Vector-valued Modular Forms and
the Seventh Order Mock Theta Functions

Nickolas Andersen

Abstract In 1988, Hickerson proved the mock theta conjectures (identities in-
volving Ramanujan’s fifth order mock theta functions) using g-series methods. In
a follow-up paper he proved three analogous identities which involve Ramanujan’s
seventh order mock theta functions. Recently the author gave a unified proof of
the mock theta conjectures using the theory of vector-valued modular forms which
transform according to the Weil representation. Here we apply the method to Hick-
erson’s seventh order identities.

1 Introduction

In his last letter to Hardy, Ramanujan introduced a new class of functions which he
called mock theta functions, and he listed 17 examples [3, p. 220]. Each of these
he labeled third order, fifth order, or seventh order. The seventh order mock theta
functions are

n2

Fo(q) == i 1

n=0 (‘]"H’CI)n’
oo n+1)
F1(q) =
( ) ; (@ 59)nr1 >q n+1
oo n(n+1)
g (@, q)nr1 ,C] n+1
Here we have used the standard g-Pochhammer notation (a;q), := [T"_} (1 — ag™).

In Ramanujan’s lost notebook there are many identities which relate linear combi-
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nations of mock theta functions to modular forms. Andrews and Garvan [2] named
ten of these identities, those which involved the fifth order mock theta functions, the
mock theta conjectures. Hickerson proved two of these identities in [11]; his proof,
together with the work of Andrews and Garvan [2], established the truth of the mock
theta conjectures. In a companion paper [10] immediately following [11], Hickerson
proved analogous identities for the seventh order mock theta functions, namely

%(q)zqu(i,d)H—W, M
F1(q) =2aM(3.4) +qj((;’:;’;f, @
F1(q) ZZqM(%Cf) +j<5]2”qq)7j- 3)
Here (following the notation of [9])
o 7'

M(rq) =},

= (@) (g 5 9)n

and
j(qpvq7) = (qpvq7)°°(q7_pvq7)°°(q7aq7)°°'
We will refer to (1)—(3) as the seventh order mock theta conjectures.

Zwegers [14] showed that the mock theta functions can be completed to real
analytic modular forms of weight 1/2 by multiplying by a suitable rational power
of ¢ and adding nonholomorphic integrals of certain unary theta series of weight
3/2. This allows the mock theta functions to be studied using the theory of modular
forms. Recently the author [1], building on Zwegers’ work and work of Bringmann—
Ono [5], proved the mock theta conjectures using the theory of vector-valued mod-
ular forms. The purpose of this paper is to apply this method to prove the seventh
order mock theta conjectures.

We begin by defining two nonholomorphic vectors F' and G corresponding to the
left-hand and right-hand sides of (1)—(3), respectively, and we establish their trans-
formation properties using the results of [14, 5, 8]. Next, we construct a holomorphic
vector-valued modular form .7 from the components of F — G which transforms
according to the Weil representation (see Lemma 4 below). There is a natural iso-
morphism between the space of such forms and the space Ji 4o of Jacobi forms of
weight 1 and index 42. The seventh order mock theta conjectures follow from the
result of Skoruppa that J; ,, = {0} for all m > 1.
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2 Definitions and Transformations

In this section, we describe the transformation behavior for the functions M(%,q)
and j(gP,q’) and the mock theta functions under the generators

T := ((]) 1) and S:= (? _01)

of SL,(Z). We employ the usual |, notation, defined for k € R and y = (¢4) €
SL»(Z) by

(1)) = (ez+d) £ (

We always take argz € (—m, ]. It is not always the case that f|kAB = f|kA’kB, but
fork e %Z we have

az+b)
cz+d)’

fl,AB==f|AlB 4)

(see [12, §2.6]). Much of the arithmetic here and throughout the paper takes place in
the splitting field of the polynomial x® — 7x* + 14x*> — 7, which has roots +k, +A,
+u, where

. . 27 . 3m
K.—2s1n7, )u.—2$1n77 [,L.—251n7. (5)

The modular transformations satisfied by the mock theta functions .%, .%, and
%, are given in Sect. 4.3 of [14]. The nonholomorphic completions are written in
terms of the nonholomorphic Eichler integral (see [14, Proposition 4.2])

_ 8a,—b\T) b
= —1
/—z \/ =i T—|—Z
where g, (see [14, §1.5]) is the unary theta function

2
iV z+2mvb
8a b( Z ve
vea+Z

Let ¢ := exp(27iz) and §,, := exp(27i/m). Following §4.3 of [14] we define

Fo(2) =g 5 Fo(a) + G (S Ry +CnRy 1 ) (212), (©)
Fi@)=a WA @)+ 6 (8R4 + LRy ) (212) ™
F(2) =g Falg )+Cl4<C121R4— 4 CuR%,%)(le). (3)

Note that we have used Proposition 1.5 of [14] to slightly modify the components of
G7(7) on p. 75 of [14]. The following is Proposition 4.5 of [14] (we have rearranged
the order of the components of the vector F; in that proposition).
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Proposition 1. The vector

F(2) = (Z0(2),71(),72(2))" ©)

satisfies the transformations

-1 1
F|,T=MrF and F|%S:C81%MSF7

where
g 0 0 K A U
Mr=| 0 & 0 and Mg=| A —-p K
0 0 &M u kK —A

Following [5, 9], we define, for 1 < a < 6, the functions

g""=

M(5)=1 , (10)

7QQ)n

N( ) ; (85q:9)n (C{“q;Q)n'

Clearly we have M(1 —4,z) = M(5,z) and N(1 — 4,z) = N(%,z). Bringmann and
Ono [3] also define auxiliary functions M(a,b,7,z) and N(a,b,7,z) for 0 <a <6
and 1 < b < 6. Together, the completed versions of these functions form a set that
is closed (up to multiplication by roots of unity) under the action of SL,(Z) (see
[5, Theorem 3.4]). Garvan [8] corrected the definitions of these functions and wrote
their transformation formulas more explicitly, so in what follows we reference his
paper.

The nonholomorphic completions for M(%,z) and N(,z) are given in terms of
integrals of weight 3/2 theta functions @1 (4,z) and @1 (0, —a,7,z) (defined in Sect. 2
of [8]). A straightforward computation shows that

(1)

01(0,~a,7,2) = 21V3 L (L5 gur 1 (32) + Ciogan 1 (32)).

Following (2.5), (2.6), (3.5), and (3.6) of [8], we define
M(%,Z) = Zq%(l—%)_i M(g7z)

|
27T ifa=1
+C14(C121R6" 11 +C12Rsa+7’1)(3z) { q ra=1,

12
0 ifa=2,3, (12)

ﬁ(%,z):zcse(?)q_ﬁN( ) f'ij\/(%ri’:zd (13)
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The completed functions M (a,b,z) := %(a,b,7;z) and N(a,b,z) := % (a,b,7;2)
are defined in (3.7) and (3.8) of that paper. By Theorem 3.1 of [8] we have

. . Sl ifa=1,
M(77Z>‘%T7:M<7,z)>< B ifg=2, (14)
e ifa=3,
N4, T=8(5.2), (15)
and
1\71(2,2)|%S:§8*1ﬁ(§,z). (16)

The functions j(g”,q’) are essentially theta functions of weight 1/2. It will be
more convenient to work with (following [4])

(1-2p)?

fr@)=Fp@=q % jg.q). (17)

The transformation properties of theta functions are well-known; for f,(z) we have
(see e.g. [9, pp. 217-218])

A —UK
()= |~ =k 4 | (Fi /o) (18)
K A u

The mock theta conjectures (1)—(3) are implied by the corresponding completed
versions:

Fol) =it (4.7) - ’;;2 2, (19)
F1(2) :M(%JZ) n {;2((5)), (20)
Fa0) =01 (2.7:) + 1;22 2. @n
Motivated by (9) and (19)~(21), we define the vector
(5.72) - é((zz))
6= | (2 >+]:;2((ZZ)) . (22)
M(5.72) + fﬁ((zz))
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To prove that F' = G we first show that they transform in the same way.
Proposition 2. The vector G(z) defined in (22) satisfies the transformations

G[,T=MrG and G|%S:4‘8‘1\%MSG, (23)

where Mt and My are as in Proposition 1.

In order to prove Proposition 2 we require the following three identities (equiva-
lent identities can be found on p. 220 of [9] without proof).

Lemma 1. Let k, A, and [ be as in (5). Then

N (3.2) — (0 (3,492) + A0 (3,492) + i (3,492) )
= o [ (<N D+ (02 + 1 £(72))
—Kf3(T)+Aff(72) + 1 f7(72)]. (24)

We defer the proof of Lemma 1 to Sect. 5; here we deduce two immediate conse-
quences. Note that the right-hand side of (24) is holomorphic; this implies that the
non-holomorphic completion terms on the left-hand side sum to zero. By (11), the
coefficients of N(4,z) liein Q(§7+&; ') = Q(k?), and the automorphisms k2 — A2
and x? — u? map N(%,z) to N(%,z) and N(%,z), respectively. By (13) it follows that
the coefficients of both sides of (24) lie in Q(k). Let 7; and 1, be the automorphisms

= (k= A, A= —l, LK),
H=(K—U, A=K u——21).

Since v/7 = kAu, we have 7,(v/7) = ©(v/7) = —V/7. Applying 7; and 1, to
Lemma 1 gives the following identities.

Lemma 2. Let k, A, and [ be as in (5). Then
N(3.2) - (a8 (5.492) — bt (3,492) + et (3,492) )
1 1 2
= [ (A0 A7)+ 09)
A7) - fi(T) +x f5(72)]. (29
Lemma 3. Let k, A, and [ be as in (5). Then
]\7(%,2) — ([.UVI(%A%) + K‘]VI(%,49Z> 711\7[@,492))
1 1 2
= w77 |- A0 k70 = A £3(72)
R f5(72) +x fi(72) = A f3(72)]. (26)
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Proof (Proof of Proposition 2). The transformation with respect to T follows im-
mediately from (14). Let G;(z) denote the j-th component of G(z). By (16), (18),
and the fact that 1) | 1S=0g 1, we have

2

!S Csf

(1 z)_1(Kf1(Z)+/1fz(Z)+Hf3(Z))2
1)V () '

Applying Lemma 1 with z replaced by %, we find that
1 ~ () ~ /3
Gi(2)],5 =& [KM( ,7z)+lM<?,7z)+uM(?,7Z)

K@) -Aff() - uf%(z)}
n(z)

={! (KGl( ) +AGa(2) + UGs(2)).

The transformations for G, and G3 are similarly obtained using Lemmas 2 and 3,
respectively.

3 Vector-valued Modular Forms and the Weil Representation

In this section we define vector-valued modular forms which transform according
to the Weil representation, and we construct such a form from the components of
F — G. A good reference for this material is [6, Sect. 1.1].

Let L = Z be the lattice with associated bilinear form (x,y) = —84xy and
quadratic form g(x) = —42x>. The dual lattice is L' = ;7. Let {¢; : o5 € &;Z/Z}
denote the standard basis for C[L'/L]. Let Mp,(R) denote the metaplectic two-fold
cover of SL(R); the elements of this group are pairs (M,¢), where M = (¢4) €
SLy(R) and ¢?(z) = cz+d. Let Mp,(Z) denote the inverse image of SL,(Z) under
the covering map; this group is generated by

T:=(T,1) and S:=(5,/%).

The Weil representation can be defined by its action on these generators, namely

pr(T,1)ey = Cl’éﬁzeh, 27
PL(S,V/2)en := Z Ch ey, (28)

h’ 84)

A holomorphic function .% : H — C[L'/L] is a vector-valued modular form of
weight 1/2 and representation py, if

F(12) = 9()pL(v,9)F(z)  forall (v,9) € Mp,(Z) (29)
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and if .# is holomorphic at oo (i.e. if the components of .% are holomorphic at oo
in the usual sense). The following lemma shows how to construct such forms from
vectors that transform as in Propositions 1 and 2.

Lemma 4. Suppose that H = (H\,H,,H3) satisfies
11
H‘%T =MrH and H‘%S: [ WMSH,
where Mt and My are as in Proposition 1, and define

AH2):= Y  a(h)H (z)(en—ep)
h=1,13.29.41

- Z HZ(Z)(eh—Q,h) - Z I‘Ij/}(Z)(eh—B,h)7
h=5,19,23,37 h=11,17,25,31

where

11 ifh=1,41,
a, =
"TY21 irh=13,29.

Then A (z) satisfies (29).

Proof. The proof is a straightforward but tedious verification involving (27) and
(28) that is best carried out with the aid of a computer algebra system; the author
used MATHEMATICA.

4 Proof of the Mock Theta Conjectures

Let F' and G be as in Sect. 2. To prove (19)—(21) we will prove that H := F — G =
0. It is easy to see that the nonholomorphic parts of F' and G agree, as do the
terms in the Fourier expansion involving negative powers of g. It follows that the
function 77 defined in Lemma 4 is a vector-valued modular form of weight 1 /2 with
representation pr. By Theorem 5.1 of [7], the space of such forms is canonically
isomorphic to the space J; 42 of Jacobi forms of weight 1 and index 42. By a theorem
of Skoruppa [13, Satz 6.1] (see also [7, Theorem 5.7]), we have J; ,, = {0} for all
m; therefore 7# = 0. The seventh order mock theta conjectures (1)—(3) follow. 0O

5 Proof of Lemma 1

We begin with a lemma which describes the modular transformation properties of
fp(z). Let vy, denote the multiplier system for the eta function (see [4, (2.5)]). For

Y= (‘Cl(’;),deﬁne
. ([ a nb
= (c/n d)'
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Lemma 5. Let p € {1,2,3}. If

yer() = {(2) eSLa(@): (45) = (1) (mod 7)),

then
Fo(ve) = va(m)Vez+d fo(2). (30)
Proof. Suppose that p € {1,2,3} and that y € I'(7). Lemma 2.1 of [4] gives

2(1
Folyz) = (=1)PPHPA/ TR VD (1) ez +d o (2).
Writing a = 1+ 7r and b = 71/, we find that
2a r T /
(_l)ph+Lpa/7j C1p4 b _ (_l)p(h+ +pbr+pb ) 31)

Using the fact that br+r =0 (mod 2) we find that, in each case, the right-hand side
of (31) equals 1. This completes the proof.

We are now ready to prove Lemma 1. Let L(z) and R(z) denote the left-hand and
right-hand sides of (24), respectively. Let I denote the congruence subgroup

I =I3(49)NI;(7) = {(j Z) :¢=0mod 49 and a,d = 1 mod 7}.

We claim that
N(z)L(z), n(2)R(z) € Mi(I'), (32)

where My(G) (resp. M (G)) denotes the space of holomorphic (resp. weakly holo-
morphic) modular forms of weight k on G C SL,(Z). We have

5ISLa(2) : T] = 14,

so once (32) is established it suffices to check that the first 15 coefficients of
N(z)L(z) and n(z)R(z) agree. A computation shows that the Fourier expansion of
each function begins

1 3 2 1\ 4 5 6 2 1y 7

2(; = K') +2Kq—2Uqg —Z(E —u— I)q —2xq” +2Aq +2<; —2K+ ﬁ)q
—|—4K‘q8—|—2<k—%—G—Z,u—%)qg—2,uq10—|—2(,u—|—l—21<)q14+....

To prove (32), we first note that Theorem 5.1 of [8] shows that 11(49z)L(z) €

M;(I"); since n(z)/1(49z) € M{(I5(49)) it follows that 1(z)L(z) € M;(I"). Using
Lemma 5 we find that 11(z)R(z) € M} (I") provided that

Vn(Y)Vg(}’@)

=1. 33
V(1) G

This follows from a computation involving the definition of vy [4, (2.5)].
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It remains to show that 1(z)L(z) and 1(z)R(z) are holomorphic at the cusps.
Using MAGMA we compute a set of I'-inequivalent cusp representatives:

Ol 35 3 4 3 8 5

{Ooa a??ﬁa%aﬁvﬁvﬁv§7ia
2 5 18 13 8 19 11 3 4 13 9 5 11 6 34
?7ﬁ7@7£7ﬁa@5%a?a?7i7ﬁ777ﬁ7?}' ( )

Given a cusp a € P! (Q) and a meromorphic modular form f of weight k with Fourier
expansion f(z) = ¥,cqa(n)q", the invariant order of f at a is defined as

ord(f,e) := min{n : a(n) # 0},
ord(f,a) := ord(f‘k&l,oo),
where 8, € SLy(Z) sends o to a. For N € N, we have the relation (see e.g. [4, (1.7)])

ord(F(N2), £) = X ora(f, 1), (35)

We extend this definition to functions f in the set

S={M(4,2.8(4,2):a=1,23}u{M(a,b,2).N(a,bz) :0<a<6,1<b<6}

by defining the orders of these functions at o to be the orders of their holomorphic
parts at oo (see Sect. 6.2, (2.1)—(2.4), and (3.5)—(3.8) of [8]); that is,

~5 ifa=0,
0rd([\2(%,z>,w):0rd(1\71(a,b,z),oo) = —ﬁ ifa=1,6, (36)
%(1—%)—% otherwise,
~ 1
Ord(N($7Z)7°°) == 37
~ b1 K|
ord(N(ab,2).) =3 (54k0.7)) —Jp =55 (38)
where
0 ifb=1,
1 ifb=2,3
k(b,7) := ! >
2 ifb=4,5,
3 ifb=6.

Lastly, for f € S we define

ord(f,a):= 0rd(f|%5a,oo). 39)
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This is well-defined since S is closed (up to multiplication by roots of unity) under
the action of SL»(Z). By this same fact we have

. . 1
> 00) = — —
ctIllsl[gla ord(f,a) 151’161? ord(g,) 53 (40)

for all f € S, from which it follows that
ord(nf,a) >0

for all cusps a and forall f € 5.
To determine the order of 1 (z)M (5,49z) at the cusps of I", we write

TI(Z)M(%,49Z) - mm(él%), where m(z) = n(z)M(%,z).
The cusps of I$(49) are oo and %, 0 < r < 6. By (35) the function n(z)/1(49z) is
holomorphic at every cusp except for those which are I(49)-equivalent to oo (the
latter are oo, %, and % in (34)); there we have ord(n(z)/n(49z),%) = —2. By (40),
to show that n(z)]\~4 (£,49z) is holomorphic at every cusp, it suffices to verify that
ord(m(49z), 75) > 2 for r = 18,19. By (35), [8, Theorems 3.1 and 3.2], the fact that
(r7") =T"ST, and (4), we have

ord (m(49z), %) = 490rd(m(z), 18)

— 49(% +ord(]\71(4a mod 7,4a mod 772)7""))

46 ifa=1,
=42 ifa=2,
50 ifa=3.

19

A similar computation shows that ord((49z), 55

on H, we have, for each cusp a, the inequality

) > 2. Since L(z) is holomorphic

ord(n(z)L(z),a)
> min{ord(11(2)£(2),0) : £(2) =N(4,2) or f(2) =M (%,492),1 <a <3} > 0.

We turn to 7 (z)R(z). Using Lemma 3.2 of [4], we find that

2 if7|sandpr=+2 (mod7),

ord(fp,5) =4 = if7|sandpr==+3 (mod7), 1)
1 .
= otherwise.

By (35) and (41) we have
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r 1 (775)2 . r
ord(n(Z)R(Z)7;) 2 51" 168 +2pr:111{121’30rd (fp(7z),§) > 0.

Therefore 11(z)R(z) € M; (I"), which proves (32) and completes the proof of Lemma 1.
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