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General topology

This chapter is a brief introduction to general topology. Topological spaces consist of a set and a subset of
the set of all subsets of this set called the open sets or topology which satisfy certain axioms. Like other
areas in mathematics the abstraction inherent in this approach is an attempt to unify many different useful
examples into one general theory.

For example, consider R™ with the usual norm given by

x| = (Z xiF)m.

i=1

We say a set U in R™ is an open set if every point of U is an “interior” point which means that if x €U,

there exists § > 0 such that if |y — x| < J, then y €U. It is easy to see that with this definition of open sets,

the axioms (1.1) - (1.2) given below are satisfied if 7 is the collection of open sets as just described. There

are many other sets of interest besides R™ however, and the appropriate definition of “open set” may be

very different and yet the collection of open sets may still satisfy these axioms. By abstracting the concept

of open sets, we can unify many different examples. Here is the definition of a general topological space.
Let X be a set and let 7 be a collection of subsets of X satisfying

ber, X e, (1.1)
IfC C 7, then UCeET

IfA)Ber, then ANBerT. (1.2)

Definition 1.1 A set X together with such a collection of its subsets satisfying (1.1)-(1.2) is called a topo-
logical space. T is called the topology or set of open sets of X. Note T C P(X), the set of all subsets of X,
also called the power set.

Definition 1.2 A subset B of T is called a basis for T if whenever p € U € T, there exists a set B € B such
that p € B C U. The elements of B are called basic open sets.

The preceding definition implies that every open set (element of 7) may be written as a union of basic
open sets (elements of B). This brings up an interesting and important question. If a collection of subsets B
of a set X is specified, does there exist a topology 7 for X satisfying (1.1)-(1.2) such that B is a basis for 77

Theorem 1.3 Let X be a set and let B be a set of subsets of X. Then B is a basis for a topology T if and
only if whenever p € BNC for B,C € B, there exists D € B such thatp € D C CNB and UB = X. In this
case T consists of all unions of subsets of B.
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Proof: The only if part is left to the reader. Let 7 consist of all unions of sets of B and suppose B satisfies
the conditions of the proposition. Then () € 7 because @ C B. X € 7 because UB = X by assumption. If
C C 7 then clearly UC € 7. Now suppose A,B € 7, A =US, B=UR, SR C B. We need to show
ANBerT. If ANB = (), we are done. Suppose p € AN B. Then p € SN R where S € S, R € R. Hence
there exists U € B such that p € U C SN R. It follows, since p € AN B was arbitrary, that A N B = union
of sets of B. Thus AN B € 7. Hence 7 satisfies (1.1)-(1.2).

Definition 1.4 A topological space is said to be Hausdorff if whenever p and q are distinct points of X,
there exist disjoint open sets U,V such thatp e U,q e V.

e " Hausdorff =

Definition 1.5 A subset of a topological space is said to be closed if its complement is open. Let p be a
point of X and let E C X. Then p is said to be a limit point of E if every open set containing p contains a
point of E distinct from p.

Theorem 1.6 A subset, E, of X is closed if and only if it contains all its limit points.

Proof: Suppose first that E is closed and let x be a limit point of E. We need to show x € E. If z ¢ E,
then E¢ is an open set containing x which contains no points of E, a contradiction. Thus z € E. Now
suppose E contains all its limit points. We need to show the complement of E is open. But if 2 € E€, then
x is not a limit point of E and so there exists an open set, U containing x such that U contains no point of
E other than z. Since z ¢ E, it follows that x € U C EY which implies E€ is an open set.

Theorem 1.7 If (X, 1) is a Hausdorff space and if p € X, then {p} is a closed set.

Proof: If x # p, there exist open sets U and V such that x € U,p € V and U NV = (). Therefore, {p}c
is an open set so {p} is closed.

Note that the Hausdorff axiom was stronger than needed in order to draw the conclusion of the last
theorem. In fact it would have been enough to assume that if x # y, then there exists an open set containing
x which does not intersect y.

Definition 1.8 A topological space (X, T) is said to be regular if whenever C is a closed set and p is a point
not in C, then there exist disjoint open sets U and V' such that p € U, C C V. The topological space, (X, T)
is said to be mormal if whenever C and K are disjoint closed sets, there exist disjoint open sets U and V'
such that C CU, K CV.

Regular

Normal



Definition 1.9 Let E be a subset of X. E is defined to be the smallest closed set containing E. Note that
this is well defined since X is closed and the intersection of any collection of closed sets is closed.

Theorem 1.10 E = E U {limit points of E}.

Proof: Let € E and suppose that x ¢ E. If = is not a limit point either, then there exists an open
set, U,containing = which does not intersect E. But then U® is a closed set which contains E which does
not contain z, contrary to the definition that E is the intersection of all closed sets containing E. Therefore,
x must be a limit point of F after all.

Now E C E so suppose z is a limit point of E. We need to show 2 € E. If H is a closed set containing
E, which does not contain x, then H® is an open set containing = which contains no points of E other than
x negating the assumption that z is a limit point of E.

Definition 1.11 Let X be a set and let d : X x X — [0,00) satisfy
d(z,y) = d(y, ), (1.3)

d(z,y) +d(y, z) > d(z, z), (triangle inequality)

d(z,y) = 0if and only ifx = y. (1.4)
Such a function is called a metric. For r € [0,00) and x € X, define

B(z,r)={y € X : d(z,y) <r}
This may also be denoted by N(x,r).

Definition 1.12 A topological space (X, 7) is called a metric space if there exists a metric, d, such that the
sets {B(x,r),z € X, r > 0} form a basis for 7. We write (X, d) for the metric space.

Theorem 1.13 Suppose X is a set and d satisfies (1.8)-(1.4). Then the sets {B(z,r):r >0, x € X} form
a basis for a topology on X.

Proof: We observe that the union of these balls includes the whole space, X. We need to verify the
condition concerning the intersection of two basic sets. Let p € B (z,71) N B (z,r2). Consider

T = min (Tl - d(l’7p) y T2 — d(Z,p))
and suppose y € B (p,r). Then
d(y,I) S d(yap) +d(pax) <7ri-— d(xap) +d(l‘,p) =T

and so B (p,r) C B(z,r1). By similar reasoning, B (p,r) C B (z,r2) . This verifies the conditions for this set
of balls to be the basis for some topology.

Theorem 1.14 If (X, 1) is a metric space, then (X, T) is Hausdorff, reqular, and normal.

Proof: It is obvious that any metric space is Hausdorff. Since each point is a closed set, it suffices to
verify any metric space is normal. Let H and K be two disjoint closed nonempty sets. For each h € H, there
exists 7, > 0 such that B (h,r,) N K = () because K is closed. Similarly, for each k € K there exists r;, > 0
such that B (k,ri) N H = (. Now let

U=U{B(h,rp/2):he H}, V=U{B (k,1/2): k€ K}.

then these open sets contain H and K respectively and have empty intersection for if x € U NV, then
x € B(h,mn/2) N B (k,r1/2) for some h € H and k € K. Suppose 7, > 7. Then

d(h, k) <d(h,z)+d(z,k) <rp,

a contradiction to B (h,r,) N K = (. If 7, > r},, the argument is similar. This proves the theorem.



8 GENERAL TOPOLOGY

Definition 1.15 A metric space is said to be separable if there is a countable dense subset of the space.
This means there exists D = {p; }2, such that for all x and r > 0, B(z,7) N D # {.

Definition 1.16 A topological space is said to be completely separable if it has a countable basis for the
topology.

Theorem 1.17 A metric space is separable if and only if it is completely separable.

Proof: If the metric space has a countable basis for the topology, pick a point from each of the basic
open sets to get a countable dense subset of the metric space.

Now suppose the metric space, (X,d), has a countable dense subset, D. Let B denote all balls having
centers in D which have positive rational radii. We will show this is a basis for the topology. It is clear it
is a countable set. Let U be any open set and let z € U. Then there exists r > 0 such that B (z,r7) CU. In
B (z,7/3) pick a point from D, x. Now let 7, be a positive rational number in the interval (r/3,2r/3) and
consider the set from B, B (z,71). If y € B (x,r1) then

d(y,z) <d(y,z)+d(z,z) <ri+7r/3<2r/3+r/3=r

Thus B (z,r1) contains z and is contained in U. This shows, since z is an arbitrary point of U that U is the
union of a subset of B.

We already discussed Cauchy sequences in the context of RP but the concept makes perfectly good sense
in any metric space.

Definition 1.18 A sequence {p,}>2, in a metric space is called a Cauchy sequence if for every e > 0 there
exists N such that d(pn,pm) < € whenever n,m > N. A metric space is called complete if every Cauchy
sequence converges to some element of the metric space.

Example 1.19 R" and C" are complete metric spaces for the metric defined by d(x,y) =[x —y| = (>, |zi—
w2

Not all topological spaces are metric spaces and so the traditional € — ¢ definition of continuity must be
modified for more general settings. The following definition does this for general topological spaces.

Definition 1.20 Let (X, 7) and (Y,n) be two topological spaces and let f : X — Y. We say f is continuous
at x € X if whenever V is an open set of Y containing f(x), there exists an open set U € T such that x € U
and f(U) C V. We say that f is continuous if f~1(V) € 7 whenever V € 1.

Definition 1.21 Let (X, 7) and (Y,n) be two topological spaces. X x Y is the Cartesian product. (X xY =
{(z,y):x € X, y € Y}). We can define a product topology as follows. Let B={(Ax B): A€ T, B € n}.
B is a basis for the product topology.

Theorem 1.22 B defined above is a basis satisfying the conditions of Theorem 1.3.

More generally we have the following definition which considers any finite Cartesian product of topological
spaces.

Definition 1.23 If (X;,7;) is a topological space, we make [[;—, X; into a topological space by letting a basis
be [T, A; where A; € 7.

Theorem 1.24 Definition 1.23 yields a basis for a topology.

The proof of this theorem is almost immediate from the definition and is left for the reader.
The definition of compactness is also considered for a general topological space. This is given next.



Definition 1.25 A subset, E, of a topological space (X, T) is said to be compact if whenever C C 7 and
E C UC, there exists a finite subset of C,{Uy - - - Uy}, such that E C U U;. (Every open covering admits
a finite subcovering.) We say E is precompact if E is compact. A topological space is called locally compact
if it has a basis B, with the property that B is compact for each B € B. Thus the topological space is locally
compact if it has a basis of precompact open sets.

In general topological spaces there may be no concept of “bounded”. Even if there is, closed and bounded
is not necessarily the same as compactness. However, we can say that in any Hausdorff space every compact
set must be a closed set.

Theorem 1.26 If (X, 7) is a Hausdorff space, then every compact subset must also be a closed set.

Proof: Suppose p ¢ K. For each « € X, there exist open sets, U, and V, such that

xeUy, peVy,
and
U:. NV, =0.
Since K is assumed to be compact, there are finitely many of these sets, Uy,, - - -, U, which cover K. Then

let V =N~ V,,. It follows that V is an open set containing p which has empty intersection with each of the
Us,,. Consequently, V' contains no points of K and is therefore not a limit point. This proves the theorem.

Lemma 1.27 Let (X, 7) be a topological space and let B be a basis for 7. Then K is compact if and only if
every open cover of basic open sets admits a finite subcover.

The proof follows directly from the definition and is left to the reader. A very important property enjoyed
by a collection of compact sets is the property that if it can be shown that any finite intersection of this
collection has non empty intersection, then it can be concluded that the intersection of the whole collection
has non empty intersection.

Definition 1.28 If every finite subset of a collection of sets has nonempty intersection, we say the collection
has the finite intersection property.

Theorem 1.29 Let KC be a set whose elements are compact subsets of a Hausdorff topological space, (X, T).
Suppose K has the finite intersection property. Then () # NK.

Proof: Suppose to the contrary that () = NX. Then consider
Cc={K“:Kek}.

It follows C is an open cover of Ky where K| is any particular element of IC. But then there are finitely many
KeK, Ky, -, K, such that Ky C U;leiC implying that N}_,K; = 0, contradicting the finite intersection
property.

It is sometimes important to consider the Cartesian product of compact sets. The following is a simple
example of the sort of theorem which holds when this is done.

Theorem 1.30 Let X and Y be topological spaces, and K1, Ko be compact sets in X and Y respectively.
Then K1 x Ky is compact in the topological space X XY .

Proof: Let C be an open cover of K; x K5 of sets A x B where A and B are open sets. Thus C is a open
cover of basic open sets. For y € Y, define

C,={AxBeC:yeB}, Dy={A: AxBeC(Cy}
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Claim: D, covers Kj.

Proof: Let x € K;. Then (z,y) € K1 x K3 so (z,y) € Ax B € C. Therefore A x B € C, and so
z € AeD,.

Since K7 is compact,

{A17 o aAn(y)} - Dy
covers Kq. Let
By = ﬂ?:(zi) B;

Thus {A1,- -+, Apqy)} covers K1 and A; x B, C A; x B; € C,.
Since K5 is compact, there is a finite list of elements of Ko, y1,- - -, y, such that

{Byl’ t '7By7~}
covers Ks. Consider
{4; x By, }?:(2112:1

If (z,y) € K1 x Ky, then y € By, for some j € {1,---,r}. Then x € A; for some i € {1,---,n(y;)}. Hence
(w,y) € A; x By,;. Each of the sets A; x B, is contained in some set of C and so this proves the theorem.

Another topic which is of considerable interest in general topology and turns out to be a very useful
concept in analysis as well is the concept of a subbasis.

Definition 1.31 S C 7 is called a subbasis for the topology T if the set B of finite intersections of sets of S
is a basis for the topology, T.

Recall that the compact sets in R™ with the usual topology are exactly those that are closed and bounded.
We will have use of the following simple result in the following chapters.

Theorem 1.32 Let U be an open set in R™. Then there exists a sequence of open sets, {U;} satisfying
U CU; C Uiy - -
and
U=u2,U;.

Proof: The following lemma will be interesting for its own sake and in addition to this, is exactly what
is needed for the proof of this theorem.

Lemma 1.33 Let S be any nonempty subset of a metric space, (X,d) and define
dist(z,S) =inf {d (z,s) : s € S}.

Then the mapping, x — dist(x,S) satisfies
|dist(y, S) — dist (z,S)| < d(z,y) .

Proof of the lemma: One of dist (y, S) , dist (z, S) is larger than or equal to the other. Assume without
loss of generality that it is dist (y,S). Choose s; € S such that

dist (z,S) + € > d (z,s1)



1.1. COMPACTNESS IN METRIC SPACE 11

Then

|dist (y, S) — dist (z, .5)| = dist (y, S) — dist (x,S) <
d(y,s1) —d(z,s1) +e<d(z,y) +d(z,s1) —d(z,s1) +€

=d(z,y)+e

Since € is arbitrary, this proves the lemma.
If U = R™ it is clear that U = U2, B (0,4) and so, letting U; = B (0, 1),

B(0,4) = {x €R" : dist (x, {0}) < i}
and by continuity of dist (-, {0}),

B(0,i) = {x eR" : dist (x,{0}) < i}.

Therefore, the Heine Borel theorem applies and we see the theorem is true in this case.
Now we use this lemma to finish the proof in the case where U is not all of R™. Since x —dist (X,UC) is
continuous, the set,

1
U, = {x eU : dist (X,Uc) > = and |x| < i},

is an open set. Also U = U2, U; and these sets are increasing. By the lemma,

U, = {x eU : dist (X,Uc) > %

- and x| Sz’},

a compact set by the Heine Borel theorem and also, - - -U; C U; C Uiy1 -

1.1 Compactness in metric space

Many existence theorems in analysis depend on some set being compact. Therefore, it is important to be
able to identify compact sets. The purpose of this section is to describe compact sets in a metric space.

Definition 1.34 In any metric space, we say a set E is totally bounded if for every e > 0 there exists a
finite set of points {x1,- - -, xn} such that

E C U B (z,e).
This finite set of points is called an € net.
The following proposition tells which sets in a metric space are compact.
Proposition 1.35 Let (X, d) be a metric space. Then the following are equivalent.

(X,d) is compact, (1.5)
(X,d) is sequentially compact, (1.6)

(X, d) is complete and totally bounded. (1.7)
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Recall that X is “sequentially compact” means every sequence has a convergent subsequence converging
so an element of X.

Proof: Suppose (1.5) and let {x1} be a sequence. Suppose {zj} has no convergent subsequence. If this
is so, then {x} has no limit point and no value of the sequence is repeated more than finitely many times.
Thus the set

Cp =U{zg : k>n}
is a closed set and if

U, =C¢,

n

then

X =U2,U,

n=1

but there is no finite subcovering, contradicting compactness of (X, d).

Now suppose (1.6) and let {x,} be a Cauchy sequence. Then z,, — = for some subsequence. Let € > 0
be given. Let ng be such that if m,n > ng, then d(z,,z,) < 5 and let [ be such that if ¥ > [ then
d(xp,,r) < §. Let ny > max (ng,ng). If n > ny, let k> [ and ng > no.

d(znyx) S d(:cTMx'ka) + d(xnk7x)

< e+e
— 4+ - =e
2 2

Thus {z,} converges to x and this shows (X,d) is complete. If (X,d) is not totally bounded, then there
exists € > 0 for which there is no e net. Hence there exists a sequence {xy} with d (zg,2;) > € for all | # k.
This contradicts (1.6) because this is a sequence having no convergent subsequence. This shows (1.6) implies
(L.7).
Now suppose (1.7). We show this implies (1.6). Let {p,} be a sequence and let {z'}."" be a 2™ net for
n=12,---. Let
B, =B (z} ,27")

be such that B,, contains py for infinitely many values of k and B, N Bp4+1 # . Let p,, be a subsequence
having

Pn;, € By.

Then if & > 1,
k—1
d (pnk Pny) < Z d (Pniﬂ apni)
i=l
k—1
B S e P
i=l

Consequently {p,, } is a Cauchy sequence. Hence it converges. This proves (1.6).
Now suppose (1.6) and (1.7). Let D,, be a n=! net for n = 1,2, - - and let
D = U, D,.
Thus D is a countable dense subset of (X, d). The set of balls

B={B(q,r):q€e D, r€ QN (0,00)}
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is a countable basis for (X, d). To see this, let p € B (z,€) and choose r € @ N (0, 00) such that
e—d(p,x) > 2r
Let g € B(p,r)ND. If y € B(q,r), then
d(y,x) < d(y,q)+d(g,p)+d(p,x)
< r+rt+e—2r=e

Hence p € B(q,7) C B (z,¢) and this shows each ball is the union of balls of B. Now suppose C is any open

cover of X. Let B denote the balls of B which are contained in some set of C. Thus

UB = X.
For each B € g, pick U € C such that U D B. Let C be the resulting countable collection of sets. Then Cis
a countable open cover of X. Say C = {U,,}22,. If C admits no finite subcover, then neither does C and we

can pick p, € X \ U}_,Ui. Then since X is sequentially compact, there is a subsequence {py, } such that
{pn,, } converges. Say

p= k:h—{rolopnk.
All but finitely many points of {p,, } are in X \ U}'_,Uy. Therefore p € X \ U}_, Uy, for each n. Hence
p ¢ Ul Uy

contradicting the construction of {U,,}2% ;. Hence X is compact. This proves the proposition.
Next we apply this very general result to a familiar example, R™. In this setting totally bounded and
bounded are the same. This will yield another proof of the Heine Borel theorem.

Lemma 1.36 A subset of R™ is totally bounded if and only if it is bounded.

Proof: Let A be totally bounded. We need to show it is bounded. Let x1,---,x, be a 1 net for A. Now
consider the ball B (0,r + 1) where r > max (||x;||: ¢ =1,---,p). If z €A, then z €B (x,1) for some j and
so by the triangle inequality,

||z = Of| < [z — x| + [Ix;[[ <1+

Thus A C B(0,r + 1) and so A is bounded.

Now suppose A is bounded and suppose A is not totally bounded. Then there exists ¢ > 0 such that
there is no € net for A. Therefore, there exists a sequence of points {a;} with ||a; — a;|| > € if i # j. Since
A is bounded, there exists r > 0 such that

AC[—rr)™

(x €[—r,r)™ means x; € [—r,r) for each i.) Now define S to be all cubes of the form

[T lax,be)

k=1
where
ag = —r+i27Pr, by = —r+ (i +1)27Pr,
for i € {0,1,---,2P71 —1}. Thus & is a collection of (2p+1)n nonoverlapping cubes whose union equals

[-r, 7)™ and whose diameters are all equal to 27Pry/n. Now choose p large enough that the diameter of
these cubes is less than e. This yields a contradiction because one of the cubes must contain infinitely many
points of {a;}. This proves the lemma.

The next theorem is called the Heine Borel theorem and it characterizes the compact sets in R™.
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Theorem 1.37 A subset of R™ is compact if and only if it is closed and bounded.

Proof: Since a set in R" is totally bounded if and only if it is bounded, this theorem follows from
Proposition 1.35 and the observation that a subset of R™ is closed if and only if it is complete. This proves
the theorem.

The following corollary is an important existence theorem which depends on compactness.

Corollary 1.38 Let (X,7) be a compact topological space and let f : X — R be continuous. Then
max{f(z):2z € X} and min{f (z) : x € X} both exist.

Proof: Since f is continuous, it follows that f (X) is compact. From Theorem 1.37 f (X) is closed and
bounded. This implies it has a largest and a smallest value. This proves the corollary.

1.2 Connected sets

Stated informally, connected sets are those which are in one piece. More precisely, we give the following
definition.

Definition 1.39 We say a set, S in a general topological space is separated if there exist sets, A, B such
that

S=AUB, A\ B#0, and ANB=BnA=.
In this case, the sets A and B are said to separate S. We say a set is connected if it is not separated.
One of the most important theorems about connected sets is the following.

Theorem 1.40 Suppose U and V are connected sets having nonempty intersection. Then U UV is also
connected.

Proof: Suppose UUV = AU B where AN B = BN A= (. Consider the sets, ANU and B U U. Since

(ANU)N(BNU)=(AnU)N(BNTU) =0,

It follows one of these sets must be empty since otherwise, U would be separated. It follows that U is
contained in either A or B. Similarly, V' must be contained in either A or B. Since U and V' have nonempty
intersection, it follows that both V and U are contained in one of the sets, A, B. Therefore, the other must
be empty and this shows U U V' cannot be separated and is therefore, connected.

The intersection of connected sets is not necessarily connected as is shown by the following picture.

Theorem 1.41 Let f : X — Y be continuous where X and Y are topological spaces and X is connected.
Then f(X) is also connected.
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Proof: We show f (X) is not separated. Suppose to the contrary that f (X) = AU B where A and B
separate f (X). Then consider the sets, f~!(A) and f~1 (B).If z € f~1(B), then f(2) € B and so f ()
is not a limit point of A. Therefore, there exists an open set, U containing f (z) such that U N A = ). But
then, the continuity of f implies that f~! (U) is an open set containing z such that f=1 (U)n f~1(A) = 0.
Therefore, f~! (B) contains no limit points of f~! (A). Similar reasoning implies f~! (A) contains no limit
points of f~! (B). It follows that X is separated by f~1 (A) and f~! (B), contradicting the assumption that
X was connected.

An arbitrary set can be written as a union of maximal connected sets called connected components. This
is the concept of the next definition.

Definition 1.42 Let S be a set and let p € S. Denote by C, the union of all connected subsets of S which
contain p. This is called the connected component determined by p.

Theorem 1.43 Let C), be a connected component of a set S in a general topological space. Then Cp is a
connected set and if Cp, N\ Cy # 0, then C, = Cy.

Proof: Let C denote the connected subsets of S which contain p. If C, = AU B where
ANB=BnNnA=J,

then p is in one of A or B. Suppose without loss of generality p € A. Then every set of C must also be
contained in A also since otherwise, as in Theorem 1.40, the set would be separated. But this implies B is
empty. Therefore, C) is connected. From this, and Theorem 1.40, the second assertion of the theorem is
proved.

This shows the connected components of a set are equivalence classes and partition the set.

A set, I is an interval in R if and only if whenever z,y € I then (z,y) C I. The following theorem is
about the connected sets in R.

Theorem 1.44 A set, C in R is connected if and only if C is an interval.

Proof: Let C' be connected. If C' consists of a single point, p, there is nothing to prove. The interval is
just [p,p]. Suppose p < g and p, ¢ € C. We need to show (p,q) C C. If

e (pg\C

let CN(—o00,2) = A, and CN(z,00) = B. Then C' = AU B and the sets, A and B separate C contrary to
the assumption that C is connected.

Conversely, let I be an interval. Suppose [ is separated by A and B. Pick z € A and y € B. Suppose
without loss of generality that © < y. Now define the set,

S={telxy]: |zt CA}

and let I be the least upper bound of S. Then [ € A so | ¢ B which implies [ € A. But if [ ¢ B, then for
some ¢ > 0,

(LI+6NB=0

contradicting the definition of [ as an upper bound for S. Therefore, | € B which implies | ¢ A after all, a
contradiction. It follows I must be connected.
The following theorem is a very useful description of the open sets in R.

Theorem 1.45 Let U be an open set in R. Then there exist countably many disjoint open sets, {(a;,b;)}o;
such that U = U52, (a;, b;) .
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Proof: Let p € U and let z € (), the connected component determined by p. Since U is open, there
exists, 0 > 0 such that (z — §,2z + 0) C U. It follows from Theorem 1.40 that

(z—=0,z+96) CCp.

This shows C), is open. By Theorem 1.44, this shows C), is an open interval, (a,b) where a,b € [—00, 0] .
There are therefore at most countably many of these connected components because each must contain a
rational number and the rational numbers are countable. Denote by {(a;,b;)};, the set of these connected
components. This proves the theorem.

Definition 1.46 We say a topological space, E is arcwise connected if for any two points, p,q € E, there
exists a closed interval, [a,b] and a continuous function, «y : [a,b] — E such that v (a) = p and vy (b) = q. We
say E is locally connected if it has a basis of connected open sets. We say E is locally arcwise connected if
it has a basis of arcwise connected open sets.

An example of an arcwise connected topological space would be the any subset of R™ which is the
continuous image of an interval. Locally connected is not the same as connected. A well known example is
the following.

{(x,siné) Lz e (0, 1]}U{(O,y):y€ 1,1]} (1.8)

We leave it as an exercise to verify that this set of points considered as a metric space with the metric from
R? is not locally connected or arcwise connected but is connected.

Proposition 1.47 If a topological space is arcwise connected, then it is connected.

Proof: Let X be an arcwise connected space and suppose it is separated. Then X = A U B where
A, B are two separated sets. Pick p € A and ¢ € B. Since X is given to be arcwise connected, there
must exist a continuous function v : [a,b] — X such that v (a) = p and 7 (b) = ¢. But then we would have
v ([a,b]) = (7 ([a,b]) N A)U (v ([a, b]) N B) and the two sets, v ([a,b]) N A and « ([a, b]) N B are separated thus
showing that ~ ([a, b]) is separated and contradicting Theorem 1.44 and Theorem 1.41. Tt follows that X
must be connected as claimed.

Theorem 1.48 Let U be an open subset of a locally arcwise connected topological space, X. Then U is
arcwise connected if and only if U if connected. Also the connected components of an open set in such a
space are open sets, hence arcwise connected.

Proof: By Proposition 1.47 we only need to verify that if U is connected and open in the context of this
theorem, then U is arcwise connected. Pick p € U. We will say « € U satisfies P if there exists a continuous
function, v : [a,b] — U such that vy (a) = p and v (b) = «.

A = {z € U such that z satisfies P.}

If x € A, there exists, according to the assumption that X is locally arcwise connected, an open set, V,
containing « and contained in U which is arcwise connected. Thus letting y € V, there exist intervals, [a, ]
and [e,d] and continuous functions having values in U, 7,7 such that v (a) = p,v(b) = z,n(c) = z, and
1 (d) = y. Then let 1 : [a,b+ d — ¢] — U be defined as

(t) if t € [a,b]
m (t)—{ g(t) if t € [b,b+d—

Then it is clear that ~; is a continuous function mapping p to y and showing that V' C A. Therefore, A is
open. We also know that A # () because there is an open set, V' containing p which is contained in U and is
arcwise connected.
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Now consider B = U \ A. We will verify that this is also open. If B is not open, there exists a point
z € B such that every open set conaining z is not contained in B. Therefore, letting V' be one of the basic
open sets chosen such that z € V' C U, we must have points of A contained in V. But then, a repeat of the
above argument shows z € A also. Hence B is open and so if B # (), then U = BU A and so U is separated
by the two sets, B and A contradicting the assumption that U is connected.

We need to verify the connected components are open. Let z € C), where C), is the connected component
determined by p. Then picking V an arcwise connected open set which contains z and is contained in U,
Cp UV is connected and contained in U and so it must also be contained in C),. This proves the theorem.

1.3 Exercises

1. Prove the definition of distance in R™ or C" satisfies (1.3)-(1.4). In addition to this, prove that ||-||
given by ||x|| = (37, |zi*)*/? is a norm. This means it satisfies the following.

[|x]| >0, ||x|| =0 if and only if x = 0.
|lax]|| = ||||x]|| for @ a number.

[ + v <[Ix[| + [ly]]-

2. Completeness of R is an axiom. Using this, show R™ and C" are complete metric spaces with respect
to the distance given by the usual norm.

3. Prove Urysohn’s lemma. A Hausdorff space, X, is normal if and only if whenever K and H are disjoint
nonempty closed sets, there exists a continuous function f : X — [0, 1] such that f(k) =0forall k € K
and f(h)=1for all h € H.

4. Prove that f: X — Y is continuous if and only if f is continuous at every point of X.

5. Suppose (X,d), and (Y, p) are metric spaces and let f: X — Y. Show f is continuous at = € X if and
only if whenever z,, — z, f (x,) — f (x). (Recall that x,, — x means that for all € > 0, there exists n.
such that d (z,, ) < € whenever n > n..)

6. If (X,d) is a metric space, give an easy proof independent of Problem 3 that whenever K, H are
disjoint non empty closed sets, there exists f : X — [0,1] such that f is continuous, f(K) = {0}, and

f(H) = {1}

7. Let (X,7) (Y,n)be topological spaces with (X, 7) compact and let f : X — Y be continuous. Show
f(X) is compact.

8. (An example ) Let X = [—00, 00] and consider B defined by sets of the form (a,b), [—00,b), and (a, c0].
Show B is the basis for a topology on X.

9. 1 Show (X, 7) defined in Problem 8 is a compact Hausdorfl space.
10. 7 Show (X, 7) defined in Problem 8 is completely separable.

11. 7 In Problem 8, show sets of the form [—o0,b) and (a,oo] form a subbasis for the topology described
in Problem 8.

12. Let (X, 7) and (Y, 7) be topological spaces and let f : X — Y. Also let S be a subbasis for . Show
f is continuous if and only if f=1(V) € 7 for all V € 8. Thus, it suffices to check inverse images of
subbasic sets in checking for continuity.
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GENERAL TOPOLOGY
. Show the usual topology of R" is the same as the product topology of

ﬁRERxRx-~-xR.

i=1
Do the same for C™.
If M is a separable metric space and T' C M, then T is separable also.

Prove the Heine Borel theorem as follows. First show [a,b] is compact in R. Next use Theorem 1.30
to show that [];", [a;, b;] is compact. Use this to verify that compact sets are exactly those which are
closed and bounded.

Show the rational numbers, QQ, are countable.
Verify that the set of (1.8) is connected but not locally connected or arcwise connected.

Let o be an n dimensional multi-index. This means
o = (041, t ';an)

where each «; is a natural number or zero. Also, we let

n

ol =) ol

i=1
When we write x%, we mean

o — (65N e7) «
X' =Ty Ty X3

An n dimensional polynomial of degree m is a function of the form
Z dox%
loe|<m

Let R be all n dimensional polynomials whose coefficients d, come from the rational numbers, Q.
Show R is countable.

Let (X, d) be a metric space where d is a bounded metric. Let C denote the collection of closed subsets
of X. For A, B € C, define

p(A,B)=inf{d >0: A; O B and B; O A}
where for a set S,
Ss ={z : dist (z,S) = inf {d (z,5) : s € S} <4}

Show S5 is a closed set containing S. Also show that p is a metric on C. This is called the Hausdorff
metric.

Using 19, suppose (X,d) is a compact metric space. Show (C, p) is a complete metric space. Hint:
Show first that if W,, | W where W, is closed, then p (W,,W) — 0. Now let {A,} be a Cauchy
sequence in C. Then if € > 0 there exists N such that when m,n > N, then p (A,, A,,) < e. Therefore,
for each n > N,

(14“)6 QUZo:nAk.
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Let A=nN52,U, Ay. By the first part, there exists N; > IV such that for n > IV,
p (UzoznAk,A) <€, and (A,) 2 UZ, Ay

Therefore, for such n, Ac > W,, 2 A,, and (W,,), 2 (4,). 2 A because

(An), 2 T, A5 2 A

In the situation of the last two problems, let X be a compact metric space. Show (C, p) is compact.

Hint: Let D, be a 27" net for X. Let K,, denote finite unions of sets of the form B (p,2~™) where
p € D,,. Show K, is a 27~ net for (C, p).
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Spaces of Continuous Functions

This chapter deals with vector spaces whose vectors are continuous functions.

2.1 Compactness in spaces of continuous functions

Let (X, 7) be a compact space and let C (X;R™) denote the space of continuous R™ valued functions. For
feC(X;R") let

[ Flloc = sup{[f (z) ] : 2 € X}

where the norm in the parenthesis refers to the usual norm in R"™.
The following proposition shows that C' (X;R"™) is an example of a Banach space.

Proposition 2.1 (C (X;R"),|| ||s) @ a Banach space.

Proof: It is obvious || ||« is a norm because (X, 7) is compact. Also it is clear that C' (X;R™) is a linear
space. Suppose {f,} is a Cauchy sequence in C (X;R™). Then for each z € X, {f, ()} is a Cauchy sequence
in R™. Let

f (@)= lim fi (2).
Therefore,

sup |f () = fu ()| = sup lim |fp (2) = fi (2) |

reX reX M—0
<lim sup ||fm — frlleo <€
m—0o0

for all k large enough. Thus,

lim sup |f (z) = fi (x) [ = 0.

k—oozex

It only remains to show that f is continuous. Let

sup [ f (z) = fi (z) | < €/3

zeX

whenever k > kg and pick k& > kg.

lf@) = fWl < 1f@)—fu@)|+1f@) = fe @)+ 1f @) = f©)]
< 2¢/3+4[fx(x) = fu (y)]

21



22 SPACES OF CONTINUOUS FUNCTIONS

Now f, is continuous and so there exists U an open set containing x such that if y € U, then

[ () = fi (y) | < €/3.

Thus, for all y € U, |f () — f (y) | < € and this shows that f is continuous and proves the proposition.

This space is a normed linear space and so it is a metric space with the distance given by d(f,g) =
I|f — gl|. - The next task is to find the compact subsets of this metric space. We know these are the subsets
which are complete and totally bounded by Proposition 1.35, but which sets are those? We need another way
to identify them which is more convenient. This is the extremely important Ascoli Arzela theorem which is
the next big theorem.

Definition 2.2 We say F C C (X;R"™) is equicontinuous at xq if for all e > 0 there exists U € 7, xg € U,
such that if x € U, then for oll f € F,

[f () = f(zo) | <e

If F is equicontinuous at every point of X, we say F is equicontinuous. We say F is bounded if there exists
a constant, M, such that ||f||co < M for all f € F.

Lemma 2.3 Let F C C (X;R"™) be equicontinuous and bounded and let € > 0 be given. Then if {f.} C F,
there exists a subsequence {gx}, depending on €, such that

Hgk _gmHoo <e€

whenever k,m are large enough.

Proof: If x € X there exists an open set U, containing = such that for all f € F and y € U,,

[f(z) = fy)| < e/ (2.1)

Since X is compact, finitely many of these sets, Us,,- - -,Us,, cover X. Let {fix} be a subsequence of
{fr} such that {fix (z1)} converges. Such a subsequence exists because F is bounded. Let {far} be a
subsequence of {fi;} such that {fox (z;)} converges for i = 1,2. Continue in this way and let {gi} = {fpr}-
Thus {gx (z;)} converges for each x;. Therefore, if € > 0 is given, there exists m, such that for k,m > m.,

€

max {|gx (¥i) — gm (v:)| :i=1,---,p} < 5

Now if y € X, then y € U,, for some x;. Denote this 2; by z,. Now let y € X and k,m > m.. Then by
(2.1),

|9k (4) = gm (W) < |9k () = gk (2y)] + 9k (2y) = gm ()] + [gm (2y) = gm ()]

€ . €
< max{lgn (20) = gm (@) i = 1,0 ph+ <.

It follows that for such k,m,
lgr = gmlloo <€

and this proves the lemma.

Theorem 2.4 (Ascoli Arzela) Let F CC (X;R™). Then F is compact if and only if F is closed, bounded,
and equicontinuous.
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Proof: Suppose F is closed, bounded, and equicontinuous. We will show this implies F is totally
bounded. Then since F is closed, it follows that F is complete and will therefore be compact by Proposition
1.35. Suppose F is not totally bounded. Then there exists € > 0 such that there is no € net. Hence there
exists a sequence {fr} C F such that

[|fe — fill > €

for all & # [. This contradicts Lemma 2.3. Thus F must be totally bounded and this proves half of the
theorem.

Now suppose F is compact. Then it must be closed and totally bounded. This implies F is bounded.
It remains to show F is equicontinuous. Suppose not. Then there exists x € X such that F is not
equicontinuous at x. Thus there exists € > 0 such that for every open U containing x, there exists f € F
such that |f () — f (y)| > € for some y € U.

Let {h1,---,hp} be an €/4 net for F. For each z, let U, be an open set containing z such that for all
y €U,

|hi (2) = hi (y)| < €/8

foralli =1,---,p. Let Uy, -+, Uy, cover X. Then x € U,, for some z; and so, for some y € U,, there exists
f € Fsuch that |f (z) — f (y)| > €. Since {hy,---, hp} is an €/4 net, it follows that for some j, || f — h;]| < &
and so

e<|f (@)= fWI<If (@) = hy @)+ |h; (x) = hy (y)| +
lhi (y) — f (W) < €/2+ |hj (x) — hy ()| < €/2+

|hj (@) = hy (z:)] + |y (x:) = hy (y)] < 3e/4,

a contradiction. This proves the theorem.

2.2 Stone Weierstrass theorem

In this section we give a proof of the important approximation theorem of Weierstrass and its generalization
by Stone. This theorem is about approximating an arbitrary continuous function uniformly by a polynomial
or some other such function.

Definition 2.5 We say A is an algebra of functions if A is a vector space and if whenever f,g € A then
fge A.

We will assume that the field of scalars is R in this section unless otherwise indicated. The approach
to the Stone Weierstrass depends on the following estimate which may look familiar to someone who has
taken a probability class. The left side of the following estimate is the variance of a binomial distribution.
However, it is not necessary to know anything about probability to follow the proof below although what is
being done is an application of the moment generating function technique to find the variance.

Lemma 2.6 The following estimate holds for x € [0, 1].

zn: (Z) (k —nz)’z* (1 —2)" ™% < 2n

k=0
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Proof: By the Binomial theorem,

e k
S (3) ) 0 ey = ()"
k=0

Differentiating both sides with respect to ¢ and then evaluating at ¢t = 0 yields

n

3 (Z) k(1 — 2)" % = na.

k=0

Now doing two derivatives with respect to t yields

Z (Z) k? (etz)k (1-2)""=nm-1) (1-z+ 6%)”72 e?tg?

k=0

+n(l—z+ eta:)n_l zel.

Evaluating this at t = 0,

Therefore,

2

n(n—1)2% + nx — 2n%2% + n’x

3 (Z) (k —nz)?2* (1 — 2)"

k=0
= n(x—xZ) < 2n.

This proves the lemma.

Definition 2.7 Let f € C([0,1]). Then the following polynomials are known as the Bernstein polynomials.

Pa (@) = i (Z)f <%) 2 (1—a)" "

k=0

Theorem 2.8 Let f € C(]0,1]) and let p,, be given in Definition 2.7. Then
lim ||f —pnll, =0.
n—oo

Proof: Since f is continuous on the compact [0, 1], it follows f is uniformly continuous there and so if
€ > 0 is given, there exists § > 0 such that if

|y - .Z‘| S 65
then

[f () = f(y) <e/2.

By the Binomial theorem,
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and so

IN
(]
—
> 3
P

|k/n—z|>8

2 (Z> d (%) — f@)| et (12" "

|k/n—z|<d

< refifl. Y (Z)m_x)n—k

(k—nz)?>n282

2

IN

1fllse X~ (7 n—k

n25200 Z ) (k—nz)a® (1 —2)"" 4 ¢/2.
k=0

By the lemma,

4[lA1]
< 527100 +e/2<e

whenever n is large enough. This proves the theorem.
The next corollary is called the Weierstrass approximation theorem.

Corollary 2.9 The polynomials are dense in C ([a,b]).

Proof: Let f € C ([a,b]) and let h : [0,1] — [a, b] be linear and onto. Then f o h is a continuous function
defined on [0, 1] and so there exists a polynomial, p,, such that

|f(h(t) —pn (D) <€
for all t € [0,1]. Therefore for all = € [a, b],
|f (@) —pn (b (2)| <

Since h is linear p,, o h~! is a polynomial. This proves the theorem.

The next result is the key to the profound generalization of the Weierstrass theorem due to Stone in
which an interval will be replaced by a compact or locally compact set and polynomials will be replaced with
elements of an algebra satisfying certain axioms.

Corollary 2.10 On the interval [—M, M|, there exist polynomials p,, such that
pn (0) =0
and

i lpy — [l = 0.
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Proof: Let p,, — |-| uniformly and let
Pn = ﬁn - ﬁn (O)

This proves the corollary.

The following generalization is known as the Stone Weierstrass approximation theorem. First, we say
an algebra of functions, A defined on A, annihilates no point of A if for all z € A, there exists g € A such
that g (z) # 0. We say the algebra separates points if whenever x; # o, then there exists g € A such that

g (z1) # g (w2).

Theorem 2.11 Let A be a compact topological space and let A C C (A;R) be an algebra of functions which
separates points and annihilates no point. Then A is dense in C (A4;R).

Proof: We begin by proving a simple lemma.

Lemma 2.12 Let ¢; and ¢y be two real numbers and let x1 # xo be two points of A. Then there exists a
function fy, 2, such that

fw1I2 (.’L']_) = (1, fw1w2 (.’172) = C2.

Proof of the lemma: Let g € A satisfy
g (z1) # g (2).

Such a g exists because the algebra separates points. Since the algebra annihilates no point, there exist
functions h and k such that

Ba1) £0, K (22) £0.
Then let
u=gh—g(z2)h, v=gk—g(x1)k.

It follows that u (x1) # 0 and u (z2) = 0 while v (z2) # 0 and v (z1) = 0. Let

cC1u + CoU
u(zy) v(r)

fxlxg =

This proves the lemma. Now we continue with the proof of the theorem. -
First note that A satisfies the same axioms as A but in addition to these axioms, A is closed. Suppose
f € A and suppose M is large enough that

/]l < M.
Using Corollary 2.10, let p,, be a sequence of polynomials such that
lpn = [lllc = 0, Pn (0) = 0.
It follows that p, o f € A and so |f| € A whenever f € A. Also note that

max(f,g): |f_g|_;(f+g)

(f+9) —If -yl
5 .

min (f, g) =
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Therefore, this shows that if f,g € A then
max (f,g), min(f,g) € A.
By induction, if f;,i =1,2,---,m are in A then
max (fi,i=1,2,---,m), min(f;,i=1,2,---,m) € A

Now let h € C'(A;R) and use Lemma 2.12 to obtain f,, a function of A which agrees with h at z and
y. Let € > 0 and let © € A. Then there exists an open set U (y) containing y such that

foy (2) > h(2) —e if z€ U(y)
Since A is compact, let U (y1),- - -, U (y;) cover A. Let
Jo =max (fay,, faysr - foy)-
Then f, € A and
fo(2) > h(z) —e

for all z € A and f, () = h(z). Then for each € A there exists an open set V (z) containing x such that
for z € V (),

fo(2) <h(z)+e

Let V (z1),- -+, V (zm) cover A and let
f=min(for, -, fo,)-

Therefore,

f(z)<h(z)+e
for all z € A and since each

fo (2) > h(2) = ¢,
it follows

f(z)>h(z) €
also and so

If(z) =h(z)] <e€

for all z. Since € is arbitrary, this shows h € A and proves A = C (4;R). This proves the theorem.

2.3 Exercises

1. Let (X,7),(Y,n) be topological spaces and let A C X be compact. Then if f: X — Y is continuous,
show that f (A) is also compact.

2. T In the context of Problem 1, suppose R = Y where the usual topology is placed on R. Show f
achieves its maximum and minimum on A.
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3. Let V be an open set in R™. Show there is an increasing sequence of compact sets, K,,, such that

V =U_ K. Hint: Let

C,, = {x e R"™ : dist (X,VC) > 1}
m

where

dist (x,5) = inf {|y — x| such that y € S}.

Consider K,,, = C,,, N B (0,m).

. Let B (X;R"™) be the space of functions f, mapping X to R™ such that

sup{|f (x)| : x € X} < 0.
Show B (X;R"™) is a complete normed linear space if

[If]] = sup{|f (x)] : x € X}.

. Let @ € [0,1]. We define, for X a compact subset of RP,

C(XGR™) = {f € C(X5R™) 2 pa (F) + [[f]| = [IF]], < o0}

where
[|If]| = sup{|f (x)| : x € X}
and
f(x)—f
pa (f) = Sup{w x,y€eX, x£y}
x -yl
Show that (C* (X;R"™),||-]|,,) is a complete normed linear space.

. Let {£,}52, C C*(X;R"™) where X is a compact subset of R? and suppose

[Ifallo < M

for all n. Show there exists a subsequence, ny, such that f,,, converges in C (X;R"™). We say the
given sequence is precompact when this happens. (This also shows the embedding of C* (X;R"™) into
C (X;R") is a compact embedding.)

. Let f :R x R™ — R"” be continuous and bounded and let xq € R™. If

x:[0,7] — R"
and h > 0, let

(): XoifSSh,
TXEI= x(s—h), if s> h.

For t € [0,T], let

xp (t) = %0 + /o f (s, mnxp (5)) ds.
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10.

Show using the Ascoli Arzela theorem that there exists a sequence h — 0 such that
Xp — X

in C ([0,T];R™). Next argue

t
x (t) = xo —|—/ f(s,x(s))ds
0
and conclude the following theorem. If f :R x R™ — R" is continuous and bounded, and if xg € R" is

given, there exists a solution to the following initial value problem.

x = f(t,x), t€]0,7T)
x(0) = xo.

This is the Peano existence theorem for ordinary differential equations.

Show the set of polynomials R described in Problem 18 of Chapter 1 is dense in the space C (A;R)
when A is a compact subset of R™. Conclude from this other problem that C (A4;R) is separable.

Let H and K be disjoint closed sets in a metric space, (X, d), and let

2 1
=-h(x)— <
9(2)= 2h(@) 5
where
dist (z, H)

h(z) = 5 (z, H) + dist (z, K)

Show g (z) € [f%, %] for all x € X, ¢ is continuous, and g equals %1 on H while g equals % on K. Is

it necessary to be in a metric space to do this?

1 Suppose M is a closed set in X where X is the metric space of problem 9 and suppose f : M — [—1,1]
is continuous. Show there exists g : X — [—1,1] such that g is continuous and g = f on M. Hint:
Show there exists

neC). me| Gyl

and |f (z) — g1 ()| < 2 for all z € H. To do this, consider the disjoint closed sets

= (23] = ()

and use Problem 9 if the two sets are nonempty. When this has been done, let

3

S (@) -1 (@)

play the role of f and let go be like g;. Obtain

and consider
[e%e] 9 i—1
g(x) = Z (§> gi (@).
i=1

Is it necessary to be in a metric space to do this?
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11.

12.

13.

14.

15.

16.

17.

SPACES OF CONTINUOUS FUNCTIONS

1 Let M be a closed set in a metric space (X, d) and suppose f € C (M). Show there exists g € C (X)
such that g (z) = f (z) for all z € M and if f (M) C [a,b], then g (X) C [a,b]. This is a version of the

Tietze extension theorem. Is it necessary to be in a metric space for this to work?

Let X be a compact topological space and suppose {f,} is a sequence of functions continuous on X
having values in R™. Show there exists a countable dense subset of X, {z;} and a subsequence of {f,},
{fn.}, such that {f,, (z;)} converges for each z;. Hint: First get a subsequence which converges at
x1, then a subsequence of this subsequence which converges at xo and a subsequence of this one which
converges at x3 and so forth. Thus the second of these subsequences converges at both x; and zo
while the third converges at these two points and also at x3 and so forth. List them so the second
is under the first and the third is under the second and so forth thus obtaining an infinite matrix of
entries. Now consider the diagonal sequence and argue it is ultimately a subsequence of every one of
these subsequences described earlier and so it must converge at each z;. This procedure is called the
Cantor diagonal process.

T Use the Cantor diagonal process to give a different proof of the Ascoli Arzela theorem than that
presented in this chapter. Hint: Start with a sequence of functions in C' (X;R™) and use the Cantor
diagonal process to produce a subsequence which converges at each point of a countable dense subset
of X. Then show this sequence is a Cauchy sequence in C' (X;R").

What about the case where Cy (X) consists of complex valued functions and the field of scalars is C
rather than R? In this case, suppose A is an algebra of functions in Cp (X) which separates the points,
annihilates no point, and has the property that if f € A, then f € A. Show that A is dense in Cj (X).
Hint: Let ReA = {Ref : f € A}, InA={Imf : f € A}. Show A =ReA+iImA =ImA +iReA. Then
argue that both Re.A and Im.A are real algebras which annihilate no point of X and separate the points
of X. Apply the Stone Weierstrass theorem to approximate Ref and Imf with functions from these
real algebras.

Let (X, d) be a metric space where d is a bounded metric. Let C denote the collection of closed subsets
of X. For A, B € C, define

p(A,B)=inf{6 >0: A; D B and Bs D A}
where for a set .S,
Ss ={z : dist (x,S) = inf {d (z,s) : s € S} <6}

Show z — dist (z, S) is continuous and that therefore, Ss is a closed set containing S. Also show that
p is a metric on C. This is called the Hausdorff metric.

ISuppose (X, d) is a compact metric space. Show (C, p) is a complete metric space. Hint: Show first
that if W,, | W where W,, is closed, then p (W,, W) — 0. Now let {4, } be a Cauchy sequence in
C. Then if € > 0 there exists N such that when m,n > N, then p (A, A;) < e. Therefore, for each
n > N,
(An)e :_)UZo:nAk.

Let A =nN%2,U  Aj. By the first part, there exists N; > N such that for n > Ny,

p (U,;“;nAk,A) <€, and (A4,), DU, A
Therefore, for such n, Ac 2 W,, 2 A,, and (W,,), 2 (4,), 2 A because

(An), D2 UX, A, D A.

1 Let X be a compact metric space. Show (C, p) is compact. Hint: Let D, be a 27" net for X. Let K,
denote finite unions of sets of the form B (p,2~") where p € D,,. Show I, is a 2= (n=1) net for (C,p).



The complex numbers

In this chapter we consider the complex numbers, C and a few basic topics such as the roots of a complex
number. Just as a real number should be considered as a point on the line, a complex number is considered
a point in the plane. We can identify a point in the plane in the usual way using the Cartesian coordinates
of the point. Thus (a,b) identifies a point whose = coordinate is @ and whose y coordinate is b. In dealing
with complex numbers, we write such a point as a + ib and multiplication and addition are defined in the
most obvious way subject to the convention that i> = —1. Thus,

(a+1ib)+ (c+id) = (a+c)+i(b+d)
and
(a+1ib) (c+id) = (ac — bd) + i (bc + ad) .

We can also verify that every non zero complex number, a + ib, with a? 4 b? # 0, has a unique multiplicative
inverse.

1 a—1b a . b

atib 2+ @2+ @2t

Theorem 3.1 The complex numbers with multiplication and addition defined as above form a field.

The field of complex numbers is denoted as C. An important construction regarding complex numbers
is the complex conjugate denoted by a horizontal line above the number. It is defined as follows.

a+ib=a—1b.

What it does is reflect a given complex number across the z axis. Algebraically, the following formula is
easy to obtain.

(a+ib) (a+ib) = a® + b°.
The length of a complex number, refered to as the modulus of z and denoted by |z| is given by
el = (@ +97)"" = (2)'%,
and we make C into a metric space by defining the distance between two complex numbers, z and w as
d(z,w) =]z —w|.
We see therefore, that this metric on C is the same as the usual metric of R2. A sequence, z, — z if and

only if z,, — z in R and y, — y in R where z = = + iy and 2, = z,, + iy,. For example if z,, = HL_H + i%,
then z, — 1+ 0i = 1.
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Definition 3.2 A sequence of complex numbers, {z,} is a Cauchy sequence if for every € > 0 there exists
N such that n,m > N implies |z, — zm| < €.

This is the usual definition of Cauchy sequence. There are no new ideas here.
Proposition 3.3 The complex numbers with the norm just mentioned forms a complete normed linear space.
Proof: Let {z,} be a Cauchy sequence of complex numbers with z,, = x,, + iy,. Then {z,} and {y,}
are Cauchy sequences of real numbers and so they converge to real numbers, x and y respectively. Thus
Zn = Tp + 1Yn — x + iy. By Theorem 3.1 C is a linear space with the field of scalars equal to C. It only

remains to verify that | | satisfies the axioms of a norm which are:

|2+ w| < |2[ + [w]
|z] > 0 for all z
|z| =0 if and only if z =0

laz| = |a||2].
We leave this as an exercise.

Definition 3.4 An infinite sum of complex numbers is defined as the limit of the sequence of partial sums.
Thus,

o0 n
E ap = lim g ak.
n—oo
k=1 k=1
Just as in the case of sums of real numbers, we see that an infinite sum converges if and only if the
sequence of partial sums is a Cauchy sequence.

Definition 3.5 We say a sequence of functions of a complex variable, {f,} converges uniformly to a func-
tion, g for z € S if for every € > 0 there exists N. such that if n > N, then

[fn(2) —g(2)| <e

for all z € S. The infinite sum Y po, fn converges uniformly on S if the partial sums converge uniformly on

S.

Proposition 3.6 A sequence of functions, {f,} defined on a set S, converges uniformly to some function,
g if and only if for all € > 0 there exists N such that whenever m,n > Ng,

||fn - fm”oo <e.
Here ||fll. = sup {|f ()| : 2 € S}
Just as in the case of functions of a real variable, we have the Weierstrass M test.

Proposition 3.7 Let {f,} be a sequence of complex valued functions defined on S C C. Suppose there exists
M, such that || fn|| < M, and ) M, converges. Then ) f, converges uniformly on S.
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Since every complex number can be considered a point in R2?, we define the polar form of a complex

number as follows. If z = z + iy then (ﬁ, %) is a point on the unit circle because
2\ 2 2
(@)~ (&) -
|| ||

(x y) = (cos,sinf).

2" |z]

Therefore, there is an angle 6 such that

It follows that
z=x+1y = |z|(cos@ +isind).

This is the polar form of the complex number, z = x + 7y.
One of the most important features of the complex numbers is that you can always obtain n nth roots
of any complex number. To begin with we need a fundamental result known as De Moivre’s theorem.

Theorem 3.8 Let r > 0 be given. Then if n is a positive integer,
[r(cost +isint)]" = r" (cosnt + isinnt) .
Proof: It is clear the formula holds if n = 1. Suppose it is true for n.
[r (cost +isint)]" ™" = [r (cost + isint)]" [r (cost +isint)]
which by induction equals

= r"*1 (cosnt + isinnt) (cost + i sint)

= "1 ((cosnt cost — sinntsint) + i (sinnt cost + cosnt sint))

=" (cos (n+ 1)t +isin(n+ 1)t
by standard trig. identities.
Corollary 3.9 Let z be a non zero complex number. Then there are always exactly k kth roots of z in C.

Proof: Let z = x + iy. Then

and from the definition of |z|,

Thus (I%I’ %) is a point on the unit circle and so

Y _ sint,

= cost
||

x
E

for a unique t € [0,27). By De Moivre’s theorem, a number is a kth root of z if and only if it is of the form

e (COS <t +k217r> . <t+k2l7r)>

for [ an integer. By the fact that the cos and sin are 27 periodic, if [ = k in the above formula the same
complex number is obtained as if [ = 0. Thus there are exactly k of these numbers.

IfSCCand f:S — C, wesay f is continuous if whenever z,, — z € S, it follows that f (z,) — f(2).
Thus f is continuous if it takes converging sequences to converging sequences.
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3.1 Exercises

® N >«

10.

11.

12.
13.

14.
15.

16.

. Let z = 3 4+ 4i. Find the polar form of z and obtain all cube roots of z.

Prove Propositions 3.6 and 3.7.
Verify the complex numbers form a field.

Prove that []}_, 2zx = [1i—, Zk- In words, show the conjugate of a product is equal to the product of
the conjugates.

Prove that >, _, 2 = Y. p_; Zk. In words, show the conjugate of a sum equals the sum of the conjugates.
Let P (z) be a polynomial having real coefficients. Show the zeros of P (z) occur in conjugate pairs.
If Ais areal n x n matrix and Ax = Ax, show that AX = X.

Tell what is wrong with the following proof that —1 = 1.
1= =TIV 1= \/(-1)’=VI=1.

If z=|z|(cosf + isinf) and w = |w| (cos & + isin ) , show
zw = |z| |w| (cos (0 + a) + isin (6 + a)) .
Since each complex number, z = x + 3y can be considered a vector in R2, we can also consider it a

vector in R3 and consider the cross product of two complex numbers. Recall from calculus that for
x = (a,b,c) and y = (d, e, f), two vectors in R3,

x Xy = det

Q, Qe
A Y e

k
c
f

and that geometrically |x x y| = |x| |y|sin 6, the area of the parallelogram spanned by the two vectors,
x,y and the triple, x,y,x X y forms a right handed system. Show

z1 X zo0 =Im (7122) k.
Thus the area of the parallelogram spanned by z; and 25 equals |Im (Z122)] .

Prove that f: S C C — C is continuous at z € S if and only if for all € > 0 there exists a § > 0 such
that whenever w € S and |w — z| < 4, it follows that |f (w) — f (2)] < e.

Verify that every polynomial p(z) is continuous on C.

Show that if {f,} is a sequence of functions converging uniformly to a function, f on S C C and if f,
is continuous on S, then so is f.

Show that if [2] < 1, then > 7 /2% = .

1—=z
Show that whenever Y a, converges it follows that lim, ., a, = 0. Give an example in which
lim, o0 @n =0, an > ant1 and yet > a,, fails to converge to a number.

Prove the root test for series of complex numbers. If a; € C and r = limsup,,_, ., \an|1/ " then

0o converges absolutely if r < 1
Z ay diverges if r > 1
k=0 test fails if » = 1.
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17. Does lim,, oo 1 (%)n exist? Tell why and find the limit if it does exist.

18. Let Ag =0 and let A4, = 22:1 a if n > 0. Prove the partial summation formula,

q q—1
Z arpbr = Aqbq — Apflbp + Z Ay (bk — bk+1) .
k=p k=p

Now using this formula, suppose {b,} is a sequence of real numbers which converges to 0 and is
decreasing. Determine those values of w such that |w| = 1 and Y ;= byw® converges. Hint: From
Problem 15 you have an example of a sequence {b,,} which shows that w = 1 is not one of those values
of w.

19. Let f: U C C — C be given by f (z +iy) = u (z,y) + iv (z,y) . Show f is continuous on U if and only
ifu:U — Randv:U — R are both continuous.

3.2 The extended complex plane

The set of complex numbers has already been considered along with the topology of C which is nothing but
the topology of R2. Thus, for z, = x, + iy, we say z, — z = z + iy if and only if x,, — = and y,, — 3. The
norm in C is given by

o+ iy] = (@ + i) (@ = )" = (2% +42)"
which is just the usual norm in R? identifying (z,y) with = + iy. Therefore, C is a complete metric space
and we have the Heine Borel theorem that compact sets are those which are closed and bounded. Thus, as
far as topology is concerned, there is nothing new about C.

We need to consider another general topological space which is related to C. It is called the extended
complex plane, denoted by C and consisting of the complex plane, C along with another point not in C known
as 0o. For example, co could be any point in R?. We say a sequence of complex numbers, z,, converges to
oo if, whenever K is a compact set in C, there exists a number, N such that for all n > N, z, ¢ K. Since
compact sets in C are closed and bounded, this is equivalent to saying that for all R > 0, there exists IV
such that if n > N, then z, ¢ B (0, R) which is the same as saying lim,,_, o, |2,| = 0o where this last symbol
has the same meaning as it does in calculus.

A geometric way of understanding this in terms of more familiar objects involves a concept known as the
Riemann sphere.

Consider the unit sphere, S? given by (2 — 1)2 +y?+ 22 = 1. We define a map from the unit sphere with
the point, (0,0,2) left out which is one to one onto R? as follows.

0(p)

We extend a line from the north pole of the sphere, the point (0,0,2), through the point on the sphere,
p, until it intersects a unique point on R2. This mapping, known as stereographic projection, which we will
denote for now by 6, is clearly continuous because it takes converging sequences, to converging sequences.
Furthermore, it is clear that §~! is also continuous. In terms of the extended complex plane, C, we see a
sequence, z, converges to oo if and only if =1z, converges to (0,0, 2) and a sequence, z,, converges to z € C
if and only if 67! (z,) — 671 (2).
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3.3 Exercises

1. Try to find an explicit formula for # and 6~1.
2. What does the mapping 6! do to lines and circles?

3. Show that S? is compact but C is not. Thus C # S2. Show that a set, K is compact (connected) in C
if and only if ! (K) is compact (connected) in S?\ {(0,0,2)}.

4. Let K be a compact set in C. Show that C\ K has exactly one unbounded component and that this
component is the one which is a subset of the component of S? \ K which contains oco. If you need to
rewrite using the mapping, 6 to make sense of this, it is fine to do so.

5. Make C into a topological space as follows. We define a basis for a topology on C to be all open sets
and all complements of compact sets, the latter type being those which are said to contain the point
oo. Show this is a basis for a topology which makes C into a compact Hausdorff space. Also verify that
C with this topology is homeomorphic to the sphere, S2.



Riemann Stieltjes integrals

In the theory of functions of a complex variable, the most important results are those involving contour
integration. Before we define what we mean by contour integration, it is necessary to define the notion of
a Riemann Steiltjes integral, a generalization of the usual Riemann integral and the notion of a function of
bounded variation.

Definition 4.1 Let 7y : [a,b] — C be a function. We say v is of bounded variation if

sup{Zwi)—v(u1>|:a—t0<~-<tn—b} =V (.[a,B]) < o
i=1

where the sums are taken over all possible lists, {a =1ty < --- < t, = b}.

The idea is that it makes sense to talk of the length of the curve v ([a, b]) , defined as V' (v, [a, b]) . For this
reason, in the case that ~ is continuous, such an image of a bounded variation function is called a rectifiable
curve.

Definition 4.2 Let v : [a,b] — C be of bounded variation and let f : [a,b] — C. Letting P = {to, -, tn}
where a =ty <t; < -+ <t, =b, we define

||Pl| = max{|t; —t;—1| : 5 =1,---,n}

and the Riemann Steiltjes sum by

S(P) =

J

n
S () (v (&) = (8-1))

=1

where T; € [t;j_1,t;]. (Note this notation is a little sloppy because it does not identify the specific point, T;

used. It is understood that this point is arbitrary.) We define f,yf(t) dry (t) as the unique number which

satisfies the following condition. For all € > 0 there exists a § > 0 such that if ||P|| < §, then

/f(t)dv(f) —5(7’)‘ <e.
.
Sometimes this is written as

Lf(t)dv(t) = lm S(P).

The function, « ([a, b]) is a set of points in C and as ¢ moves from a to b, v (t) moves from v (a) to vy ().
Thus 7 ([a, b]) has a first point and a last point. If ¢ : [¢,d] — [a, b] is a continuous nondecreasing function,
then yo ¢ : [c,d] — C is also of bounded variation and yields the same set of points in C with the same first
and last points. In the case where the values of the function, f, which are of interest are those on v ([a, b]),
we have the following important theorem on change of parameters.
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Theorem 4.3 Let ¢ and v be as just described. Then assuming that
[rawae
.
erists, so does
RGNS
Yoo

and

[ramaw=[ ra@eNdmeee). (41)

2l yop

Proof: There exists § > 0 such that if P is a partition of [a, b] such that ||P|| < §, then

Lf(v(t))dv(t)—S(P)’ <e.

By continuity of ¢, there exists o > 0 such that if Q is a partition of [c,d] with ||Q]|| < ¢, Q = {so, - -, sn},
then |¢ (s;) — ¢ (sj—1)| < 0. Thus letting P denote the points in [a,b] given by ¢ (s;) for s; € Q, it follows
that ||P|| < ¢ and so

n

FO®)dy() = f(r (@ (m) (v (@ (s5) =7 ((s5-1))| <e

bl j=1

where 7; € [s;_1, s;]. Therefore, from the definition we see that (4.1) holds and that

fF(r(¢(s))d(yoe)(s)

yog
exists.
This theorem shows that f7 f (v (t))dy(t) is independent of the particular v used in its computation to
the extent that if ¢ is any nondecreasing function from another interval, [¢,d], mapping to [a,b], then the

same value is obtained by replacing v with v o ¢.
The fundamental result in this subject is the following theorem.

Theorem 4.4 Let f : [a,b] — C be continuous and let v : [a,b] — C be of bounded variation. Then
fﬂ{ f(t)dy (t) emists. Also if 6, > 0 is such that |t — s| < &, implies |f (t) — f (s)| < L, then

[rwaw-se) < 2l

whenever ||P|| < dpm.

Proof: The function, f , is uniformly continuous because it is defined on a compact set. Therefore, there
exists a decreasing sequence of positive numbers, {d,,} such that if |s — ¢| < d,,, then

1f () = Fs)] < —.

m

Let

Foo ={S(P): |IP|| < ém}
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Thus F,, is a closed set. (When we write S (P) in the above definition, we mean to include all sums
corresponding to P for any choice of 7;.) We wish to show that

_ 2V (n[a.b)

diam (F,,) -

(4.2)

because then there will exist a unique point, I € NS_, F,,,. It will then follow that I = fﬂ/ f@)dy(t). To
verify (4.2), it suffices to verify that whenever P and Q are partitions satisfying ||P|| < d,, and ||Q|| < Oy,

S(P) ~ S(Q) <~V (3 [ab]). (43)

Suppose ||P|| < 6y, and Q@ D P. Then also ||Q|| < d,,,. To begin with, suppose that P = {to,- - -, tp, - - -, tn}
and Q = {to, - -, tp—1,t", tp,- - -, t, } . Thus Q contains only one more point than P. Letting S (Q) and S (P)
be Riemann Steiltjes sums,

p—1

S(Q) = flog) (v(t;) = 7 (tj-1)) + f (02) (v () =7 (tp-1))

Jj=1

H ) (7 () =7 () + D f o) (v (t5) =7 (1) s

Jj=p+1
S(P) = Z J (7)) (v () = v (t-1)) +

=f(1p)(v(tp) =7 (tp—1))
F () (v @) =7 (tp—1)) + [ (1) (v (&) =7 (7))

+ Y Fm) (v () =y (t-)-

Jj=p+1

Therefore,
Gty 1
1S(P)=5(QI<) () =y (-l + () =y (G- +
j=1

n

) =7 @+ 3 () = ()l < V(o [an ). (44)

Jj=p+1

1
m

Clearly the extreme inequalities would be valid in (4.4) if Q had more than one extra point. We would
simply do the above trick more than one time. Let S (P) and S (Q) be Riemann Steiltjes sums for which
[|P|| and ||Q|| are less than 4, and let R = P U Q. Then from what was just observed,

2
[S(P)=S(QI=IS(P) = SR +[S(R) = S(Q] <~V (7.[a,b]).
and this shows (4.3) which proves (4.2). Therefore, there exists a unique complex number, I € N_, F,,

which satisfies the definition of fv f (t)d~y (t) . This proves the theorem.
The following theorem follows easily from the above definitions and theorem.
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Theorem 4.5 Let f € C([a,b]) and let 7y : [a,b] — C be of bounded variation. Let

M > max {|f (6] ¢ € [a,B]}. (4.5)
Then
Af@dﬂﬂSAﬂW%WM% (46)
Also if {fa} is a sequence of functions of C ([a, b]) which is converging uniformly to the function, f, then
Jim fn / f@)ydy(t (4.7)

Proof: Let (4.5) hold. From the proof of the above theorem we know that when ||P|| < .,

D@0~ 5(P) < 2v (. fat)

and so

[r0a@|<is@+ 2 i)

< Y M)~y )l + 2V (3 fa,b)

< MV (3, [a8) + =V (7, [o.).

This proves (4.6) since m is arbitrary. To verify (4.7) we use the above inequality to write

Afumwwlﬁmwmuﬂ—

< max{'f(t) - fn (t)l ite [avb]}v(’)’a [a,b]).

Since the convergence is assumed to be uniform, this proves (4.7).

It turns out that we will be mainly interested in the case where « is also continuous in addition to being
of bounded variation. Also, it turns out to be much easier to evaluate such integrals in the case where ~
is also C! ([a,b]) . The following theorem about approximation will be very useful but first we give an easy
lemma.

(f (8) = fu (1)) dv (2)

Lemma 4.6 Let vy : [a,b] — C be in C* ([a,b]). Then V (v,[a,b]) < oo so 7 is of bounded variation.

fj V(o) = i:AiVQMs

Z/ s)| ds
Z "l ds

ti—1

= IIWIIOO( —a).

Proof: This follows from the following

IN

IN

Therefore it follows V' (v, [a,b]) < ||7/|[, (b—a).
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Theorem 4.7 Let v : [a,b] — C be continuous and of bounded variation, let f : [a,b] x K — C be continuous
for K a compact set in C, and let € > 0 be given. Then there exists n : [a,b] — C such that n(a) =

FY(G’)’ ’Y(b) :77(5)7 77601 ([avb])v and

|y =l <e,

/Yf(w)dv(t)—/nf(m)dn(t)’ <

V (0, [a,b]) <V (7,[a,b]),

where ||y — nl| = max{|y () = n (¢)] : ¢ € [a, 5]}

Proof: We extend « to be defined on all R according to v (t) = v (a) if t < a and 7 () = v (b) if t > b.

Now we define

1 [ttotst-a)

0 7 (s) ds.

2h J antit oty (t—a)

where the integral is defined in the obvious way. That is,

/aba(t)—kiﬁ(t)dtE/aba(t)dt—kz’/abﬁ(t)dt'

Therefore,

b+2h
w®) =g [ Ads =),

Vh(a)=%/:hv(8)d8=v(a)~

Also, because of continuity of v and the fundamental theorem of calculus,

) =g {7 (4 2 - 0) (14 52) -

7(2h+t+b?_ha(ta)> (1+bQ_ha>}

and so vy, € C1 ([a,b]) . The following lemma is significant.

Lemma 4.8 V (v, [a,b]) <V (v,][a,b]).

Proof: Let a =ty <t; <--- <t, =b. Then using the definition of 7, and changing the variables to

make all integrals over [0, 2h],

Z v (t5) — v (ti-1)] =
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2h
Yy (S — 2h+tj71 + m (tjfl - a)>:| ’

2h
’y(S—Qh—‘v—tj—f—m(tj—a))—

1 2h N
< —

2h
Y <S —2h + tjfl + m (tjfl - a)) ‘ ds.

For a given s € [0, 2h], the points, s —2h+¢,;+ % (t; —a) for j =1,---,n form an increasing list of points in
the interval [a — 2h,b + 2h] and so the integrand is bounded above by V (v, [a — 2h,b+ 2h]) =V (v, [a,b]) .
It follows

S b (t) = (52| < V (3. a8

which proves the lemma.
With this lemma the proof of the theorem can be completed without too much trouble. First of all, if
e > 0 is given, there exists d; such that if h < d;, then for all ¢,

1 [retat-o

Iy () = ()] < v (s) = ()] ds

2h J onter ey (t—a)

1 t+ (bz,ha) (t_a)

< eds =¢ (4.11)

2h —2h+4t+ ’{ha) (t—a)

(b

due to the uniform continuity of . This proves (4.8). From (4.2) there exists 3 such that if ||P|| < d2, then
for all z € K,

[raamo-s@)|<s

/ £ (t2) dn () — S (P)] <

Wl M

for all h. Here S (P) is a Riemann Steiltjes sum of the form

n

Y F(m2) (y (t) =7 (tim1))

i=1

and Sy, (P) is a similar Riemann Steiltjes sum taken with respect to 7, instead of . Therefore, fix the
partition, P, and choose h small enough that in addition to this, we have the following inequality valid for
all z € K.

S (P) = S (P)] <

We can do this thanks to (4.11) and the uniform continuity of f on [a,b] x K. It follows

[reaa0- [ fesonn| s



43

/f(tz)dw(t)—sm)'+|S<P>—sh )|

+ Sh(P)_/

Formula (4.10) follows from the lemma. This proves the theorem.
Of course the same result is obtained without the explicit dependence of f on z.
This is a very useful theorem because if v is C! ([a,b]), it is easy to calculate f,y f@)dy(t). We will

f(t,z)dywm (t)’ < €.

)

typically reduce to the case where 7 is C' by using the above theorem. The next theorem shows how easy it
is to compute these integrals in the case where + is C!. First note that if f is continuous and v € C* ([a, b]),
then by Lemma 4.6 and the fundamental existence theorem, Theorem 4.4, that fv f(t) dy (t) exists. We only
need to see how to find it.

Theorem 4.9 If f : [a,b] — C be continuous and v : [a,b] — C is in C* ([a,b]), then

/ F(t)dn (¢ / Ft (4.12)

Proof: Let P be a partition of [a,b], P = {tg,- - -,t,} and ||P|| is small enough that whenever |t — s| <

1Pl
lf @)= f(s)] <e (4.13)
and
[1Oar =35 0t =7 50))| <<
Now
n b n
D) (v () = v (t-1) :/ D L) Xy ()7 (5) ds
=1 @ j=1
where here
_ [ 1if s €a,b]
Hao] () = { 0if s ¢ [a,b]
Also,

b b n
[ ror@ds= [ 356X, 0) ()7 () ds
a a =1

and thanks to (4.13),

=251 Fr) (v ()= (ti-1)) =[4 F()7 (s)ds

/ Zf 75) Xt; 1t ( ds—/ t,1,t;) (8)7 () ds
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IA

n t]
Z/t ) = F O ()] ds < 111w St — 1)
j=1vti-1 J
= eyl (b a).
It follows that

HIDFE) ) =) = [ f ()7 () ds| < e[y [l (b—a) +<.

=1 @

Since ¢ is arbitrary, this verifies (4.12).

Definition 4.10 Let v : [a,b] — U be a continuous function with bounded variation and let f : U — C be a
continuous function. Then we define,

/Wf(Z)dZ/Wf(v(t))dv(t)-

The expression, fv f(2)dz, is called a contour integral and +y is referred to as the contour. We also say that
a function f: U — C for U an open set in C has a primitive if there exists a function, F, the primitive, such
that F' (z) = f (2). Thus F is just an antiderivative. Also if v : [ak, bg] — C is continuous and of bounded
variation, for k=1,--- m and v (bx) = Ye+1 (ax) , we define

/ f)dz=> | f(2)dz (4.14)
Z;cnzl“/k k=1""7k

In addition to this, for v : [a,b] — C, we define —v : [a,b] — C by —v(t) = v(b+a —t). Thus v simply
traces out the points of v ([a,b]) in the opposite order.

The following lemma is useful and follows quickly from Theorem 4.3.

Lemma 4.11 In the above definition, there exists a continuous bounded variation function, v defined on
some closed interval, [c,d], such that v ([c,d]) = Ul vk ([ak, bk]) and v (¢) = v (a1) while v (d) = Y (brn) -
Furthermore,

If v : [a,b] — C is of bounded variation and continuous, then

/Vf(z)dz:—/vf(z)dz.

Theorem 4.12 Let K be a compact set in C and let f: U x K — C be continuous for U an open set in C.
Also let 7 : [a,b] — U be continuous with bounded variation. Then if r > 0 is given, there exists 7 : [a,b] — U
such that 1 (a) = v (a), n(b) = (b) ,n is C* ([a,b]), and

Af(z7w)dz—[]f(z7w)dz

< ln—nll <r
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Proof: Let ¢ > 0 be given and let H be an open set containing 7 ([a, b]) such that H is compact. Then
f is uniformly continuous on H x K and so there exists a § > 0 such that if z; € H,j =1,2 and w; € K for
7 = 1,2 such that if

|21 — 22| + |w1 —wa] <6,
then

|f (z1,w01) = f (22, w2)| <e.
By Theorem 4.7, let 1 : [a,b] — C be such that 7 ([a,b]) C H, n(z) = v (x) for x = a,b, n € C*([a,b]),
[In =l <min (6,7), V' (n, [a,b]) <V (7,[a,b]), and

/nf(W(t)aw)dﬁ(t)—Lf(V(t),w)dv(t)’ .

for all w € K. Then, since |f (v (t),w) — f (n(t) ,w)| < e for all ¢t € [a,}],

/f(v(t),w)dn(t) /f(n(t)vw)dn(t)‘ < eV (n,[a,b]) < eV (v,[a,b]).
Therefore,

/nf(z,w)dz/vf(z,w)dz

/f(??(t)aUJ)dﬂ(t)—/f(w(t)vw)dv(t)‘ <e+eV(y[a0]).

Since € > 0 is arbitrary, this proves the theorem.

We will be very interested in the functions which have primitives. It turns out, it is not enough for f to
be continuous in order to possess a primitive. This is in stark contrast to the situation for functions of a real
variable in which the fundamental theorem of calculus will deliver a primitive for any continuous function.
The reason for our interest in such functions is the following theorem and its corollary.

Theorem 4.13 Let 7y : [a,b] — C be continuous and of bounded variation. Also suppose F' (z) = f(z) for
all z € U, an open set containing 7 ([a,b]) and f is continuous on U. Then

[1Gra:=Fe®) - F o).
¥
Proof: By Theorem 4.12 there exists n € C* ([a, b]) such that v (a) =1 (a), and 7 (b) = 1 (b) such that

/Wf(z)dz/nf(z)dz

Then since 7 is in C* ([a, b]) , we may write

[ wa= [0,
F(n®) = F ()= F((®)—-F(y(a).

< E.

S
&h
O
ISH
Q

I

Therefore,

and since € > 0 is arbitrary, this proves the theorem.
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Corollary 4.14 If v : [a,b] — C is continuous, has bounded variation, is a closed curve, v (a) = v (b), and
v ([a,b]) C U where U is an open set on which F' (z) = f (z), then

/A/f(z)dzzo.

4.1 Exercises

10.

11.

. Let v : [a,b] — R be increasing. Show V (v, [a,b]) = v (b) — 7 (a).

Suppose v : [a,b] — C satisfies a Lipschitz condition, |y (t) — v (s)| < K |s — t|. Show + is of bounded
variation and that V (v, [a,b]) < K |b—a].

We say v : [co,cm] — C is piecewise smooth if there exist numbers, cx, k = 1,- -, m such that
cp < cp <+ < Cpmo1 < ¢y osuch that v is continuous and 7 : [k, cry1] — C is C1. Show that such
piecewise smooth functions are of bounded variation and give an estimate for V' (v, [co, ¢]) -

Let v : [0,27] — C be given by v () = r (cosmt + isinmt) for m an integer. Find [ dz,

Show that if v : [a,b] — C then there exists an increasing function h : [0,1] — [a,b] such that
v o h([0,1]) = v ([a, b))

Let 7 : [a,b] — C be an arbitrary continuous curve having bounded variation and let f, g have contin-
uous derivatives on some open set containing v ([a, b]) . Prove the usual integration by parts formula.

/fg’de FOr () g (v () = f(v(a)g(v(a)) */f’gdZ-

Y

Let f(2) = |2|7*? e~i% where z = |z| e This function is called the principle branch of z~(1/2). Find
f7 f (2) dz where v is the semicircle in the upper half plane which goes from (1,0) to (—1,0) in the
counter clockwise direction. Next do the integral in which ~ goes in the clockwise direction along the
semicircle in the lower half plane.

Prove an open set, U is connected if and only if for every two points in U, there exists a C! curve
having values in U which joins them.

Let P, Q be two partitions of [a,b] with P C Q. Each of these partitions can be used to form an
approximation to V' (7, [a,b]) as described above. Recall the total variation was the supremum of sums
of a certain form determined by a partition. How is the sum associated with P related to the sum
associated with Q7 Explain.

Consider the curve,

_ [ t+it?sin (1) ift € (0,1]
V(t)_{ 0ift =0

Is 7 a continuous curve having bounded variation? What if the ¢ is replaced with ¢? Is the resulting
curve continuous? Is it a bounded variation curve?

Suppose 7 : [a,b] — R is given by v (¢t) = t. What is fv f (t) dv? Explain.



Analytic functions

In this chapter we define what we mean by an analytic function and give a few important examples of
functions which are analytic.

Definition 5.1 Let U be an open set in C and let f: U — C. We say f is analytic on U if for every z € U,

h—0 h

exists and is a continuous function of z € U. Here h € C.

Note that if f is analytic, it must be the case that f is continuous. It is more common to not include the
requirement that f’ is continuous but we will show later that the continuity of f’ follows.
What are some examples of analytic functions? The simplest example is any polynomial. Thus

n
p(z) = Z apz”
k=0

is an analytic function and
n
P (2) = Z apkz""1.
k=1

We leave the verification of this as an exercise. More generally, power series are analytic. We will show
this later. For now, we consider the very important Cauchy Riemann equations which give conditions under
which complex valued functions of a complex variable are analytic.

Theorem 5.2 Let U be an open subset of C and let f: U — C be a function, such that for z =z + iy € U,
f(z) =u(z,y)+iv(z,y).
Then f is analytic if and only if u,v are C1 (U) and

Ou Ov Ou ov

oxr oy oy Oz
Furthermore, we have the formula,

ou ov

fl(z): %(x,y)—i—z% ($>y)

47
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Proof: Suppose f is analytic first. Then letting ¢t € R,

Fo) i LEFD =T

t—0 t o

t—0

lim(u(x+t,y)+iv(x+t,y) u(x,y)+iv(x,y)>
t t

~ Ou(z,y) | Ov(z,y)
T oz e oxr

But also

i (L@ y ) Fivey+t)  ulzy) +iv(zy)
t—0 it it

1 ou(z,y) .0v(z,y)
z( dy o oy

_ Ov(z,y) Ou(z,y)
dy dy

This verifies the Cauchy Riemann equations. We are assuming that z — f’ (2) is continuous. Therefore, the
partial derivatives of w and v are also continuous. To see this, note that from the formulas for f’ (z) given
above, and letting z; = x1 + i1

ov (x ov (x
e  E ORI}

showing that (z,y) — %@jy) is continuous since (x1,y1) — (x,y) if and only if z; — z. The other cases are
similar.

Now suppose the Cauchy Riemann equations hold and the functions, v and v are C* (U). Then letting
h = hy +thy,

fG4+h)—f(z)=u(x+hi,y+ ho)

+’i1} (l‘ + hla ) + h?) - (U (mvy) + w (.’E, y))
We know u and v are both differentiable and so

£+ 1) = 1) = 52 (o) b+ 5 (o) ha+

ov

z(% (J:,y)hl—l—a—y(x,y)hg) +o(h).
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Dividing by h and using the Cauchy Riemann equations,

F+h) —f(z)  ga(@y)h+ig (x,y)h .

h h

%2 (2, y) ha + 5% (2, y) ho L o)
h h

ou h1 +Zh2 ,a’U hl +Zh2 O(h)
o @) TR i () T

Taking the limit as h — 0, we obtain

ou ov

fl(z): %(x,y)—i—z% (a?,y)

It follows from this formula and the assumption that u,v are C! (U) that f’ is continuous.
It is routine to verify that all the usual rules of derivatives hold for analytic functions. In particular, we
have the product rule, the chain rule, and quotient rule.

5.1 Exercises

1.
2.

Verify all the usual rules of differentiation including the product and chain rules.

Suppose f and f’ : U — C are analytic and f(z) = u(z,y) + v (z,y). Verify uyy + uyy = 0
and vy, + vy, = 0. This partial differential equation satisfied by the real and imaginary parts of
an analytic function is called Laplace’s equation. We say these functions satisfying Laplace’s equa-
tion are harmonic functions. If u is a harmonic function defined on B (0,r) show that v (z,y) =
I3 ua (@,t)dt — [ uy (t,0)dt is such that u + iv is analytic.

Define a function f (2) =% = x — iy where z = z + iy. Is f analytic?

If f(2) =u(x,y)+iv(z,y) and f is analytic, verify that

det( e ) =1f (=)

z Uy
Show that if u (x,y) + v (z,y) = f () is analytic, then Vu - Vv = 0. Recall
Vu (JJ, y) = <ux (xa y) y Uy ($7 y)>

Show that every polynomial is analytic.

If v (t) = z (t) + iy (t) is a C! curve having values in U, an open set of C, and if f : U — C is analytic,
we can consider f o, another C'! curve having values in C. Also, 7/ (t) and (f o)’ (t) are complex
numbers so these can be considered as vectors in R? as follows. The complex number, 244y corresponds
to the vector, (z,y). Suppose that v and n are two such C' curves having values in U and that
7 (to) = n(s0) = z and suppose that f : U — C is analytic. Show that the angle between (f o)’ (to)
and (f o)’ (so) is the same as the angle between ~'(to) and 7’ (so) assuming that f’(z) # 0. Thus
analytic mappings preserve angles at points where the derivative is nonzero. Such mappings are called
isogonal. . Hint: To make this easy to show, first observe that (z,y) - (a,b) = 3 (2w + zZw) where
z=z+ 1y and w = a + ib.
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8. Analytic functions are even better than what is described in Problem 7. In addition to preserving
angles, they also preserve orientation. To verify this show that if z = z + iy and w = a + ib are
two complex numbers, then (z,y,0) and (a,b,0) are two vectors in R?. Recall that the cross product,
(z,9,0) x {a,b,0), yields a vector normal to the two given vectors such that the triple, (x,y,0), (a, b, 0),
and (x,y,0) x (a,b,0) satisfies the right hand rule and has magnitude equal to the product of the sine
of the included angle times the product of the two norms of the vectors. In this case, the cross product
either points in the direction of the positive z axis or in the direction of the negative z axis. Thus, either
the vectors (z,y,0), (a, b, 0), k form a right handed system or the vectors (a, b, 0), (x, y, 0), k form a right
handed system. These are the two possible orientations. Show that in the situation of Problem 7 the
orientation of 7/ (to) , 7’ (s0) , k is the same as the orientation of the vectors (f o)’ (to), (f o n)’ (s0) , k.
Such mappings are called conformal. If f is analytic and f’ (z) # 0, then we know from this problem
and the above that f is a conformal map. Hint: You can do this by verifying that (f o~)’ (to) x
(fon) (so) = |f' (v(t)* 7 (to) x 7' (s0). To make the verification easier, you might first establish
the following simple formula for the cross product where here z 4+ iy = z and a 4 ib = w.

(x,y,0) x {(a,b,0) = Re (ziw) k.

9. Write the Cauchy Riemann equations in terms of polar coordinates. Recall the polar coordinates are
given by

x =rcosf, y=rsinb.

This means, letting u (z,y) = u (r,0) ,v (z,y) = v (r,0), write the Cauchy Riemann equations in terms
of r and #. You should eventually show the Cauchy Riemann equations are equivalent to

ou 10v Ov 1@

o rog’ ar  rao
5.2 Examples of analytic functions

A very important example of an analytic function is e* = e® (cosy +isiny) = exp(z). We can verify
this is an analytic function by considering the Cauchy Riemann equations. Here u (z,y) = e®cosy and
v (x,y) = e®siny. The Cauchy Riemann equations hold and the two functions u and v are C* (C) . Therefore,
z — € is an analytic function on all of C. Also from the formula for f’ (z) given above for an analytic function,

d z x (C _|_ N ) z

—e® =¢e" (cos isiny) = e*.

az Y Yy

We also see that e* = 1 if and only if z = 27k for k£ an integer. Other properties of e* follow from the

formula for it. For example, let z; = x; + iy; where j = 1,2.

e*1e® = e" (cosy; +isiny;)e”? (cosys + isinys)

r1+T2 (

e COS Y1 COS Yo — sinyy sinys) +

ie”1 2 (sin y; cosya + sin Y cos yy)

= e"1172 (cos (y; + yo) +isin (y1 + y2)) = ¥ 772,

Another example of an analytic function is any polynomial. We can also define the functions cos z and
sin z by the usual formulas.



5.3. EXERCISES ol

By the rules of differentiation, it is clear these are analytic functions which agree with the usual functions
in the case where z is real. Also the usual differentiation formulas hold. However,

. e v 4 e”
CcoSix = — = coshx

and so cos z is not bounded. Similarly sin z is not bounded.

A more interesting example is the log function. We cannot define the log for all values of z but if we
leave out the ray, (—oc, 0], then it turns out we can do so. On R + 4 (—m,7) it is easy to see that e* is one
to one, mapping onto C\ (—o0, 0]. Therefore, we can define the log on C\ (—o0, 0] in the usual way,

elogz = 1n|z|ezarg(z)7

z=c¢
where arg (z) is the unique angle in (—m,7) for which the equal sign in the above holds. Thus we need
logz =1In|z| +iarg(z). (5.1)

There are many other ways to define a logarithm. In fact, we could take any ray from O and define a
logarithm on what is left. It turns out that all these logarithm functions are analytic. This will be clear
from the open mapping theorem presented later but for now you may verify by brute force that the usual
definition of the logarithm, given in (5.1) and referred to as the principle branch of the logarithm is analytic.
This can be done by verifying the Cauchy Riemann equations in the following.

logz =1n (x2 + y2) 1/ + ¢ | —arccos _r if y <0,
Va?+y?

logz=1n (a:2 + y2)1/2 + 4 | arccos _r if y >0,
/$2 +y2

logz =1n (1’2 + y2)1/2 +1 (arctan (Q)) if x > 0.
x

With the principle branch of the logarithm defined, we may define the principle branch of z* for any a € C.
We define

2O = @ log(z) )

5.3 Exercises
1. Verify the principle branch of the logarithm is an analytic function.
2. Find i* corresponding to the principle branch of the logarithm.
3. Show that sin (z + w) = sin z cos w + cos z sin w.

4. If f is analytic on U, an open set in C, when can it be concluded that |f] is analytic? When can it be
concluded that |f]| is continuous? Prove your assertions.

5. Let f (z) =Z where Z = x — iy for z = x + iy. Describe geometrically what f does and discuss whether
f is analytic.



52

10.

ANALYTIC FUNCTIONS

A fractional linear transformation is a function of the form

az+b
cz+d

f(z) =

where ad — be # 0. Note that if ¢ = 0, this reduces to a linear transformation (a/d) z 4+ (b/d) . Special
cases of these are given defined as follows.

— . . 1
dilations: z — dz, § # 0, inversions: z — —,
z

translations: z — z + p.

In the case where ¢ # 0, let Sy (2) =z + <, Sy (2) = 1, S5(2) = (bcg—z‘l‘i)z and Sy (2) = z + 2. Verify
that f (z) =S4 053055 05;. Now show that in the case where ¢ = 0, f is still a finite composition of
dilations, inversions, and translations.

Show that for a fractional linear transformation described in Problem 6 circles and lines are mapped
to circles or lines. Hint: This is obvious for dilations, and translations. It only remains to verify this
for inversions. Note that all circles and lines may be put in the form

« (x2 —|—y2) — 2ax — 2by =12 — (a2 +b2)

where oo = 1 gives a circle centered at (a,b) with radius r and a = 0 gives a line. In terms of complex
variables we may consider all possible circles and lines in the form

azZ+Bz+PBZ+y=0,

Verify every circle or line is of this form and that conversely, every expression of this form yields either
a circle or a line. Then verify that inversions do what is claimed.

It is desired to find an analytic function, L (z) defined for all z € C \ {0} such that e“(*) = 2. Is this
possible? Explain why or why not.

If f is analytic, show that z — f (Z) is also analytic.

Find the real and imaginary parts of the principle branch of z!/2.



Cauchy’s formula for a disk

In this chapter we prove the Cauchy formula for a disk. Later we will generalize this formula to much more
general situations but the version given here will suffice to prove many interesting theorems needed in the
later development of the theory. First we give a few preliminary results from advanced calculus.

Lemma 6.1 Let f : [a,b] — C. Then f'(t) exists if and only if Ref’ (t) and Imf’ (t) exist. Furthermore,
f'(t) = Ref" (t) +iImf' (¢) .

Proof: The if part of the equivalence is obvious.
Now suppose [’ (t) exists. Let both ¢ and ¢ + h be contained in [a, b]

Ref(t+hf)L—Ref(t) _Re(f,(t))‘ < ‘f(th)l_f(t) _r

and this converges to zero as h — 0. Therefore, Ref’ (t) = Re (f’ (¢)) . Similarly, Imf’ (¢) = Im (f’ (¢)) .

Lemma 6.2 If g : [a,b] — C and g is continuous on [a,b] and differentiable on (a,b) with ¢’ (t) = 0, then
g (1) is a constant.

Proof: From the above lemma, we can apply the mean value theorem to the real and imaginary parts
of g.

Lemma 6.3 Let ¢ : [a,b] X [¢,d] — R be continuous and let

b
g(t) = / o (s,t)ds. (6.1)
Then g is continuous. If % exists and is continuous on [a,b] X [c,d], then

b S
g () = / ad’ét’ D gs. (6.2)

Proof: The first claim follows from the uniform continuity of ¢ on [a, b] X [¢, d] , which uniform continuity
results from the set being compact. To establish (6.2), let ¢ and ¢ + h be contained in [¢, d] and form, using
the mean value theorem,

b
sEED =00~ 2 [+ b - o, 0]ds

h h
1 [P 9¢(s,t+6h)
= E A 781‘; hdS

b
_ / 09 (5.t + 1)
., ot
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where # may depend on s but is some number between 0 and 1. Then by the uniform continuity of ‘Z—‘f, it
follows that (6.2) holds.

Corollary 6.4 Let ¢ : [a,b] X [¢,d] — C be continuous and let

b
g(t) = / o (s,t)ds. (6.3)

Then g is continuous. If % exists and is continuous on [a,b] X [c,d], then

b
g (t) :/a %ds. (6.4)

Proof: Apply Lemma 6.3 to the real and imaginary parts of ¢.
With this preparation we are ready to prove Cauchy’s formula for a disk.

Theorem 6.5 Let f: U — C be analytic on the open set, U and let
B (zp,7) CU.

Let vy (t) = 29 + 7€' fort € [0,2n]. Then if z € B (zo,7),
1 f(w)
=— [ —=dw. .
1) 27Ti/7w—zw (6.5)
Proof: Consider for « € [0,1],

2m it
g(a) = / (Z + oz‘t(zo e Z)) rie'tdt.
0 re'* 4+ zp — z

If v equals one, this reduces to the integral in (6.5). We will show ¢ is a constant and that g (0) = f (z) 2mi.
First we consider the claim about g (0).

2w Teit )
g(0) = (/0 mdt)zf(z)

if (2) (/O% 1_%%(it)

rett

2m o0
if (z)/ e (2 — 20)" dt
0

n=0

Z—Z0
rett

because |
obtain

< 1. Since this sum converges uniformly we may interchange the sum and the integral to

g(0) = if(2) 7;)7“_” (z — 20) /0 e " dt
= 2mif (2)

because fo% e~ it =0if n > 0.
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Next we show that g is constant. By Corollary 6.4, for « € (0,1),

(24 a (20 4 rett — 2)) (re + 2o — 2)
0 rett + 29 — z

2
/ f(z+a(zo+re’ —2)) rie’dt
0

27rd ” 1
= /0 dt<f(z+oz(zo+re’z))>dt

o
1

f(z—i—a(zo—l—rei%—z))a—f(z—i—a(zo—l—reo—z))

rie’dt

g (a)

=0.

Q|+

Now g is continuous on [0,1] and ¢’ (¢) = 0 on (0,1) so by Lemma 6.2, g equals a constant. This constant
can only be g (0) = 2mif (). Thus,

g0 = [ L0 = 40 = 2mir ().

This proves the theorem.
This is a very significant theorem. We give a few applications next.

Theorem 6.6 Let f : U — C be analytic where U is an open set in C. Then f has infinitely many derivatives
on U. Furthermore, for all z € B (zg,r),

IR (2) = n_'/ %dw (6.6)

27
where 7 (t) = zo + rett, t € [0,27] for r small enough that B (z9,7) C U.

Proof: Let z € B(z9,7) C U and let B (zp,r) C U. Then, letting v () = 29 + rei’,t € [0,27], and h

small enough,
L[ f(w) 1 f(w)
=— [ ——dw, +h)=— | ————d
P =g [ 28w seem = o [ w

C2mi ) w—z 2mi —z—h
Now
R h
w—z—h w—2z (—w+z+h)(—w+2)
and so
fean i) _ L] M
= . w
h 2rhi ), (—w + 2z +h) (—w + 2)

L /() ;
= — w.
2mi J, (—w+z+h) (—w+ 2)
Now for all A sufficiently small, there exists a constant C' independent of such A such that
‘ 1 _ 1
(—w+z+h)(—w+2z) (—w+2)(—w+2)
h
(w—z—h)(w—2)?

< C|hl
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and so, the integrand converges uniformly as h — 0 to

W)
(w—2)?

Therefore, we may take the limit as h — 0 inside the integral to obtain

o[ fw)
) Lr—ﬂ-

T 2mi w — 2)

Continuing in this way, we obtain (6.6).

This is a very remarkable result. We just showed that the existence of one continuous derivative implies
the existence of all derivatives, in contrast to the theory of functions of a real variable. Actually, we just
showed a little more than what the theorem states. The above proof establishes the following corollary.

Corollary 6.7 Suppose f is continuous on OB (zo,r) and suppose that for all z € B (zq,1),

P = g [ 28,

211 w—z

where v (t) = 2o +re',t € [0,27]. Then f is analytic on B (z0,7) and in fact has infinitely many derivatives
on B (zo,7) .

We also have the following simple lemma as an application of the above.

Lemma 6.8 Let 7y (t) = 29 + re't, for t € [0,2x], suppose f, — f uniformly on B (29,7), and suppose
- 1 fn (w)

for z € B(z,r). Then

f(z)= L/ f(w) dw, (6.8)

implying that f is analytic on B (zo,7).

Proof: From (6.7) and the uniform convergence of f,, to f on « ([0, 27]), we have that the integrals in

(6.7) converge to
1
L / S .
2 Jyw—z

Proposition 6.9 Let {a,} denote a sequence of complex numbers. Then there exists R € [0,00] such that

Therefore, the formula (6.8) follows.

oo

Z ag (z — zo)k

k=0

converges absolutely if |z — zo| < R, diverges if |z — 29| > R and converges uniformly on B (zg,r) for all
r < R. Furthermore, if R > 0, the function,

F) =) ar(z—=)"
k=0

is analytic on B (2o, R) .
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Proof: The assertions about absolute convergence are routine from the root test if we define

-1
R= <lim sup |an|1/n>

n—oo

with R = oo if the quantity in parenthesis equals zero. The assertion about uniform convergence follows
from the Weierstrass M test if we use M,, = |a,|7". ( D oo |an| 7™ < 0o by the root test). It only remains
to verify the assertion about f(z) being analytic in the case where R > 0. Let 0 < r < R and define

fn(2) = X oar (2 — zo)k. Then f,, is a polynomial and so it is analytic. Thus, by the Cauchy integral
formula above,

£ =5 | D),
i

where v (t) = 29 +ret, for t € [0,27]. By Lemma 6.8 and the first part of this proposition involving uniform
convergence, we obtain

f(z)= %/%dw.

Therefore, f is analytic on B (zg,7) by Corollary 6.7. Since r < R is arbitrary, this shows f is analytic on
B (Zo, R) .

This proposition shows that all functions which are given as power series are analytic on their circle
of convergence, the set of complex numbers, z, such that |z — z9| < R. Next we show that every analytic
function can be realized as a power series.

Theorem 6.10 If f : U — C is analytic and if B (z9,r) C U, then
f(z)= Z an (2 — 20)" (6.9)
n=0

for all |z — zo| < r. Furthermore,

f(n) (20) .

o (6.10)

Ay =

Proof: Consider |z — 29| < 7 and let 7 (t) = zo + re't, t € [0,27]. Then for w € v ([0, 27]),

zZ— Z
0l <1

w — 2o

and so, by the Cauchy integral formula, we may write

e = %Lydw
_ J () y
T o W(wzo)(lg_zg)d

- w e Gen) -

n=0

Since the series converges uniformly, we may interchange the integral and the sum to obtain

> 1 w n
I S e e [

n=0

o0
Z an (z — 20)"
n=0
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By Theorem 6.6 we see that (6.10) holds.
The following theorem pertains to functions which are analytic on all of C, “entire” functions.

Theorem 6.11 (Liouville’s theorem) If f is a bounded entire function then f is a constant.

Proof: Since f is entire, we can pick any z € C and write

e L[ )
= 'AR< 24

211 w — Z)
where vg (t) = 2z + Re®® for t € [0, 27] . Therefore,

7)< 0

where C' is some constant depending on the assumed bound on f. Since R is arbitrary, we can take R — oo to
obtain f’(z) = 0 for any z € C. It follows from this that f is constant for if z; j = 1,2 are two complex num-
bers, we can consider h (t) = f (z1 +t (22 — z1)) for t € [0,1]. Then ' (t) = f' (21 + t (22 — 21)) (22 — z1) = 0.
By Lemma 6.2 h is a constant on [0, 1] which implies f (z1) = f (22) .

With Liouville’s theorem it becomes possible to give an easy proof of the fundamental theorem of algebra.
It is ironic that all the best proofs of this theorem in algebra come from the subjects of analysis or topology.
Out of all the proofs that have been given of this very important theorem, the following one based on
Liouville’s theorem is the easiest.

Theorem 6.12 (Fundamental theorem of Algebra) Let
p(2) =2"+a,_12""'+ - +arz+ag

be a polynomial where n > 1 and each coefficient is a complex number. Then there exists zg € C such that
p(z0) = 0.

Proof: Suppose not. Then p (z)f1 is an entire function. Also
()] 2 21" = (Jonal 2" 4 -+ faal 2] + lao] )

and so lim,|_,« [p (2)| = oo which implies lim|;|_, ‘p (z)fl} = 0. It follows that, since p(z)~" is bounded

for z in any bounded set, we must have that p(z)_1 is a bounded entire function. But then it must be

. —1 . .
constant. However since p (z)” — 0 as |z| — oo, this constant can only be 0. However, ﬁ is never equal

to zero. This proves the theorem.

6.1 Exercises

1. Show that if |ey| < ¢, then Y7 ep (r¥ —r*1)| <eif 0 <r < 1. Hint: Let |f| = 1 and verify that

0 Z ek (rk — rkH) = Z ek (rk — rkH) = Z Re (fey) (rk — rkH)
k=m k=m k=m

where —e < Re (fey,) < €.
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2. Abel’s theorem says that if >~ 7 a,, (z — a)" has radius of convergence equal to 1 and if A = >°  a,,
then lim, .y > 0" an,r™ = A. Hint: Show Y72 japr® =37 ) Ay, (rF — 78+1) where Ay denotes the
kth partial sum of > a;. Thus

Zawk = Z Ay (rk - rk“) + ZAk (rk — rk“) ,
k=0

k=m+1 k=0

where |Ap — A| < ¢ for all £ > m. In the first sum, write Ay = A + e and use Problem 1. Use this

theorem to verify that arctan (1) = 3.7 (—1)* ﬁ

3. Find the integrals using the Cauchy integral formula.

z—1

a) [ Sinz i where «y (t) = 2¢' : t € [0, 27] .
—Ldz where v (t) = a+re' : t € [0, 2]
=e

it elo,2n

)
) [,

(c) [, “%*dz where 7 (t)
)

N log(2) 7 where 7 (t) = 1 + se' it e0,2n] and n =0,1,2.

n

4. Let v (t) = 4e® : t € [0, 27] and find fﬁ/ —Z(Z;Tl)dz.

5. Suppose f (z) = > " janz" for all |z| < R. Show that then

o0
1 2

7 2 n
o VG S

n=0

for all r € [0, R). Hint: Let

fu(z) = Zakzk,
k=0

show

1
2 0

27 n
|fn (rew) ’2 df = Z |ak|2 r2k
k=0

and then take limits as n — oo using uniform convergence.

6. The Cauchy integral formula, marvelous as it is, can actually be improved upon. The Cauchy integral
formula involves representing f by the values of f on the boundary of the disk, B (a,r). It is possible
to represent f by using only the values of Ref on the boundary. This leads to the Schwarz formula .
Supply the details in the following outline.

Suppose f is analytic on |z| < R and

F(2) =) apz" (6.11)
n=0

with the series converging uniformly on |z| = R. Then letting |w| = R,

2u(w) = f (w) + T (w)
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and so
2u (w) = Z apw® + Z@ (w)"* . (6.12)
k=0 k=0

Now letting 7 (t) = Re®, t € [0, 27]

L2“(w)dw - (a0+a_o)/7%dw

w
= 2mi(ag+ap).

Thus, multiplying (6.12) by w™!,

i,/u(w)dw:ao—f—a_o.
¥

Now multiply (6.12) by w~ (1) and integrate again to obtain

1
i J, wnt

Ay =

Using these formulas for a, in (6.11), we can interchange the sum and the integral (Why can we do
this?) to write the following for |z| < R.

= LIS Yy de—
1@ = WiLZ];)(M) (w)d 0

1 u (w
s dw_a'_07
), w— 2z

u(w)

which is the Schwarz formula. Now Reag = ﬁ fv dw and ag = Reag — ilmag. Therefore, we can

also write the Schwarz formula as

fz)= % L de + iImag. (6.13)

. Take the real parts of the second form of the Schwarz formula to derive the Poisson formula for a disk,

i 1 27 U (Reié) (R2 _ 7,2)
u(re'?) = o1 Jo  R2+47r2—2Rrcos (0 — ) d0- (6.14)

. Suppose that u (w) is a given real continuous function defined on 0B (0, R) and define f (z) for |z| < R

by (6.13). Show that f, so defined is analytic. Explain why w given in (6.14) is harmonic. Show that
TEr}r%l_u (re ) =u (Re ) .

Thus w is a harmonic function which approaches a given function on the boundary and is therefore, a
solution to the Dirichlet problem.

. Suppose f(z) = Y52 ax (z — 20)" for all |z — z| < R. Show that f’(z) = Y5° yark (2 — 20)" " for

all |z — 29| < R. Hint: Let f, (z) be a partial sum of f. Show that f] converges uniformly to some
function, g on |z — zg| < r for any r < R. Now use the Cauchy integral formula for a function and its
derivative to identify g with f'.



6.1.

10.
11.

EXERCISES

Use Problem 9 to find the exact value of Y= k? (%)k )

Prove the binomial formula,

where

(Z)Ea---(an!—n—i-l).

Can this be used to give a proof of the binomial formula, (a + )" = >;_, (Z) a”*b*? Explain.
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The general Cauchy integral formula

7.1 The Cauchy Goursat theorem

In this section we prove a fundamental theorem which is essential to the development which follows and is
closely related to the question of when a function has a primitive. First of all, if we are given two points in
C, 7 and 22, we may consider v (t) = 21 +t (22 — 21) for t € [0,1] to obtain a continuous bounded variation
curve from z; to zo. More generally, if 21, -+, z,, are points in C we can obtain a continuous bounded variation
curve from z; to z, which consists of first going from z; to zo and then from 25 to z3 and so on, till in
the end one goes from z,,_1 to z,. We denote this piecewise linear curve as v (z1,- -, zp) - Now let T be a
triangle with vertices z1, 2o and z3 encountered in the counter clockwise direction as shown.
23

1 %2

Then we will denote by faT f (2) dz, the expression, f7(21 2,25,71) f (2) dz. Consider the following picture.

22
By Lemma 4.11 we may conclude that

f(z)dz = Z f(2)d=. (7.1)
T k

—,JoT}

On the “inside lines” the integrals cancel as claimed in Lemma 4.11 because there are two integrals going in
opposite directions for each of these inside lines. Now we are ready to prove the Cauchy Goursat theorem.

Theorem 7.1 (Cauchy Goursat) Let f : U — C have the property that f’ (2) exists for all z € U and let T
be a triangle contained in U. Then

| fwdw=o
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Proof: Suppose not. Then

(w) dw‘ =a#0.
aT

From (7.1) it follows

[ (w) dw
T}

4
QSZ
k

=1

and so for at least one of these T}, denoted from now on as 77, we must have

Now let T3 play the same role as T', subdivide as in the above picture, and obtain T5 such that

>~
[

f(w) dw’ >
0T

Continue in this way, obtaining a sequence of triangles,
Ty D Thy1,diam (T},) < diam (T)27%,
and

«
4_]€ .

(w) dw’ >
Ty,

Then let z € N2, T}, and note that by assumption, f’ (z) exists. Therefore, for all k large enough,
(w) dw = (2) + 1/ (2) (w = 2) + g (w) dw
BTk aTk

where |g (w)| < e |w — z| . Now observe that w — f (z) + f' (z) (w — z) has a primitive, namely,

F(w)=f()w+f (2) (w—2)*"/2
Therefore, by Corollary 4.14.
- f(w)dw= /8Tk g (w) dw.

From the definition, of the integral, we see

a <
k=

< 27" (length of T) diam (T") 27*,

/ g (w) dw‘ < ediam (Ty) (length of 9Ty)
Ty,

and so
a < e (length of T') diam (7') .

Since ¢ is arbitrary, this shows o = 0, a contradiction. Thus [, f (w)dw = 0 as claimed.
This fundamental result yields the following important theorem.
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Theorem 7.2 (Morera) Let U be an open set and let f ' (z) exist for all z € U. Let D = B (zp,7) C U.
Then there exists € > 0 such that f has a primitive on B (29,7 + €).

Proof: Choose € > 0 small enough that B (zg, + &) C U. Then for w € B (29,7 + ¢), define
F(w)= / f(u) du.
¥(z0,w)

Then by the Cauchy Goursat theorem, and w € B (zq,r + €), it follows that for |h| small enough,

Flw+h)—Fw) 1
h h ~y(w,w+h)

f(u)du

1 1 1
= h) hdt = h)d
h/o £ (w -+ th) ht /O f(w+ th) dt

which converges to f (w) due to the continuity of f at w. This proves the theorem.
We can also give the following corollary whose proof is similar to the proof of the above theorem.

Corollary 7.3 Let U be an open set and suppose that whenever

v (21, 22,23, 21)

is a closed curve bounding a triangle T, which is contained in U, and f is a continuous function defined on
U, it follows that

/ f(x)dz=0,
v(21,22,23,21)

then f is analytic on U.

Proof: As in the proof of Morera’s theorem, let B (zg,7) C U and use the given condition to construct
a primitive, F for f on B (zp,r). Then F is analytic and so by Theorem 6.6, it follows that F' and hence f
have infinitely many derivatives, implying that f is analytic on B (2o, r) . Since zq is arbitrary, this shows f
is analytic on U.

Theorem 7.4 Let U be an open set in C and suppose f : U — C has the property that f' (z) exists for each
z € U. Then f is analytic on U.

Proof: Let zp € U and let B (2,r) C U. By Morera’s theorem f has a primitive, F' on B (2o, r) . It follows
that F' is analytic because it has a derivative, f, and this derivative is continuous. Therefore, by Theorem
6.6 F has infinitely many derivatives on B (zg,r) implying that f also has infinitely many derivatives on
B (2p,7). Thus f is analytic as claimed.

It follows that we can say a function is analytic on an open set, U if and only if f’(z) exists for z € U.
We just proved the derivative, if it exists, is automatically continuous.

The same proof used to prove Theorem 7.2 implies the following corollary.

Corollary 7.5 Let U be a convex open set and suppose that [’ (z) exists for all z € U. Then f has a primitive
on U.

Note that this implies that if U is a convex open set on which f’ (z) exists and if y : [a,b] — U is a closed,
continuous curve having bounded variation, then letting F' be a primitive of f Theorem 4.13 implies

[ £ G =F e ®) - F @) =0,
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Notice how different this is from the situation of a function of a real variable. It is possible for a function
of a real variable to have a derivative everywhere and yet the derivative can be discontinuous. A simple
example is the following.

_ xzsin% ifx#0
f(x):{ Oifx(:g

Then f’ (z) exists for all € R. Indeed, if x # 0, the derivative equals 2z sin% — cos% which has no limit
as * — 0. However, from the definition of the derivative of a function of one variable, we see easily that

() =0.

7.2 The Cauchy integral formula

Here we develop the general version of the Cauchy integral formula valid for arbitrary closed rectifiable
curves. The key idea in this development is the notion of the winding number. This is the number defined
in the following theorem, also called the index. We make use of this winding number along with the earlier
results, especially Liouville’s theorem, to give an extremely general Cauchy integral formula.

Theorem 7.6 Let v : [a,b] — C be continuous and have bounded variation with v (a) =~y (b) . Also suppose
that z ¢ v ([a,b]) . We define

n(y,2) = i/ dw (7.2)

2710 J, w— 2z
Then n (v,-) is continuous and integer valued. Furthermore, there exists a sequence, ny : [a,b] — C such
that my, is C* ([a,b]),
1
llm =1l < 2o (@) = 1 (b) = v (a) =7 (b)),

and n (N, z) = n(vy,2) for all k large enough. Also n(v,-) is constant on every component of C\ v ([a,b])
and equals zero on the unbounded component of C\ v ([a,b]) .

Proof: First we verify the assertion about continuity.
In(v,2) —n(v,2)] < C

1 1
LGt
J\w—z  w-—2z

< C (Length of ) |21 — 2|

whenever z is close enough to z. This proves the continuity assertion.
Next we need to show the winding number equals an integer. To do so, use Theorem 4.12 to obtain 7,
a function in C* ([a,b]) such that z ¢ ny ([a, b]) for all k large enough, 7y (z) = v (z) for x = a,b, and

1 / dw 1/ dw
21 LW —Z 2mi e W— 2

We will show each of % f"?k uflf”z is an integer. To simplify the notation, we write n instead of 7y.
/ dw _/b 7' (s)ds
npW—2 a 7 (5) -z

(1) = / m. (7.3)

<L =l <
k7 Mk Y k

We define
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Then

!/
(efg(t) (n(t) — z)) = 9Oy (t)—e Wy () (n(t) — 2)
— ey (1) — e 5O (1) = 0.
It follows that e=9(*) (1) (t) — z) equals a constant. In particular, using the fact that 7 (a) = 5 (b),
e 9O (n(b) —2) =e 9 (n(a) = 2) = (n(a) — z) = (n (b) — 2)

and so e~ 9(®) = 1. This happens if and only if —g (b) = 2mmi for some integer m. Therefore, (7.3) implies

b ./
2mm‘:/ n (s) ds :/ dw
o N(s)—z pW— 2

Therefore, ﬁ f”]k fﬁ’z is a sequence of integers converging to ﬁ 5 % =n
be an integer and n (nx, z) = n (7, ) for all k large enough.

Since n (v, ) is continuous and integer valued, it follows that it must be constant on every connected
component of C\ v ([a,d]). It is clear that n (v, z) equals zero on the unbounded component because from

the formula,

(7, 2z) and so n (7, z) must also

i [0 (7,2)] < tim V(a7 )
Z—00 Z2—00 ‘z| —C
where ¢ > max {Jw| : w € v ([a,b])} . This proves the theorem.

It is a good idea to consider a simple case to get an idea of what the winding number is measuring. To
do so, consider v : [a,b] — C such that v is continuous, closed and bounded variation. Suppose also that ~ is
one to one on (a,b). Such a curve is called a simple closed curve. It can be shown that such a simple closed
curve divides the plane into exactly two components, an “inside” bounded component and an “outside”
unbounded component. This is called the Jordan Curve theorem or the Jordan separation theorem. For a
proof of this difficult result, see the chapter on degree theory. For now, it suffices to simply assume that ~
is such that this result holds. This will usually be obvious anyway. We also suppose that it is possible to
change the parameter to be in [0,27], in such a way that v (£) + X (2 + re® — v (t)) — 2 # 0 for all ¢ € [0, 27]
and A € [0,1]. (As ¢ goes from 0 to 27 the point « (¢) traces the curve v ([0,27]) in the counter clockwise
direction.) Suppose z € D, the inside of the simple closed curve and consider the curve § (t) = z + re® for
t € [0, 27] where r is chosen small enough that B (z,7) C D. Then we claim that n (d,z) = n (v, 2) .

Proposition 7.7 Under the above conditions,

n(9,2) =n(v,2)
and n (6,z) = 1.
Proof: By changing the parameter, we may assume that [a,b] = [0, 27] . From Theorem 7.6 it suffices to

assume also that v is C'. Define hy (t) =~ (t) + A (z + re — v (t)) for X € [0,1]. (This function is called a
homotopy of the curves v and 4.) Note that for each A € [0,1],¢ — hy (¢) is a closed C* curve. Also,

1 1 1 2 ’7’ (t) + by (Tieit _ ’Y/ (t))

dw = — A
27 Jp, w— 2 YT o o YY) FX(z+ret —y(t) -z

We know this number is an integer and it is routine to verify that it is a continuous function of A\. When
A =0 it equals n (7, z) and when A = 1 it equals n (4, z). Therefore, n (9, 2) = n(v,z). It only remains to

compute n (0, 2) .
1 2 s it
n (9, z) / me.tdtzl.
o ret
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This proves the proposition.

Now if v was not one to one but caused the point, v (t) to travel around v ([a, b]) twice, we could modify
the above argument to have the parameter interval, [0,47] and still find n (d,z) = n (v, 2) only this time,
n (9, z) = 2. Thus the winding number is just what its name suggests. It measures the number of times the
curve winds around the point. One might ask why bother with the winding number if this is all it does. The
reason is that the notion of counting the number of times a curve winds around a point is rather vague. The
winding number is precise. It is also the natural thing to consider in the general Cauchy integral formula
presented below. We have in mind a situation typified by the following picture in which U is the open set
between the dotted curves and «y; are closed rectifiable curves in U.

The following theorem is the general Cauchy integral formula.

Theorem 7.8 Let U be an open subset of the plane and let f : U — C be analytic. If vy : [ar,br] — U, k =

1,---,m are continuous closed curves having bounded variation such that for all z ¢ U,
m
Z n (’Wﬁv Z) =0,
k=1

then for all z € U\ U vk ([ag, bk]),

FY o nts) =3 o [ L,

k=1 k=1

Proof: Let ¢ be defined on U x U by

i EAC G T gy
¢(z,w):{ ) ifw=-z

Then ¢ is analytic as a function of both z and w and is continuous in U x U. The claim that this function
is analytic as a function of both z and w is obvious at points where z # w, and is most easily seen using
Theorem 6.10 at points, where z = w. Indeed, if (z, z) is such a point, we need to verify that w — ¢ (z,w)
is analytic even at w = z. But by Theorem 6.10, for all A small enough,

¢(zz24+h)—¢(z2) 1 {f(z+h)—f(2)

h h h

-1
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Similarly, z — ¢ (z,w) is analytic even if z = w.
We define

h(z)z%z

We wish to show that h is analytic on U. To do so, we verify

~

h(z)dz=0
oT

for every triangle, T, contained in U and apply Corollary 7.3. To do this we use Theorem 4.12 to obtain for
each k, a sequence of functions, ng, € C* ([ax,bx]) such that

Nien () = v (2) for = € [ag, bg]

and

1
Mien ([ae; bk]) S U, ||kn — | < o

/ ¢(z,w)dw—/ ¢(z,w)dw‘ < 17 (7.4)
Nkn Tk n

for all z € T. Then applying Fubini’s theorem, we can write

/ ¢ (z,w) dwdz = / ¢ (z,w) dzdw =0
orT Nkn Nkn oT

because ¢ is given to be analytic. By (7.4),

/ / ¢ (z,w) dwdz = lim / ¢ (z,w) dwdz =0
oT J g n—eeJor Nkn

and so h is analytic on U as claimed.
Now let H denote the set,

H= {Z € C\ ULy v ([an, b)) = > m (e, 2) = 0}~
k=1

We know that H is an open set because z — Y _;* | n (v, ) is integer valued and continuous. Define

(2) h(z) ifzeU s
?)= m w . . )
! # Ek:1 " fu(f’z dwif ze H

We need to verify that g (z) is well defined. For z € U N H, we know z ¢ U7 ;7% ([ak, bx]) and so

9(x) = 5= [ e dw

211 w— 2z

k=1Y"7k
L& f(w) 1 & f(2)
- QWiZ/_w—zdw 27riz/ w—zdw

k=1""7k k=1""7k
L& f(w)
= x| 2w

k=1Y7k
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because z € H. This shows g (z) is well defined. Also, g is analytic on U because it equals h there. It is
routine to verify that g is analytic on H also. By assumption, U¢ C H and so U U H = C showing that g is
an entire function.

Now note that >, n (yx, 2z) = 0 for all z contained in the unbounded component of C\ U™, v ([a, bx])
which component contains B (0,7) for r large enough. It follows that for |z| > r, it must be the case that
z € H and so for such z, the bottom description of g (z) found in (7.5) is valid. Therefore, it follows

lim g (z)[ =0

|z| =00

and so ¢ is bounded and entire. By Liouville’s theorem, g is a constant. Hence, from the above equation,
the constant can only equal zero.
For z € U\ U™, vk ([ak, br])

1 m w m
G / I )dw_f(z) n (Ve 2)
i w—z
k=17"7% k=1
This proves the theorem.
Corollary 7.9 Let U be an open set and let v : [ag,bx] — U, k =1, -+, m, be closed, continuous and of

bounded variation. Suppose also that

S () =0
k=1

for all z ¢ U. Then if f: U — C is analytic, we have

Z f(w)dw = 0.

k=1"7k

Proof: This follows from Theorem 7.8 as follows. Let

where z € U \ UP" vk ([ak, bx]) . Then by this theorem,

NE

0=0> n(w=2) =g(2)

k=1 k

n(w, 2) =
1

N
)
<.

zm:i/vg :ﬁé/kf(wdw

k=1 k

S

Another simple corollary to the above theorem is Cauchy’s theorem for a simply connected region.

Definition 7.10 We say an open set, U C C is a region if it is open and connected. We say U is simply
connected if C \U is connected.
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Corollary 7.11 Let v : [a,b] — U be a continuous closed curve of bounded variation where U is a simply
connected region in C and let f : U — C be analytic. Then

Lf(w)dw—o.

Proof: Let D denote the unbounded component of (C\*y([a b]). Thus oo € @\7([(1 b]) .Then the
connected set, C\ U is contained in D since every point of C \ U must be in some component of C\7 ([a, b))
and oo is contained in both (C\U and D. Thus D must be the component that contains C \ U. It follows that

n (7,-) must be constant on C \ U, its value being its value on D. However, for z € D,

1 1
- d
n(7,2) QﬁiLw—zw

and so lim|;| o 12 (7, 2) = 0 showing n (77, 2z) = 0 on D. Therefore we have verified the hypothesis of Theorem
7.8. Let z € UN D and define

g(w) = f(w)(w—2z).
Thus g is analytic on U and by Theorem 7.8,

0n<z,v>g<z>1./w g(“’)dwl./wf(wmw.

This proves the corollary.
The following is a very significant result which will be used later.

Corollary 7.12 Suppose U is a simply connected open set and f : U — C is analytic. Then f has a
primitive, F, on U. Recall this means there exists F such that F' (z) = f (z) for all z € U.

Proof: Pick a point, zg € U and let V denote those points, z of U for which there exists a curve,
v : [a,b] — U such that v is continuous, of bounded variation, v (a) = zg, and 7 (b) = z. Then it is easy to
verify that V' is both open and closed in U and therefore, V' = U because U is connected. Denote by v, -
such a curve from zg to z and define

F(z) E/ f(w) dw.
RETIE
Then F' is well defined because if v;,j = 1,2 are two such curves, it follows from Corollary 7.11 that

fwydw+ [ f(w)dw =0,

71 -2

/%f(w)dw/wf(w)dw

Now this function, F' is a primitive because, thanks to Corollary 7.11

(F(z4+h) - F()h = fll/%z%f(w)dw

implying that

1
= %/ f(z+th)hdt
0

and so, taking the limit as h — 0, we see F' (z) = f (2).
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7.3 Exercises

1.

10.

11.

If U is simply connected, f is analytic on U and f has no zeros in U, show there exists an analytic
function, F, defined on U such that ef" = f.

Let f be defined and analytic near the point a € C. Show that then f(z) = > ;- bk (z — a)"® whenever
|z — a] < R where R is the distance between a and the nearest point where f fails to have a derivative.
The number R, is called the radius of convergence and the power series is said to be expanded about
a.

Find the radius of convergence of the function 1—5-% expanded about a = 2. Note there is nothing wrong
with the function, H% when considered as a function of a real variable, z for any value of z. However,
if we insist on using power series, we find that there is a limitation on the values of x for which the
power series converges due to the presence in the complex plane of a point, 7, where the function fails

to have a derivative.

. What if we defined an open set, U to be simply connected if C\ U is connected. Would it amount to

the same thing? Hint: Consider the outside of B (0,1).

Let v (t) = €' : t € [0,27]. Find f7 Ldzforn=1,2,--.

Show z‘fo% (2cos0)*" d = I, (z+ %)% (1) dz where v(t) = € : t € [0,27]. Then evaluate this
integral using the binomial theorem and the previous problem.

Let f: U — C be analytic and f (2) = u(x,y) + iv (x,y) . Show u, v and uv are all harmonic although
it can happen that u? is not. Recall that a function, w is harmonic if wy, + Wyy = 0.

Suppose that for some constants a,b # 0, a,b € R, f(z+ib) = f(z) forall z € Cand f (2 4+ a) = f(2)
for all z € C. If f is analytic, show that f must be constant. Can you generalize this? Hint: This
uses Liouville’s theorem.

Suppose f (z) = u(z,y) + v (x,y) is analytic for z € U, an open set. Let g (2) = u* (x,y) + w* (z,y)

where
u* U
(v )=e()
where ) is a unitary matrix. That is QQ* = Q*Q = I. When will g be analytic?

Suppose f is analytic on an open set, U, except for v ([a,b]) C U where 7 is a continuous function
having bounded variation, but it is known that f is continuous on 7 ([a,b]). Show that in fact f
is analytic on ~ ([a,b]) also. Hint: Pick a point on v ([a,b]), say 7 (o) and suppose for now that
to € (a,b). Pick r > 0 such that B = B (v (to),r) C U. Then show there exists t; < to and to > tg
such that ~ ([t1,2]) € B and « (t;) ¢ B. Thus v ([t1,t2]) is a path across B going through the center

of B which divides B into two open sets, By, and By along with v ([a,b]). Let the boundary of By
£ f(w)

consist of v ([t1,t2]) and a circular arc, Ci. Now letting z € By, the line integral of +-== over v ([a, b])

in two different directions cancels. Therefore, if z € By, you can argue that f(z) = ﬁ fc {U (sz) dw.
By continuity, this continues to hold for z € v ((¢1,t2)) . Therefore, f must be analytic on v ((¢1,%1))
also. This shows that f must be analytic on v ((a,b)). To get the endpoints, simply extend v to have
the same properties but defined on [a — €,b + €] and repeat the above argument or else do this at the

beginning and note that you get [a,b] C (a —e,b+¢).

Let U be an open set contained in the upper half plane and suppose that there are finitely many line
segments on the z axis which are contained in the boundary of U. Now suppose that f is defined and
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12.

real on these line segments and is defined and analytic on U. Now let U denote the reflection of U
across the x axis. Show that it is possible to extend f to a function, g defined on all of

W = U UU U {the line segments mentioned earlier}

such that g is analytic in W. Hint: For z € U, the reflection of U across the z axis, let g (z) = f(2).
Show that g is analytic on U UU and continuous on the line segments. Then use Problem 10 to argue
that ¢ is analytic on the line segments also. The result of this problem is know as the Schwarz reflection
principle.

Show that rotations and translations of analytic functions yield analytic functions and use this obser-
vation to generalize the Schwarz reflection principle to situations in which the line segments are part
of a line which is not the x axis. Thus, give a version which involves reflection about an arbitrary line.
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The open mapping theorem

In this chapter we present the open mapping theorem for analytic functions. This important result states
that analytic functions map connected open sets to connected open sets or else to single points. It is very
different than the situation for a function of a real variable.

8.1 Zeros of an analytic function

In this section we give a very surprising property of analytic functions which is in stark contrast to what
takes place for functions of a real variable. It turns out the zeros of an analytic function which is not constant
on some region cannot have a limit point.

Theorem 8.1 Let U be a connected open set (region) and let f : U — C be analytic. Then the following
are equivalent.

1. f(2)=0forallzeU
2. There exists zo € U such that f™ (20) = 0 for all n.
3. There exists zy € U which is a limit point of the set,

Z=A{z€U: f(z)=0}.

Proof: It is clear the first condition implies the second two. Suppose the third holds. Then for z near
zp we have

2 p(n) (4
CED SEAC Y
n=k ’

where k > 1 since zq is a zero of f. Suppose k < oo. Then,
k
f(z)=(2—20)" g(2)
where g (z9) # 0. Letting z, — zo where z, € Z, z,, # 2o, it follows
0= (Zn - ZO)kg (Zn)

which implies g (z,) = 0. Then by continuity of g, we see that g (z9) = 0 also, contrary to the choice of k.
Therefore, k cannot be less than co and so zg is a point satisfying the second condition.
Now suppose the second condition and let

SE{ZGU:f(")(z):Oforalln}.

75
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It is clear that S is a closed set which by assumption is nonempty. However, this set is also open. To see
this, let z € S. Then for all w close enough to z,

© £(k) (5
Fay =3I
k=0

k!

Thus f is identically equal to zero near z € S. Therefore, all points near z are contained in S also, showing
that S is an open set. Now U = S U (U \ S), the union of two disjoint open sets, S being nonempty. It
follows the other open set, U \ S, must be empty because U is connected. Therefore, the first condition is
verified. This proves the theorem. (See the following diagram.)

1)
2.) — 3.)

Note how radically different this is from the theory of functions of a real variable. Consider, for example
the function

_ xzsin(%) ifzx#0
f(f”)—{ 0ifz=0

which has a derivative for all x € R and for which 0 is a limit point of the set, Z, even though f is not
identically equal to zero.

8.2 The open mapping theorem

With this preparation we are ready to prove the open mapping theorem, an even more surprising result than
the theorem about the zeros of an analytic function.

Theorem 8.2 (Open mapping theorem) Let U be a region in C and suppose f : U — C is analytic. Then
f(U) is either a point or a region. In the case where f (U) is a region, it follows that for each zy € U, there
exists an open set, V containing zy such that for all z € V,

f(z)=f(z0) + ()" (8.1)

where ¢ : V — B(0,0) is one to one, analytic and onto, ¢ (z0) = 0, ¢' (z) # 0 on V and ¢~ analytic on
B(0,0). If f is one to one, then m = 1 for each zo and f=1: f (U) — U is analytic.

Proof: Suppose f (U) is not a point. Then if zg € U it follows there exists r > 0 such that f (z) # f (z0)
for all z € B (z0,7) \ {20} . Otherwise, zp would be a limit point of the set,

{zeU:f(z) - f(20) =0}

which would imply from Theorem 8.1 that f(z) = f(z¢) for all z € U. Therefore, making r smaller if
necessary, we may write, using the power series of f,

f(2)=f(20)+(z=20)" g (2)

for all z € B(zp,r), where g(z) # 0 on B (zy,r). Then % is an analytic function on B (zg,r) and so
by Corollary 7.5 it has a primitive on B (2p,7), h. Therefore, using the product rule and the chain rule,
(ge‘h)/ = 0 and so there exists a constant, C' = e*** such that on B (zo,7),

ge~l = gatib
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Therefore,

g (Z) _ eh(z)+a+ib
and so, modifying h by adding in the constant, a + ib, we see g (z) = e"*) where b’ (z) = % on B (zg,7).
Letting

h(z)

d(2)=(z—20)e™

we obtain the formula (8.1) valid on B (29, r) . Now

h(z0)

¢ (20) =e ™ #0

and so, restricting  we may assume that ¢’ (z) # 0 for all z € B (20,7). We need to verify that there is an
open set, V contained in B (zg,7) such that ¢ maps V onto B (0,0) for some ¢ > 0.
Let ¢ (2) = u(z,y) + v (x,y) where z = x + iy. Then

(s )=(5)

because for zg = x¢ + iyo, ¢ (20) = 0. In addition to this, the functions u and v are in C* (B (0,7)) because
¢ is analytic. By the Cauchy Riemann equations,

Uz (20, Y0) Uy (T0,Yo) _
vz (€0,50) vy (0, o)

Uz (20,%0) —vz (0, Yo)
vz (Z0,Y0) Uz (%o, Y0)

=2 (20, 0) + v2 (20, 50) = |9’ (z0)|° # 0.

Therefore, by the inverse function theorem there exists an open set, V, containing zy and 4 > 0 such that
(u,v)" maps V one to one onto B (0,6). Thus ¢ is one to one onto B (0,d) as claimed. It follows that ¢™
maps V onto B (0,6™). Therefore, the formula (8.1) implies that f maps the open set, V, containing 2 to
an open set. This shows f (U) is an open set. It is connected because f is continuous and U is connected.
Thus f (U) is a region. It only remains to verify that ¢—! is analytic on B (0,d). We show this by verifying

the Cauchy Riemann equations.
u(z,y) \ _ ([ u
(et )= (%) e

Let
for (u,v)" € B(0,68). Then, letting w = u + iv, it follows that ¢~ (w) = a (u,v) + iy (u,v). We need to
verify that

Ty = Yoy Ty = —Yu. (8.3)

The inverse function theorem has already given us the continuity of these partial derivatives. From the
equations (8.2), we have the following systems of equations.

Ug Ty + UyYu = 1 Uy Xy + UyYoy = 0
Vg Xy + VyYu = 07 wvpmwy, + VyYv = 1-

Solving these for z,,¥y,, ., and ¥,, and using the Cauchy Riemann equations for v and v, yields _(8.3).
It only remains to verify the assertion about the case where f is one to one. If m > 1, then e # 1 and
so for z; €V,

€%¢(zl) # ¢(21)-
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i

But e ¢ (21) € B (0,8) and so there exists z, # 21 (since ¢ is one to one) such that ¢ (z2) = e ¢ (21) . But
then

o)™ = (%0 ()" = o)

implying f (z2) = f (21) contradicting the assumption that f is one to one. Thus m = 1 and f/ (2) = ¢’ (2) #
0 on V. Since f maps open sets to open sets, it follows that f~! is continuous and so we may write

—1y - - (=)= (f(2)
(e = Fe)—f(2) f(z)—f(2)

- 1
= lim AT =

zlﬁzf(21) —f(Z) fl (Z)

This proves the theorem.

One does not have to look very far to find that this sort of thing does not hold for functions mapping R
to R. Take for example, the function f (z) = x2. Then f (R) is neither a point nor a region. In fact f (R)
fails to be open.

8.3 Applications of the open mapping theorem

Definition 8.3 We will denote by p a ray starting at 0. Thus p is a straight line of infinite length extending
in one direction with its initial point at 0.

As a simple application of the open mapping theorem, we give the following theorem about branches of
the logarithm.

Theorem 8.4 Let p be a ray starting at 0. Then there exists an analytic function, L (z) defined on C\ p
such that

el®) = 2.
We call L a branch of the logarithm.

Proof: Let 6 be an angle of the ray, p. The function, e* is a one to one and onto mapping from
R + (6,0 + 27) to C\ p and so we may define L (z) for z € C\ p such that e“(*) = z and we see that L
defined in this way is analytic on C\ p because of the open mapping theorem. Note we could just as well
have considered R + i (6 — 27, 0) . This would have given another branch of the logarithm valid on C\ p.
Also, there are infinitely many choices for 6, each of which leads to a branch of the logarithm by the process
just described.

Here is another very significant theorem known as the maximum modulus theorem which follows imme-
diately from the open mapping theorem.

Theorem 8.5 (mazimum modulus theorem) Let U be a bounded region and let f : U — C be analytic and
f:U — C continuous. Then if z € U,

1F (2)] < maxc{|f (w)] : w € OU}. (8.4)
If equality is achieved for any z € U, then f is a constant.

Proof: Suppose f is not a constant. Then f (U) is a region and so if z € U, there exists > 0 such that
B(f(2),r) C f(U). It follows there exists z; € U with |f (21)| > |f (2)|. Hence max {|f (w)| : w € U} is
not achieved at any interior point of U. Therefore, the point at which the maximum is achieved must lie on
the boundary of U and so

max {|f (w)| : w € OU} = max {|f (w)| :w € U} > |f (2)]

for all z € U or else f is a constant. This proves the theorem.
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8.4 Counting zeros

The above proof of the open mapping theorem relies on the very important inverse function theorem from
real analysis. The proof features this and the Cauchy Riemann equations to indicate how the assumption
f is analytic is used. There are other approaches to this important theorem which do not rely on the
big theorems from real analysis and are more oriented toward the use of the Cauchy integral formula and
specialized techniques from complex analysis. We give one of these approaches next which involves the notion
of “counting zeros”. The next theorem is the one about counting zeros. We will use the theorem later in the
proof of the Riemann mapping theorem.

Theorem 8.6 Let U be a region and let v : [a,b] — U be closed, continuous, bounded variation, and
n(y,z) =0 for all z ¢ U. Suppose also that f is analytic on U having zeros ay,- - -+, an,, where the zeros are
repeated according to multiplicity, and suppose that none of these zeros are on 7 ([a,b]). Then

', <
9 ,Yf(z)dz_;n(%ak)'

Proof: We are given f (2) = [[j~, (+ — a;) g () where g (2) # 0 on U. Hence

and so

[N~}
3|
3
4\
*ﬁ“&
Nt\z
<
HMS
M
3
2
e
h
3
Q|
RIS
.
N

But the function, z — % is analytic and so by Corollary 7.9, the last integral in the above expression

equals 0. Therefore, this proves the theorem.

Theorem 8.7 Let U be a region, let vy : [a,b] — U be closed continuous, and bounded variation such that
n(y,z) =0 for all z ¢ U. Also suppose f : U — C is analytic and that o ¢ f (v ([a,b])). Then fovy: [a,b] — C

is continuous, closed, and bounded variation. Also suppose {ai,- -+, am} = f~'(a) where these points are
counted according to their multiplicities as zeros of the function f —a Then
m
O v, Z n 71 ak
k=1

Proof: It is clear that f o~ is continuous. It only remains to verify that it is of bounded variation.
Suppose first that v ([a,b]) € B C B C U where B is a ball. Then

f(y@®) = f(v ()] =

1
; Friv(s)+ A0y @) —7(s) (v (&) =7 (s)) dA
< Clhy(®) =7 (s)l

where C' > max {|f’ (2)| : 2 € B} . Hence, in this case,

V(fon,lab]) <CV (v,[a,b]).
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Now let e denote the distance between 7 ([a,b]) and C \ U. Since v ([a,b]) is compact, ¢ > 0. By uniform
continuity there exists 6 = >=% for p a positive integer such that if [s — ¢| < 0, then |y (s) — v (¢)| < 5. Then

(tt+d) S B(v(0).5) U

Let C > max{|f’ (2):2zeV_\B (v (t5), %)} where t; = % (b — a) + a. Then from what was just shown,

1

p

V(f077 [aab]) < V(fO’Yv [tj’tj-‘rl])

<.
1)
? o
—

< C) Vit <o

showing that f o~ is bounded variation as claimed. Now from Theorem 7.6 there exists n € C* ([a, b]) such
that

n(a) =v(a) =~ () =n(b), n(la,b]) €U,
and
n(n7ak) :n(77ak)7 n(fo'%a) :”(foﬁva) (85)
for k=1,---,m. Then

n(foy,a)=n(fon,a)

1 dw

211

fon W

_ f’ @)

N 271'2/ f(n@@) n (1) dt
_ [ (2)

N 27rz/f dz

= n (0, ax)
k=1

By Theorem 8.6. By (8.5), this equals ;- n (v, a;) which proves the theorem.
The next theorem is very interesting for its own sake.

Theorem 8.8 Let f: B(a,R) — C be analytic and let
fe)—a=(z-a)"g(2), 0>m=1

where g (z) # 0 in B(a,R). (f (2) — « has a zero of order m at z = a.) Then there exist £,§ > 0 with the
property that for each z satisfying 0 < |z — | < 6, there exist points,

{ala' : 'vam} - B(CL,E),
such that
f! (2)NB(a,e) ={a1, - am}

and each ay, is a zero of order 1 for the function f () — z.
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Proof: By Theorem 8.1 f is not constant on B (a, R) because it has a zero of order m. Therefore, using
this theorem again, there exists ¢ > 0 such that B (a,2¢) C B (a, R) and there are no solutions to the equation
f(z) —a=0for z € B(a,2¢) except a. Also we may assume ¢ is small enough that for 0 < |z — a| < 2e,
1" (2) # 0. Otherwise, a would be a limit point of a sequence of points, z,, having f’ (z,) = 0 which would
imply, by Theorem 8.1 that f/ = 0 on B (0, R), contradicting the assumption that f has a zero of order m
and is therefore not constant.

Now pick 7 (t) = a + ee?,t € [0,27]. Then « & f (v ([0, 27])) so there exists § > 0 with

B (a,8) N f (v ([0,2])) = 0. (8.6)

Therefore, B («, ¢) is contained on one component of C\ f (v ([0, 27])) . Therefore, n (f ov,a) =n(f o7, z2)
for all z € B(«a,d). Now consider f restricted to B (a,2¢). For z € B (a, ), f~!(z) must consist of a finite
set of points because [’ (w) # 0 for all w in B (a,2¢) \ {a} implying that the zeros of f (-) — z in B (a,2e¢)
have no limit point. Since B (a,2¢) is compact, this means there are only finitely many. By Theorem 8.7,

p
fov,2) =Y n(v,a) (8.7)
k=1

where {a1,---,a,} = f~ (2). Each point, aj of f~! (z) is either inside the circle traced out by =, yielding
n (y,ar) = 1, or it is outside this circle yielding n (v, ar) = 0 because of (8.6). It follows the sum in (8.7)
reduces to the number of points of f~!(z) which are contained in B (a,c). Thus, letting those points in
£~ (2) which are contained in B (a,¢) be denoted by {a1,- - -, a,}

n(fovy,a)=n(foy,2)=

We need to verify that » = m. We do this by computing n (f o7, «). However, this is easy to compute by
Theorem 8.6 which states

m
fov,a Zn

k=1

Therefore, » = m. Each of these ay is a zero of order 1 of the function f (-) — z because f'(aj) # 0. This
proves the theorem.

This is a very fascinating result partly because it implies that for values of f near a value, «, at which
f(-) — « has a root of order m for m > 1, the inverse image of these values includes at least m points, not

just one. Thus the topological properties of the inverse image changes radically. This theorem also shows
that f (B (a,e)) 2 B(«,9).

Theorem 8.9 (open mapping theorem) Let U be a region and f : U — C be analytic. Then f (U) is either
a point or a region. If f is one to one, then f~1: f(U) — U is analytic.

Proof: If f is not constant, then for every a € f (U), it follows from Theorem 8.1 that f (-) —a has a zero
of order m < oo and so from Theorem 8.8 for each a € U there exist €, > 0 such that f (B (a,¢)) D B(a, )
which clearly implies that f maps open sets to open sets. Therefore, f (U) is open, connected because f is
continuous. If f is one to one, Theorem 8.8 implies that for every a € f (U) the zero of f (-) — a is of order
1. Otherwise, that theorem implies that for z near «, there are m points which f maps to z contradicting
the assumption that f is one to one. Therefore, f’(2) # 0 and since f~! is continuous, due to f being an
open map, it follows we may write

—1y/ — im L) -1 (2)
R Ay
= im S = !
=) P

This proves the theorem.
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8.5 The estimation of eigenvalues

Gerschgorin’s theorem gives a convenient way to estimate eigenvalues of a matrix from easy to obtain
information. For A an n x n matrix, we denote by o (A) the collection of all eigenvalues of A.

Theorem 8.10 Let A be an n x n matrixz. Consider the n Gerschgorin discs defined as

D, = )\G(C:|)\—aii|§2|aij\
J#i

Then every eigenvalue is contained in some Gerschgorin disc.

This theorem says to add up the absolute values of the entries of the i® row which are off the main
diagonal and form the disc centered at a;; having this radius. The union of these discs contains o (A).
Proof: Suppose Ax = Ax where x # 0. Then for A = (a;;)

Zaijxj = ()\ — Cbii) ZTj.

i

Therefore, if we pick k such that |zg| > |z;| for all z;, it follows that |zj| # O since |x| # 0 and

Tk Qkj| = Qkj| |T5| 2 — ikl | Tk -
lzel ) lawsl = ) laws| ;] = [A | k]

J#k J#k

Now dividing by |zx| we see that A is contained in the k** Gerschgorin disc.
More can be said and it is in doing so that we make use of the theory above about counting zeros. To
begin with we will agree to measure distance between two n x n matrices, A = (a;;) and B = (b;;) as follows.

1A= B = |ai; — bi|*.

j

Thus two matrices are close if and only if their corresponding entries are close.

Let A be an n x n matrix. Recall that the eigenvalues of A are given by the zeros of the polynomial,
pa (z) = det (2I — A) where I is the n x n identity. We see that small changes in A will produce small
changes in py (z) and p’y (2). Let 75 denote a very small closed circle which winds around zj, one of the
eigenvalues of A, in the counter clockwise direction so that n (v, zx) = 1. This circle is to enclose only zj
and is to have no other eigenvalue on it. Then apply Theorem 8.6. According to this theorem

L[PG,
QWi-/ypA(Z)d

is always an integer equal to the multiplicity of zj as a root of p4 (t) . Therefore, small changes in A result in
no change to the above contour integral because it must be an integer and small changes in A result in small
changes in the integral. Therefore whenever every entry of the matrix B is close enough to the corresponding
entry of the matrix A, the two matrices have the same number of zeros inside v if we agree to count the
zeros according to multiplicity. By making the radius of the small circle equal to € where € is less than the
minimum distance between any two distinct eigenvalues of A, this shows that if B is close enough to A,
every eigenvalue of B is closer than ¢ to some eigenvalue of A. We now state the following conclusion about
continuous dependence of eigenvalues.

Theorem 8.11 If \ is an eigenvalue of A, then if || B — A|| is small enough, some eigenvalue of B will be
within € of \.
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We now consider the situation that A (¢) is an n x n matrix and that ¢ — A (¢) is continuous for ¢ € [0, 1] .

Lemma 8.12 Let A(t) € o (A(t)) fort < 1 and let £y = Us>0 (A(s)). Also let K; be the connected
component of A (t) in ;. Then there exists n > 0 such that Ky No (A(s)) # 0 for all s € [t,t + 7).

Proof: Denote by D (A (t),0) the disc centered at A (¢) having radius § > 0, with other occurrences of
this notation being defined similarly. Thus

D(A(t),0)={zeC:|\(t) — 2| <d}.

Suppose ¢ > 0 is small enough that A (¢) is the only element of o (A (¢)) contained in D (A (t),d) and that
Pa(t) has no zeroes on the boundary of this disc. Then by continuity, and the above discussion and theorem
we can say there exists n > 0,t4n < 1, such that for s € [t,t + 1], PA(s) also has no zeroes on the boundary
of this disc and that A (s) has the same number of eigenvalues, counted according to multiplicity, in the disc
as A(t). Thus o (A(s))ND(A(t),d) # D for all s € [t,¢+ n]. Now let

H= |J o(4()ND(A(1),5).

sE[t,t+n]
We will show H is connected. Suppose not. Then H = P U Q where P, Q are separated and A (t) € P. Let
so=inf{s: X(s) € Q for some \(s) € o (A(s))}.

We know there exists A (sg) € 0 (A (s0)) N D (A(t),0). If A(so) ¢ Q, then from the above discussion there

A(s)eo(A(s))NQ

for s > sg arbitrarily close to A (sg). Therefore, A (sg) € @ which shows that so > ¢ because A (¢) is the only
element of o (A (t)) in D (A (¢),0) and A (¢) € P. Now let s, T s9. We know A (s,,) € P for any

A(sn) € 0 (A(s0)) N D (A (D), 0)

and we also know from the above discussion that for some choice of s,, — sg, we have A (s,,) — A (sg) which

contradicts P and @ separated and nonempty. Since P is nonempty, this shows Q = 0. Therefore, H is

connected as claimed. But K; D H and so Ky No (A(s)) # 0 for all s € [t,t + n]. This proves the lemma.
Now we are ready to prove the theorem we need.

Theorem 8.13 Suppose A(t) is an n X n matriz and that t — A(t) is continuous for t € [0,1]. Let
A(0) € 0 (A(0)) and define ¥ = Uyejo1)0 (A(t)). Let Kyy = Ko denote the connected component of A (0)
in 3. Then KoNo (A(t)) #0 for allt €[0,1].

Proof: Let S = {t€[0,1]: KgNo (A(s)) #0 for all s € [0,¢]}. Then 0 € S. Let to = sup(S). Say
o (A(tg)) = A (to), - -, A\ (to). We claim at least one of these is a limit point of Ky and consequently
must be in Ky which will show that S has a last point. Why is this claim true? Let s, T tg so s, € S.
Now let the discs, D (A; (to),6),7 = 1,---,r be disjoint with p4,) having no zeroes on ; the boundary
of D (A; (to),9). Then for n large enough we know from Theorem 8.6 and the discussion following it that
o (A(sy)) is contained in Ul_; D (X; (tg),d). Tt follows that Ko N (o (A (to)) + D (0,8)) # 0 for all § small
enough. This requires at least one of the \; (¢y) to be in Kj. Therefore, ¢y € S and S has a last point.

Now by Lemma 8.12, if ty < 1, then KoUK, would be a strictly larger connected set containing A (0) . (The
reason this would be strictly larger is that KoNo (A (s)) = 0 for some s € (t,t +n) while K;No (A(s)) #0
for all s € [t,t +n].) Therefore, tx = 1 and this proves the theorem.

Now we can prove the following interesting corollary of the Gerschgorin theorem.
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Corollary 8.14 Suppose one of the Gerschgorin discs, D; is disjoint from the union of the others. Then
D; contains an eigenvalue of A. Also, if there are n disjoint Gerschgorin discs, then each one contains an
eigenvalue of A.

Proof: Denote by A (t) the matrix (af;) where if i # j, af; = ta;; and af; = as. Thus to get A (t) we
multiply all non diagonal terms by ¢. We let ¢ € [0,1]. Then A(0) = diag (a11,- -, ann) and A (1) = A.
Furthermore, the map, t — A (t) is continuous. Denote by D; the Gerschgorin disc obtained from the ;"
row for the matrix, A (t). Then it is clear that D} C D; the §*" Gerschgorin disc for A. We see that a;; is
the eigenvalue for A (0) which is contained in the disc, consisting of the single point a;; which is contained in
D;. Letting K be the connected component in ¥ for 3. defined in Theorem 8.13 which is determined by a;;,
we know by Gerschgorin’s theorem that K N (A (t)) C Uj_; D% C UJ_; D;j = D; U (U;%;D;) and also, since
K is connected, we cannot have points of K in both D; and (U;%;D;) . Since we know at least one point of
K which is in D;,(a;;) it follows all of K must be contained in D;. Now by Theorem 8.13 this shows there
are points of K No (A) in D;. The last assertion follows immediately.

Actually, we can improve the conclusion in this corollary slightly. It involves th