
Vector-valued Modular Forms and
the Seventh Order Mock Theta Functions

Nickolas Andersen

Abstract In 1988, Hickerson proved the mock theta conjectures (identities in-
volving Ramanujan’s fifth order mock theta functions) using q-series methods. In
a follow-up paper he proved three analogous identities which involve Ramanujan’s
seventh order mock theta functions. Recently the author gave a unified proof of
the mock theta conjectures using the theory of vector-valued modular forms which
transform according to the Weil representation. Here we apply the method to Hick-
erson’s seventh order identities.

1 Introduction

In his last letter to Hardy, Ramanujan introduced a new class of functions which he
called mock theta functions, and he listed 17 examples [3, p. 220]. Each of these
he labeled third order, fifth order, or seventh order. The seventh order mock theta
functions are

F0(q) :=
∞

∑
n=0

qn2

(qn+1;q)n
,

F1(q) :=
∞

∑
n=0

q(n+1)2

(qn+1;q)n+1
,

F2(q) :=
∞

∑
n=0

qn(n+1)

(qn+1,q)n+1
.

Here we have used the standard q-Pochhammer notation (a;q)n := ∏
n−1
m=0(1−aqm).

In Ramanujan’s lost notebook there are many identities which relate linear combi-
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nations of mock theta functions to modular forms. Andrews and Garvan [2] named
ten of these identities, those which involved the fifth order mock theta functions, the
mock theta conjectures. Hickerson proved two of these identities in [11]; his proof,
together with the work of Andrews and Garvan [2], established the truth of the mock
theta conjectures. In a companion paper [10] immediately following [11], Hickerson
proved analogous identities for the seventh order mock theta functions, namely

F0(q) = 2qM
(

1
7
,q7
)
+2− j(q3,q7)2

(q,q)∞

, (1)

F1(q) = 2qM
(

2
7
,q7
)
+q

j(q,q7)2

(q,q)∞

, (2)

F2(q) = 2qM
(

3
7
,q7
)
+

j(q2,q7)2

(q,q)∞

. (3)

Here (following the notation of [9])

M(r,q) :=
∞

∑
n=1

qn(n−1)

(qr;q)n(q1−r;q)n

and
j(qρ ,q7) := (qρ ,q7)∞(q7−ρ ,q7)∞(q7,q7)∞.

We will refer to (1)–(3) as the seventh order mock theta conjectures.
Zwegers [14] showed that the mock theta functions can be completed to real

analytic modular forms of weight 1/2 by multiplying by a suitable rational power
of q and adding nonholomorphic integrals of certain unary theta series of weight
3/2. This allows the mock theta functions to be studied using the theory of modular
forms. Recently the author [1], building on Zwegers’ work and work of Bringmann–
Ono [5], proved the mock theta conjectures using the theory of vector-valued mod-
ular forms. The purpose of this paper is to apply this method to prove the seventh
order mock theta conjectures.

We begin by defining two nonholomorphic vectors F and G corresponding to the
left-hand and right-hand sides of (1)–(3), respectively, and we establish their trans-
formation properties using the results of [14, 5, 8]. Next, we construct a holomorphic
vector-valued modular form H from the components of F−G which transforms
according to the Weil representation (see Lemma 4 below). There is a natural iso-
morphism between the space of such forms and the space J1,42 of Jacobi forms of
weight 1 and index 42. The seventh order mock theta conjectures follow from the
result of Skoruppa that J1,m = {0} for all m≥ 1.
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2 Definitions and Transformations

In this section, we describe the transformation behavior for the functions M( a
7 ,q)

and j(qρ ,q7) and the mock theta functions under the generators

T :=
(

1 1
0 1

)
and S :=

(
0 −1
1 0

)
of SL2(Z). We employ the usual

∣∣
k notation, defined for k ∈ R and γ =

(
a b
c d

)
∈

SL2(Z) by
( f
∣∣
kγ)(z) := (cz+d)−k f

(
az+b
cz+d

)
.

We always take argz ∈ (−π,π]. It is not always the case that f
∣∣
kAB = f

∣∣
kA
∣∣
kB, but

for k ∈ 1
2Z we have

f
∣∣
kAB =± f

∣∣
kA
∣∣
kB, (4)

(see [12, §2.6]). Much of the arithmetic here and throughout the paper takes place in
the splitting field of the polynomial x6− 7x4 + 14x2− 7, which has roots ±κ , ±λ ,
±µ , where

κ := 2sin π

7
, λ := 2sin 2π

7
, µ := 2sin 3π

7
. (5)

The modular transformations satisfied by the mock theta functions F0, F1, and
F2 are given in Sect. 4.3 of [14]. The nonholomorphic completions are written in
terms of the nonholomorphic Eichler integral (see [14, Proposition 4.2])

Ra,b(z) :=−i
∫ i∞

−z

ga,−b(τ)√
−i(τ + z)

dτ,

where ga,b (see [14, §1.5]) is the unary theta function

ga,b(z) := ∑
ν∈a+Z

νeπiν2z+2πiνb.

Let q := exp(2πiz) and ζm := exp(2πi/m). Following §4.3 of [14] we define

F̃ 0(z) := q−
1

168 F0(q)+ζ14

(
ζ
−1
12 R− 1

42 ,
1
2
+ζ12R 13

42 ,
1
2

)
(21z), (6)

F̃ 1(z) := q−
25
168 F1(q)+ζ7

(
ζ
−1
12 R 5

42 ,
1
2
+ζ12R 19

42 ,
1
2

)
(21z), (7)

F̃ 2(z) := q
47
168 F2(q)+ζ

3
14

(
ζ
−1
12 R 11

42 ,
1
2
+ζ12R 25

42 ,
1
2

)
(21z). (8)

Note that we have used Proposition 1.5 of [14] to slightly modify the components of
G7(τ) on p. 75 of [14]. The following is Proposition 4.5 of [14] (we have rearranged
the order of the components of the vector F7 in that proposition).
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Proposition 1. The vector

F (z) :=
(
F̃ 0(z),F̃ 1(z),F̃ 2(z)

)ᵀ (9)

satisfies the transformations

F
∣∣ 1

2
T = MT F and F

∣∣ 1
2
S = ζ

−1
8

1√
7

MSF ,

where

MT =

 ζ
−1
168 0 0
0 ζ

−25
168 0

0 0 ζ 47
168

 and MS =

 κ λ µ

λ −µ κ

µ κ −λ

.

Following [5, 9], we define, for 1≤ a≤ 6, the functions

M
(

a
7
,z
)

:=
∞

∑
n=1

qn(n−1)

(q
a
7 ;q)n(q1− a

7 ;q)n
, (10)

N
(

a
7
,z
)

:= 1+
∞

∑
n=1

qn2

(ζ a
7 q;q)n(ζ

−a
7 q;q)n

. (11)

Clearly we have M(1− a
7 ,z) = M( a

7 ,z) and N(1− a
7 ,z) = N( a

7 ,z). Bringmann and
Ono [5] also define auxiliary functions M(a,b,7,z) and N(a,b,7,z) for 0 ≤ a ≤ 6
and 1 ≤ b ≤ 6. Together, the completed versions of these functions form a set that
is closed (up to multiplication by roots of unity) under the action of SL2(Z) (see
[5, Theorem 3.4]). Garvan [8] corrected the definitions of these functions and wrote
their transformation formulas more explicitly, so in what follows we reference his
paper.

The nonholomorphic completions for M( a
7 ,z) and N( a

7 ,z) are given in terms of
integrals of weight 3/2 theta functions Θ1(

a
7 ,z) and Θ1(0,−a,7,z) (defined in Sect. 2

of [8]). A straightforward computation shows that

Θ1(0,−a,7,z) = 21
√

3ζ
a
14

(
ζ
−1
12 g 6a−7

42 ,− 1
2
(3z)+ζ12 g 6a+7

42 ,− 1
2
(3z)

)
.

Following (2.5), (2.6), (3.5), and (3.6) of [8], we define

M̃
(

a
7
,z
)

:= 2q
3a
14 (1− a

7 )−
1

24 M
(

a
7
,z
)

+ζ
a
14

(
ζ
−1
12 R 6a−7

42 , 1
2
+ζ12R 6a+7

42 , 1
2

)
(3z)+

{
2q−

1
1176 if a = 1,

0 if a = 2,3,
(12)

Ñ
(

a
7
,z
)

:= csc
(

aπ

7

)
q−

1
24 N
(

a
7
,z
)
+

i√
3

∫ i∞

−z

Θ1(
a
7 ,τ)√

−i(τ + z)
dτ. (13)
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The completed functions M̃(a,b,z) := G2(a,b,7;z) and Ñ(a,b,z) := G1(a,b,7;z)
are defined in (3.7) and (3.8) of that paper. By Theorem 3.1 of [8] we have

M̃
(

a
7
,z
)∣∣ 1

2
T 7 = M̃

(
a
7
,z
)
×


ζ
−1
168 if a = 1,

ζ
−25
168 if a = 2,

ζ 47
168 if a = 3,

(14)

Ñ
(

a
7
,z
)∣∣ 1

2
T = ζ

−1
24 Ñ

(
a
7
,z
)
, (15)

and

M̃
(

a
7
,z
)∣∣ 1

2
S = ζ

−1
8 Ñ

(
a
7
,z
)
. (16)

The functions j(qρ ,q7) are essentially theta functions of weight 1/2. It will be
more convenient to work with (following [4])

fρ(z) = f7,ρ(z) := q
(7−2ρ)2

56 j(qρ ,q7). (17)

The transformation properties of theta functions are well-known; for fρ(z) we have
(see e.g. [9, pp. 217-218])

(
f1, f2, f3

)ᵀ∣∣ 1
2
S = ζ

−1
8

1√
7


λ −µ κ

−µ −κ λ

κ λ µ

( f1, f2, f3
)ᵀ
. (18)

The mock theta conjectures (1)–(3) are implied by the corresponding completed
versions:

F̃ 0(z) = M̃
(

1
7
,7z
)
−

f 2
3 (z)

η(z)
, (19)

F̃ 1(z) = M̃
(

2
7
,7z
)
+

f 2
1 (z)

η(z)
, (20)

F̃ 2(z) = M̃
(

3
7
,7z
)
+

f 2
2 (z)

η(z)
. (21)

Motivated by (9) and (19)–(21), we define the vector

G(z) :=


M̃
(

1
7
,7z
)
−

f 2
3 (z)

η(z)

M̃
(

2
7
,7z
)
+

f 2
1 (z)

η(z)

M̃
(

3
7
,7z
)
+

f 2
2 (z)

η(z)


. (22)
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To prove that F =G we first show that they transform in the same way.

Proposition 2. The vector G(z) defined in (22) satisfies the transformations

G
∣∣ 1

2
T = MT G and G

∣∣ 1
2
S = ζ

−1
8

1√
7

MSG, (23)

where MT and MS are as in Proposition 1.

In order to prove Proposition 2 we require the following three identities (equiva-
lent identities can be found on p. 220 of [9] without proof).

Lemma 1. Let κ , λ , and µ be as in (5). Then

Ñ
(

1
7
,z
)
−
(

κ M̃
(

1
7
,49z

)
+λ M̃

(
2
7
,49z

)
+µ M̃

(
3
7
,49z

))
=

1
η(7z)

[
1√
7

(
κ f1(7z)+λ f2(7z)+µ f3(7z)

)2

−κ f 2
3 (7z)+λ f 2

1 (7z)+µ f 2
2 (7z)

]
. (24)

We defer the proof of Lemma 1 to Sect. 5; here we deduce two immediate conse-
quences. Note that the right-hand side of (24) is holomorphic; this implies that the
non-holomorphic completion terms on the left-hand side sum to zero. By (11), the
coefficients of N( a

7 ,z) lie in Q(ζ7+ζ
−1
7 ) =Q(κ2), and the automorphisms κ2 7→ λ 2

and κ2 7→ µ2 map N( 1
7 ,z) to N( 2

7 ,z) and N( 3
7 ,z), respectively. By (13) it follows that

the coefficients of both sides of (24) lie in Q(κ). Let τ1 and τ2 be the automorphisms

τ1 = (κ 7→ λ , λ 7→ −µ, µ 7→ κ),

τ2 = (κ 7→ µ, λ 7→ κ, µ 7→ −λ ).

Since
√

7 = κλ µ , we have τ1(
√

7) = τ2(
√

7) = −
√

7. Applying τ1 and τ2 to
Lemma 1 gives the following identities.

Lemma 2. Let κ , λ , and µ be as in (5). Then

Ñ
(

2
7
,z
)
−
(

λ M̃
(

1
7
,49z

)
−µ M̃

(
2
7
,49z

)
+κ M̃

(
3
7
,49z

))
=

1
η(7z)

[
− 1√

7

(
λ f1(7z)−µ f2(7z)+κ f3(7z)

)2

−λ f 2
3 (7z)−µ f 2

1 (7z)+κ f 2
2 (7z)

]
. (25)

Lemma 3. Let κ , λ , and µ be as in (5). Then

Ñ
(

3
7
,z
)
−
(

µ M̃
(

1
7
,49z

)
+κ M̃

(
2
7
,49z

)
−λ M̃

(
3
7
,49z

))
=

1
η(7z)

[
− 1√

7

(
µ f1(7z)+κ f2(7z)−λ f3(7z)

)2

−µ f 2
3 (7z)+κ f 2

1 (7z)−λ f 2
2 (7z)

]
. (26)
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Proof (Proof of Proposition 2). The transformation with respect to T follows im-
mediately from (14). Let G j(z) denote the j-th component of G(z). By (16), (18),
and the fact that η

∣∣ 1
2
S = ζ

−1
8 η , we have

G1(z)
∣∣ 1

2
S = ζ

−1
8

1√
7

[
Ñ
(

1
7
,

z
7

)
− 1√

7

(
κ f1(z)+λ f2(z)+µ f3(z)

)2

η(z)

]
.

Applying Lemma 1 with z replaced by z
7 , we find that

G1(z)
∣∣ 1

2
S = ζ

−1
8

1√
7

[
κ M̃

(
1
7
,7z
)
+λ M̃

(
2
7
,7z
)
+µ M̃

(
3
7
,7z
)

−
κ f 2

3 (z)−λ f 2
1 (z)−µ f 2

2 (z)
η(z)

]
= ζ

−1
8

1√
7

(
κG1(z)+λG2(z)+µG3(z)

)
.

The transformations for G2 and G3 are similarly obtained using Lemmas 2 and 3,
respectively.

3 Vector-valued Modular Forms and the Weil Representation

In this section we define vector-valued modular forms which transform according
to the Weil representation, and we construct such a form from the components of
F −G. A good reference for this material is [6, Sect. 1.1].

Let L = Z be the lattice with associated bilinear form (x,y) = −84xy and
quadratic form q(x) = −42x2. The dual lattice is L′ = 1

84Z. Let {eh : h
84 ∈

1
84Z/Z}

denote the standard basis for C[L′/L]. Let Mp2(R) denote the metaplectic two-fold
cover of SL2(R); the elements of this group are pairs (M,φ), where M =

(
a b
c d

)
∈

SL2(R) and φ 2(z) = cz+d. Let Mp2(Z) denote the inverse image of SL2(Z) under
the covering map; this group is generated by

T̃ := (T,1) and S̃ := (S,
√

z).

The Weil representation can be defined by its action on these generators, namely

ρL(T,1)eh := ζ
−h2

168 eh, (27)

ρL(S,
√

z)eh :=
1√
−84i ∑

h′(84)
ζ

hh′
84 eh′ . (28)

A holomorphic function F : H→ C[L′/L] is a vector-valued modular form of
weight 1/2 and representation ρL if

F (γz) = φ(z)ρL(γ,φ)F (z) for all (γ,φ) ∈Mp2(Z) (29)
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and if F is holomorphic at ∞ (i.e. if the components of F are holomorphic at ∞

in the usual sense). The following lemma shows how to construct such forms from
vectors that transform as in Propositions 1 and 2.

Lemma 4. Suppose that H = (H1,H2,H3) satisfies

H
∣∣ 1

2
T = MT H and H

∣∣ 1
2
S = ζ

−1
8

1√
7

MSH,

where MT and MS are as in Proposition 1, and define

H (z) := ∑
h=1,13,29,41

a(h)H1(z)(eh− e−h)

− ∑
h=5,19,23,37

H2(z)(eh− e−h) − ∑
h=11,17,25,31

H3(z)(eh− e−h),

where

ah =

{
+1 if h = 1,41,
−1 if h = 13,29.

Then H (z) satisfies (29).

Proof. The proof is a straightforward but tedious verification involving (27) and
(28) that is best carried out with the aid of a computer algebra system; the author
used MATHEMATICA.

4 Proof of the Mock Theta Conjectures

Let F and G be as in Sect. 2. To prove (19)–(21) we will prove that H :=F −G=
0. It is easy to see that the nonholomorphic parts of F and G agree, as do the
terms in the Fourier expansion involving negative powers of q. It follows that the
function H defined in Lemma 4 is a vector-valued modular form of weight 1/2 with
representation ρL. By Theorem 5.1 of [7], the space of such forms is canonically
isomorphic to the space J1,42 of Jacobi forms of weight 1 and index 42. By a theorem
of Skoruppa [13, Satz 6.1] (see also [7, Theorem 5.7]), we have J1,m = {0} for all
m; therefore H = 0. The seventh order mock theta conjectures (1)–(3) follow. ut

5 Proof of Lemma 1

We begin with a lemma which describes the modular transformation properties of
fρ(z). Let νη denote the multiplier system for the eta function (see [4, (2.5)]). For
γ =

(
a b
c d

)
, define

γn :=
(

a nb
c/n d

)
.
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Lemma 5. Let ρ ∈ {1,2,3}. If

γ ∈ Γ (7) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
(mod 7)

}
,

then
fρ(γz) = ν

3
η(γ7)

√
cz+d fρ(z). (30)

Proof. Suppose that ρ ∈ {1,2,3} and that γ ∈ Γ (7). Lemma 2.1 of [4] gives

fρ(γz) = (−1)ρb+bρa/7c
ζ

ρ2ab
14 ν

3
η(γ7)

√
cz+d fρ(z).

Writing a = 1+7r and b = 7b′, we find that

(−1)ρb+bρa/7c
ζ

ρ2ab
14 = (−1)ρ(b+r+ρbr+ρb′). (31)

Using the fact that br+r≡ 0 (mod 2) we find that, in each case, the right-hand side
of (31) equals 1. This completes the proof.

We are now ready to prove Lemma 1. Let L(z) and R(z) denote the left-hand and
right-hand sides of (24), respectively. Let Γ denote the congruence subgroup

Γ = Γ0(49)∩Γ1(7) =
{(

a b
c d

)
: c≡ 0 mod 49 and a,d ≡ 1 mod 7

}
.

We claim that
η(z)L(z), η(z)R(z) ∈M1(Γ ), (32)

where Mk(G) (resp. M!
k(G)) denotes the space of holomorphic (resp. weakly holo-

morphic) modular forms of weight k on G⊆ SL2(Z). We have

1
12
[SL2(Z) : Γ ] = 14,

so once (32) is established it suffices to check that the first 15 coefficients of
η(z)L(z) and η(z)R(z) agree. A computation shows that the Fourier expansion of
each function begins

2
(

1
κ
−κ

)
+2κq−2µq3−2

(
2
µ
−µ− 1

λ

)
q4−2κq5+2λq6+2

(
2
κ
−2κ +

1
µ

)
q7

+4κq8 +2
(

k− 2
κ
+2µ− 1

µ

)
q9−2µq10 +2(µ +λ −2κ)q14 + . . . .

To prove (32), we first note that Theorem 5.1 of [8] shows that η(49z)L(z) ∈
M!

1(Γ ); since η(z)/η(49z) ∈M!
0(Γ0(49)) it follows that η(z)L(z) ∈M!

1(Γ ). Using
Lemma 5 we find that η(z)R(z) ∈M!

1(Γ ) provided that

νη(γ)ν
6
η(γ49)

νη(γ7)
= 1. (33)

This follows from a computation involving the definition of νη [4, (2.5)].
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It remains to show that η(z)L(z) and η(z)R(z) are holomorphic at the cusps.
Using MAGMA we compute a set of Γ -inequivalent cusp representatives:{

∞, 0, 1
7
,

3
17
,

5
28
,

3
16
,

4
21
,

3
14
,

8
35
,

5
21
,

2
7
,

5
14
,

18
49
,

13
35
,

8
21
,

19
49
,

11
28
,

3
7
,

4
7
,

13
21
,

9
14
,

5
7
,

11
14
,

6
7

}
. (34)

Given a cusp a∈P1(Q) and a meromorphic modular form f of weight k with Fourier
expansion f (z) = ∑n∈Q a(n)qn, the invariant order of f at a is defined as

ord( f ,∞) := min{n : a(n) 6= 0},
ord( f ,a) := ord( f

∣∣
kδa,∞),

where δa ∈ SL2(Z) sends ∞ to a. For N ∈N, we have the relation (see e.g. [4, (1.7)])

ord( f (Nz), r
s ) =

(N,s)2

N
ord( f , Nr

s ). (35)

We extend this definition to functions f in the set

S :=
{

M̃( a
7 ,z),Ñ( a

7 ,z) : a = 1,2,3
}
∪
{

M̃(a,b,z),Ñ(a,b,z) : 0≤ a≤ 6,1≤ b≤ 6
}

by defining the orders of these functions at ∞ to be the orders of their holomorphic
parts at ∞ (see Sect. 6.2, (2.1)–(2.4), and (3.5)–(3.8) of [8]); that is,

ord
(

M̃
(

a
7
,z
)
,∞
)
= ord

(
M̃(a,b,z),∞

)
:=


− 1

24
if a = 0,

− 1
1176

if a = 1,6,
3a
14

(
1− a

7

)
− 1

24
otherwise,

(36)

ord
(

Ñ
(

a
7
,z
)
,∞
)

:=− 1
24
, (37)

ord
(

Ñ(a,b,z),∞
)

:= b
7

(
1
2
+ k(b,7)

)
− 3b2

98
− 1

24
, (38)

where

k(b,7) :=


0 if b = 1,
1 if b = 2,3,
2 if b = 4,5,
3 if b = 6.

Lastly, for f ∈ S we define

ord( f ,a) := ord( f
∣∣ 1

2
δa,∞). (39)
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This is well-defined since S is closed (up to multiplication by roots of unity) under
the action of SL2(Z). By this same fact we have

min
cusps a

ord( f ,a)≥min
g∈S

ord(g,∞) =− 1
24

(40)

for all f ∈ S, from which it follows that

ord(η f ,a)≥ 0

for all cusps a and for all f ∈ S.
To determine the order of η(z)M̃( a

7 ,49z) at the cusps of Γ , we write

η(z)M̃( a
7 ,49z) =

η(z)
η(49)

m(49z), where m(z) = η(z)M̃( a
7 ,z).

The cusps of Γ0(49) are ∞ and r
7 , 0 ≤ r ≤ 6. By (35) the function η(z)/η(49z) is

holomorphic at every cusp except for those which are Γ0(49)-equivalent to ∞ (the
latter are ∞, 18

49 , and 19
49 in (34)); there we have ord(η(z)/η(49z),∞) =−2. By (40),

to show that η(z)M̃( a
7 ,49z) is holomorphic at every cusp, it suffices to verify that

ord(m(49z), r
49 )≥ 2 for r = 18,19. By (35), [8, Theorems 3.1 and 3.2], the fact that(

r r−1
1 1

)
= T rST , and (4), we have

ord
(

m(49z), 18
49

)
= 49ord(m(z),18)

= 49
(

1
24

+ord
(

M̃(4a mod 7,4a mod 7,z),∞
))

=


46 if a = 1,
2 if a = 2,
50 if a = 3.

A similar computation shows that ord(m(49z), 19
49 ) ≥ 2. Since L(z) is holomorphic

on H, we have, for each cusp a, the inequality

ord(η(z)L(z),a)

≥min
{

ord(η(z) f (z),a) : f (z) = Ñ( 1
7 ,z) or f (z) = M̃( a

7 ,49z),1≤ a≤ 3
}
≥ 0.

We turn to η(z)R(z). Using Lemma 3.2 of [4], we find that

ord( fρ ,
r
s ) =


25
56

if 7 | s and ρ r ≡±2 (mod 7),
9
56

if 7 | s and ρ r ≡±3 (mod 7),
1
56

otherwise.

(41)

By (35) and (41) we have
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ord
(
η(z)R(z), r

s

)
≥ 1

24
− (7,s)2

168
+2 min

ρ=1,2,3
ord
(

fρ(7z), r
s

)
≥ 0.

Therefore η(z)R(z)∈M1(Γ ), which proves (32) and completes the proof of Lemma 1.
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