}{p^{2}}\right)-p^{n-1}\left(\frac{-d}{p}\right) B_{1}\left(p^{2 n-2} D, d\right) .
\end{align*}
$$

Using (2.5) $n-2$ times and (2.6), we obtain

$$
\begin{align*}
& p\left(B_{1}\left(p^{2} D, p^{2 n-2} d\right)-B_{1}\left(D, p^{2 n-4} d\right)\right) \tag{2.7}\\
= & p^{n} B_{1}\left(p^{2 n} D, d\right)-p^{n} B_{1}\left(p^{2 n-2} D, \frac{d}{p^{2}}\right)-p^{n-1}\left(\frac{-d}{p}\right) B_{1}\left(p^{2 n-2} D, d\right) .
\end{align*}
$$

Substituting (2.7) in (2.4) gives

$$
\begin{aligned}
B_{1}\left(D, p^{2 n} d\right)= & p^{n} B_{1}\left(p^{2 n} D, d\right)-p^{n} B_{1}\left(p^{2 n-2} D, \frac{d}{p^{2}}\right)-p^{n-1}\left(\frac{-d}{p}\right) B_{1}\left(p^{2 n-2} D, d\right) \\
& +B_{1}\left(\frac{D}{p^{2}}, p^{2 n-2} d\right)+\left(\frac{D}{p}\right) B_{1}\left(D, p^{2 n-2} d\right)
\end{aligned}
$$

Apply the induction hypothesis to expand the last term; after simplifying, the theorem follows.

References

[AO] S. Ahlgren and K. Ono, Arithmetic of singular moduli and class equations, Compositio Mathematica 141 (2005), pages 293-312.
[B] M. Boylan, 2-adic properties of Hecke traces of singular moduli. Preprint, 2004.
[E] B. Edixhoven, On the p-adic geometry of traces of singular moduli. Preprint, 2005, arXiv:math.NT/0502212.
[O] K. Ono, The web of modularity: arithmetic of the coefficients of modular forms and q-series, CBMS Regional Conference Series 102, Amer. Math. Soc., Providence, R. I., 2004.
[Z] D. Zagier, Traces of singular moduli, Motives, Polylogarithms and Hodge Theory, Part I. International Press Lecture Series (Eds. F. Bogomolov and L. Katzarkov), International Press, 2002, pages 211-244.

Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
E-mail address: pjenkins@math.wisc.edu

[^0]: 2000 Mathematics Subject Classification. 11F37.
 The author thanks the National Science Foundation for the support of an NSF VIGRE fellowship.

