(1) Find all solutions modulo 17,97 , and 105 , respectively, to the congruences $5 x+3 \equiv 9$ $(\bmod 17), 18 y-23 \equiv 5(\bmod 97)$, and $14 x+3 \equiv 10(\bmod 105)$. Show your work.
(2) Let a be a positive integer with $\operatorname{gcd}(a, 26)=1$. Suppose $A=0, B=1, C=2$, etc. Why will the function $x \mapsto a x^{2}(\bmod 26)$ not work as a cipher system? For example, if $a=11$, then $C=2 \mapsto 11 \cdot 2^{2} \equiv 18(\bmod 26)=S$.
(3) For the following ciphertext, the first part was encrypted by a shift cipher. Decrypt both parts.

