Vector-valued Modular Forms and the Seventh Order Mock Theta Functions

Nickolas Andersen

Abstract

In 1988, Hickerson proved the mock theta conjectures (identities involving Ramanujan's fifth order mock theta functions) using q-series methods. In a follow-up paper he proved three analogous identities which involve Ramanujan's seventh order mock theta functions. Recently the author gave a unified proof of the mock theta conjectures using the theory of vector-valued modular forms which transform according to the Weil representation. Here we apply the method to Hickerson's seventh order identities.

1 Introduction

In his last letter to Hardy, Ramanujan introduced a new class of functions which he called mock theta functions, and he listed 17 examples [3, p. 220]. Each of these he labeled third order, fifth order, or seventh order. The seventh order mock theta functions are

$$
\begin{aligned}
& \mathscr{F}_{0}(q):=\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{\left(q^{n+1} ; q\right)_{n}}, \\
& \mathscr{F}_{1}(q):=\sum_{n=0}^{\infty} \frac{q^{(n+1)^{2}}}{\left(q^{n+1} ; q\right)_{n+1}}, \\
& \mathscr{F}_{2}(q):=\sum_{n=0}^{\infty} \frac{q^{n(n+1)}}{\left(q^{n+1}, q\right)_{n+1}} .
\end{aligned}
$$

Here we have used the standard q-Pochhammer notation $(a ; q)_{n}:=\prod_{m=0}^{n-1}\left(1-a q^{m}\right)$. In Ramanujan's lost notebook there are many identities which relate linear combi-

[^0]nations of mock theta functions to modular forms. Andrews and Garvan [2] named ten of these identities, those which involved the fifth order mock theta functions, the mock theta conjectures. Hickerson proved two of these identities in [11]; his proof, together with the work of Andrews and Garvan [2], established the truth of the mock theta conjectures. In a companion paper [10] immediately following [11], Hickerson proved analogous identities for the seventh order mock theta functions, namely
\[

$$
\begin{align*}
& \mathscr{F}_{0}(q)=2 q M\left(\frac{1}{7}, q^{7}\right)+2-\frac{j\left(q^{3}, q^{7}\right)^{2}}{(q, q)_{\infty}} \tag{1}\\
& \mathscr{F}_{1}(q)=2 q M\left(\frac{2}{7}, q^{7}\right)+q \frac{j\left(q, q^{7}\right)^{2}}{(q, q)_{\infty}} \tag{2}\\
& \mathscr{F}_{2}(q)=2 q M\left(\frac{3}{7}, q^{7}\right)+\frac{j\left(q^{2}, q^{7}\right)^{2}}{(q, q)_{\infty}} \tag{3}
\end{align*}
$$
\]

Here (following the notation of [9])

$$
M(r, q):=\sum_{n=1}^{\infty} \frac{q^{n(n-1)}}{\left(q^{r} ; q\right)_{n}\left(q^{1-r} ; q\right)_{n}}
$$

and

$$
j\left(q^{\rho}, q^{7}\right):=\left(q^{\rho}, q^{7}\right)_{\infty}\left(q^{7-\rho}, q^{7}\right)_{\infty}\left(q^{7}, q^{7}\right)_{\infty}
$$

We will refer to (1)-(3) as the seventh order mock theta conjectures.
Zwegers [14] showed that the mock theta functions can be completed to real analytic modular forms of weight $1 / 2$ by multiplying by a suitable rational power of q and adding nonholomorphic integrals of certain unary theta series of weight $3 / 2$. This allows the mock theta functions to be studied using the theory of modular forms. Recently the author [1], building on Zwegers' work and work of BringmannOno [5], proved the mock theta conjectures using the theory of vector-valued modular forms. The purpose of this paper is to apply this method to prove the seventh order mock theta conjectures.

We begin by defining two nonholomorphic vectors \boldsymbol{F} and \boldsymbol{G} corresponding to the left-hand and right-hand sides of (1)-(3), respectively, and we establish their transformation properties using the results of $[14,5,8]$. Next, we construct a holomorphic vector-valued modular form \mathscr{H} from the components of $\mathbf{F}-\mathbf{G}$ which transforms according to the Weil representation (see Lemma 4 below). There is a natural isomorphism between the space of such forms and the space $J_{1,42}$ of Jacobi forms of weight 1 and index 42 . The seventh order mock theta conjectures follow from the result of Skoruppa that $J_{1, m}=\{0\}$ for all $m \geq 1$.

2 Definitions and Transformations

In this section, we describe the transformation behavior for the functions $M\left(\frac{a}{7}, q\right)$ and $j\left(q^{\rho}, q^{7}\right)$ and the mock theta functions under the generators

$$
T:=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad S:=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

of $\mathrm{SL}_{2}(\mathbb{Z})$. We employ the usual $\left.\right|_{k}$ notation, defined for $k \in \mathbb{R}$ and $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in$ $\mathrm{SL}_{2}(\mathbb{Z})$ by

$$
\left(\left.f\right|_{k} \gamma\right)(z):=(c z+d)^{-k} f\left(\frac{a z+b}{c z+d}\right)
$$

We always take $\arg z \in(-\pi, \pi]$. It is not always the case that $\left.f\right|_{k} A B=\left.\left.f\right|_{k} A\right|_{k} B$, but for $k \in \frac{1}{2} \mathbb{Z}$ we have

$$
\begin{equation*}
\left.f\right|_{k} A B= \pm\left.\left. f\right|_{k} A\right|_{k} B \tag{4}
\end{equation*}
$$

(see $[12, \S 2.6]$). Much of the arithmetic here and throughout the paper takes place in the splitting field of the polynomial $x^{6}-7 x^{4}+14 x^{2}-7$, which has roots $\pm \kappa, \pm \lambda$, $\pm \mu$, where

$$
\begin{equation*}
\kappa:=2 \sin \frac{\pi}{7}, \quad \lambda:=2 \sin \frac{2 \pi}{7}, \quad \mu:=2 \sin \frac{3 \pi}{7} \tag{5}
\end{equation*}
$$

The modular transformations satisfied by the mock theta functions $\mathscr{F}_{0}, \mathscr{F}_{1}$, and \mathscr{F}_{2} are given in Sect. 4.3 of [14]. The nonholomorphic completions are written in terms of the nonholomorphic Eichler integral (see [14, Proposition 4.2])

$$
R_{a, b}(z):=-i \int_{-\bar{z}}^{i \infty} \frac{g_{a,-b}(\tau)}{\sqrt{-i(\tau+z)}} d \tau
$$

where $g_{a, b}($ see $[14, \S 1.5])$ is the unary theta function

$$
g_{a, b}(z):=\sum_{v \in a+\mathbb{Z}} v e^{\pi i v^{2} z+2 \pi i v b}
$$

Let $q:=\exp (2 \pi i z)$ and $\zeta_{m}:=\exp (2 \pi i / m)$. Following $\S 4.3$ of [14] we define

$$
\begin{align*}
& \widetilde{\mathscr{F}}_{0}(z):=q^{-\frac{1}{168}} \mathscr{F}_{0}(q)+\zeta_{14}\left(\zeta_{12}^{-1} R_{-\frac{1}{42}, \frac{1}{2}}+\zeta_{12} R_{\frac{13}{42}, \frac{1}{2}}\right)(21 z), \tag{6}\\
& \widetilde{\mathscr{F}}_{1}(z):=q^{-\frac{25}{168} \mathscr{F}_{1}(q)+\zeta_{7}\left(\zeta_{12}^{-1} R_{\frac{5}{42}, \frac{1}{2}}+\zeta_{12} R_{\frac{19}{42}, \frac{1}{2}}\right)(21 z),} \tag{7}\\
& \widetilde{\mathscr{F}}_{2}(z):=q^{\frac{47}{168} \mathscr{F}_{2}(q)+\zeta_{14}^{3}\left(\zeta_{12}^{-1} R_{\frac{11}{42}, \frac{1}{2}}+\zeta_{12} R_{\frac{25}{42}, \frac{1}{2}}\right)(21 z)} . \tag{8}
\end{align*}
$$

Note that we have used Proposition 1.5 of [14] to slightly modify the components of $G_{7}(\tau)$ on p. 75 of [14]. The following is Proposition 4.5 of [14] (we have rearranged the order of the components of the vector F_{7} in that proposition).

Proposition 1. The vector

$$
\begin{equation*}
\boldsymbol{F}(z):=\left(\widetilde{\mathscr{F}}_{0}(z), \widetilde{\mathscr{F}}_{1}(z), \widetilde{\mathscr{F}}_{2}(z)\right)^{\top} \tag{9}
\end{equation*}
$$

satisfies the transformations

$$
\left.\boldsymbol{F}\right|_{\frac{1}{2}} T=M_{T} \boldsymbol{F} \quad \text { and }\left.\quad \boldsymbol{F}\right|_{\frac{1}{2}} S=\zeta_{8}^{-1} \frac{1}{\sqrt{7}} M_{S} \boldsymbol{F}
$$

where

$$
M_{T}=\left(\begin{array}{ccc}
\zeta_{168}^{-1} & 0 & 0 \\
0 & \zeta_{168}^{-25} & 0 \\
0 & 0 & \zeta_{168}^{47}
\end{array}\right) \quad \text { and } \quad M_{S}=\left(\begin{array}{ccc}
\kappa & \lambda & \mu \\
\lambda & -\mu & \kappa \\
\mu & \kappa & -\lambda
\end{array}\right)
$$

Following [5, 9], we define, for $1 \leq a \leq 6$, the functions

$$
\begin{align*}
& M\left(\frac{a}{7}, z\right):=\sum_{n=1}^{\infty} \frac{q^{n(n-1)}}{\left(q^{\frac{a}{7}} ; q\right)_{n}\left(q^{1-\frac{a}{7}} ; q\right)_{n}}, \tag{10}\\
& N\left(\frac{a}{7}, z\right):=1+\sum_{n=1}^{\infty} \frac{q^{n^{2}}}{\left(\zeta_{7}^{a} q ; q\right)_{n}\left(\zeta_{7}^{-a} q ; q\right)_{n}} . \tag{11}
\end{align*}
$$

Clearly we have $M\left(1-\frac{a}{7}, z\right)=M\left(\frac{a}{7}, z\right)$ and $N\left(1-\frac{a}{7}, z\right)=N\left(\frac{a}{7}, z\right)$. Bringmann and Ono [5] also define auxiliary functions $M(a, b, 7, z)$ and $N(a, b, 7, z)$ for $0 \leq a \leq 6$ and $1 \leq b \leq 6$. Together, the completed versions of these functions form a set that is closed (up to multiplication by roots of unity) under the action of $\mathrm{SL}_{2}(\mathbb{Z})$ (see [5, Theorem 3.4]). Garvan [8] corrected the definitions of these functions and wrote their transformation formulas more explicitly, so in what follows we reference his paper.

The nonholomorphic completions for $M\left(\frac{a}{7}, z\right)$ and $N\left(\frac{a}{7}, z\right)$ are given in terms of integrals of weight $3 / 2$ theta functions $\Theta_{1}\left(\frac{a}{7}, z\right)$ and $\Theta_{1}(0,-a, 7, z)$ (defined in Sect. 2 of [8]). A straightforward computation shows that

$$
\Theta_{1}(0,-a, 7, z)=21 \sqrt{3} \zeta_{14}^{a}\left(\zeta_{12}^{-1} g_{\frac{6 a-7}{42},-\frac{1}{2}}(3 z)+\zeta_{12} g_{\frac{6 a+7}{42},-\frac{1}{2}}(3 z)\right)
$$

Following (2.5), (2.6), (3.5), and (3.6) of [8], we define

$$
\begin{align*}
\widetilde{M}\left(\frac{a}{7}, z\right) & :=2 q^{\frac{3 a}{14}\left(1-\frac{a}{7}\right)-\frac{1}{24}} M\left(\frac{a}{7}, z\right) \\
& +\zeta_{14}^{a}\left(\zeta_{12}^{-1} R_{\frac{6 a-7}{42}, \frac{1}{2}}+\zeta_{12} R_{\frac{6 a+7}{42}, \frac{1}{2}}\right)(3 z)+ \begin{cases}2 q^{-\frac{1}{1176}} & \text { if } a=1 \\
0 & \text { if } a=2,3\end{cases} \tag{12}\\
\widetilde{N}\left(\frac{a}{7}, z\right) & :=\csc \left(\frac{a \pi}{7}\right) q^{-\frac{1}{24}} N\left(\frac{a}{7}, z\right)+\frac{i}{\sqrt{3}} \int_{-\bar{z}}^{i \infty} \frac{\Theta_{1}\left(\frac{a}{7}, \tau\right)}{\sqrt{-i(\tau+z)}} d \tau . \tag{13}
\end{align*}
$$

The completed functions $\widetilde{M}(a, b, z):=\mathscr{G}_{2}(a, b, 7 ; z)$ and $\widetilde{N}(a, b, z):=\mathscr{G}_{1}(a, b, 7 ; z)$ are defined in (3.7) and (3.8) of that paper. By Theorem 3.1 of [8] we have

$$
\begin{align*}
\left.\widetilde{M}\left(\frac{a}{7}, z\right)\right|_{\frac{1}{2}} T^{7} & =\widetilde{M}\left(\frac{a}{7}, z\right) \times \begin{cases}\zeta_{168}^{-1} & \text { if } a=1 \\
\zeta_{168}^{-25} & \text { if } a=2 \\
\zeta_{168}^{47} & \text { if } a=3\end{cases} \tag{14}\\
\left.\widetilde{N}\left(\frac{a}{7}, z\right)\right|_{\frac{1}{2}} T & =\zeta_{24}^{-1} \widetilde{N}\left(\frac{a}{7}, z\right) \tag{15}
\end{align*}
$$

and

$$
\begin{equation*}
\left.\widetilde{M}\left(\frac{a}{7}, z\right)\right|_{\frac{1}{2}} S=\zeta_{8}^{-1} \widetilde{N}\left(\frac{a}{7}, z\right) \tag{16}
\end{equation*}
$$

The functions $j\left(q^{\rho}, q^{7}\right)$ are essentially theta functions of weight $1 / 2$. It will be more convenient to work with (following [4])

$$
\begin{equation*}
f_{\rho}(z)=f_{7, \rho}(z):=q^{\frac{(7-2 \rho)^{2}}{56}} j\left(q^{\rho}, q^{7}\right) \tag{17}
\end{equation*}
$$

The transformation properties of theta functions are well-known; for $f_{\rho}(z)$ we have (see e.g. [9, pp. 217-218])

$$
\left.\left(f_{1}, f_{2}, f_{3}\right)^{\top}\right|_{\frac{1}{2}} S=\zeta_{8}^{-1} \frac{1}{\sqrt{7}}\left(\begin{array}{ccc}
\lambda & -\mu & \kappa \tag{18}\\
-\mu & -\kappa & \lambda \\
\kappa & \lambda & \mu
\end{array}\right)\left(f_{1}, f_{2}, f_{3}\right)^{\top}
$$

The mock theta conjectures (1)-(3) are implied by the corresponding completed versions:

$$
\begin{align*}
& \widetilde{\mathscr{F}}_{0}(z)=\widetilde{M}\left(\frac{1}{7}, 7 z\right)-\frac{f_{3}^{2}(z)}{\eta(z)} \tag{19}\\
& \widetilde{\mathscr{F}}_{1}(z)=\widetilde{M}\left(\frac{2}{7}, 7 z\right)+\frac{f_{1}^{2}(z)}{\eta(z)} \tag{20}\\
& \widetilde{\mathscr{F}}_{2}(z)=\widetilde{M}\left(\frac{3}{7}, 7 z\right)+\frac{f_{2}^{2}(z)}{\eta(z)} \tag{21}
\end{align*}
$$

Motivated by (9) and (19)-(21), we define the vector

$$
\boldsymbol{G}(z):=\left(\begin{array}{l}
\tilde{M}\left(\frac{1}{7}, 7 z\right)-\frac{f_{3}^{2}(z)}{\eta(z)} \tag{22}\\
\tilde{M}\left(\frac{2}{7}, 7 z\right)+\frac{f_{1}^{2}(z)}{\eta(z)} \\
\tilde{M}\left(\frac{3}{7}, 7 z\right)+\frac{f_{2}^{2}(z)}{\eta(z)}
\end{array}\right) .
$$

To prove that $\boldsymbol{F}=\boldsymbol{G}$ we first show that they transform in the same way.
Proposition 2. The vector $\boldsymbol{G}(z)$ defined in (22) satisfies the transformations

$$
\begin{equation*}
\left.\boldsymbol{G}\right|_{\frac{1}{2}} T=M_{T} \boldsymbol{G} \quad \text { and }\left.\quad \boldsymbol{G}\right|_{\frac{1}{2}} S=\zeta_{8}^{-1} \frac{1}{\sqrt{7}} M_{S} \boldsymbol{G} \tag{23}
\end{equation*}
$$

where M_{T} and M_{S} are as in Proposition 1.
In order to prove Proposition 2 we require the following three identities (equivalent identities can be found on p. 220 of [9] without proof).

Lemma 1. Let κ, λ, and μ be as in (5). Then

$$
\begin{align*}
& \widetilde{N}\left(\frac{1}{7}, z\right)-\left(\kappa \widetilde{M}\left(\frac{1}{7}, 49 z\right)+\lambda \tilde{M}\left(\frac{2}{7}, 49 z\right)\right.\left.+\mu \tilde{M}\left(\frac{3}{7}, 49 z\right)\right) \\
&=\frac{1}{\eta(7 z)}\left[\frac{1}{\sqrt{7}}\left(\kappa f_{1}(7 z)+\lambda f_{2}(7 z)+\mu f_{3}(7 z)\right)^{2}\right. \\
&\left.-\kappa f_{3}^{2}(7 z)+\lambda f_{1}^{2}(7 z)+\mu f_{2}^{2}(7 z)\right] \tag{24}
\end{align*}
$$

We defer the proof of Lemma 1 to Sect. 5 ; here we deduce two immediate consequences. Note that the right-hand side of (24) is holomorphic; this implies that the non-holomorphic completion terms on the left-hand side sum to zero. By (11), the coefficients of $N\left(\frac{a}{7}, z\right)$ lie in $\mathbb{Q}\left(\zeta_{7}+\zeta_{7}^{-1}\right)=\mathbb{Q}\left(\kappa^{2}\right)$, and the automorphisms $\kappa^{2} \mapsto \lambda^{2}$ and $\kappa^{2} \mapsto \mu^{2} \operatorname{map} N\left(\frac{1}{7}, z\right)$ to $N\left(\frac{2}{7}, z\right)$ and $N\left(\frac{3}{7}, z\right)$, respectively. By (13) it follows that the coefficients of both sides of (24) lie in $\mathbb{Q}(\kappa)$. Let τ_{1} and τ_{2} be the automorphisms

$$
\begin{aligned}
& \tau_{1}=(\kappa \mapsto \lambda, \lambda \mapsto-\mu, \mu \mapsto \kappa), \\
& \tau_{2}=(\kappa \mapsto \mu, \lambda \mapsto \kappa, \mu \mapsto-\lambda)
\end{aligned}
$$

Since $\sqrt{7}=\kappa \lambda \mu$, we have $\tau_{1}(\sqrt{7})=\tau_{2}(\sqrt{7})=-\sqrt{7}$. Applying τ_{1} and τ_{2} to Lemma 1 gives the following identities.
Lemma 2. Let κ, λ, and μ be as in (5). Then

$$
\begin{align*}
& \tilde{N}\left(\frac{2}{7}, z\right)-\left(\lambda \tilde{M}\left(\frac{1}{7}, 49 z\right)-\mu \tilde{M}\left(\frac{2}{7}, 49 z\right)+\kappa \tilde{M}\left(\frac{3}{7}, 49 z\right)\right) \\
& =\frac{1}{\eta(7 z)}\left[-\frac{1}{\sqrt{7}}\left(\lambda f_{1}(7 z)-\mu f_{2}(7 z)+\kappa f_{3}(7 z)\right)^{2}\right. \\
& \left.-\lambda f_{3}^{2}(7 z)-\mu f_{1}^{2}(7 z)+\kappa f_{2}^{2}(7 z)\right] \tag{25}
\end{align*}
$$

Lemma 3. Let κ, λ, and μ be as in (5). Then

$$
\begin{align*}
\widetilde{N}\left(\frac{3}{7}, z\right)-(\mu & \left.\widetilde{M}\left(\frac{1}{7}, 49 z\right)+\kappa \widetilde{M}\left(\frac{2}{7}, 49 z\right)-\lambda \widetilde{M}\left(\frac{3}{7}, 49 z\right)\right) \\
= & \frac{1}{\eta(7 z)}\left[-\frac{1}{\sqrt{7}}\left(\mu f_{1}(7 z)+\kappa f_{2}(7 z)-\lambda f_{3}(7 z)\right)^{2}\right. \\
& \left.-\mu f_{3}^{2}(7 z)+\kappa f_{1}^{2}(7 z)-\lambda f_{2}^{2}(7 z)\right] \tag{26}
\end{align*}
$$

Proof (Proof of Proposition 2). The transformation with respect to T follows immediately from (14). Let $G_{j}(z)$ denote the j-th component of $\boldsymbol{G}(z)$. By (16), (18), and the fact that $\left.\eta\right|_{\frac{1}{2}} S=\zeta_{8}^{-1} \eta$, we have

$$
\left.G_{1}(z)\right|_{\frac{1}{2}} S=\zeta_{8}^{-1} \frac{1}{\sqrt{7}}\left[\widetilde{N}\left(\frac{1}{7}, \frac{z}{7}\right)-\frac{1}{\sqrt{7}} \frac{\left(\kappa f_{1}(z)+\lambda f_{2}(z)+\mu f_{3}(z)\right)^{2}}{\eta(z)}\right]
$$

Applying Lemma 1 with z replaced by $\frac{z}{7}$, we find that

$$
\begin{aligned}
\left.G_{1}(z)\right|_{\frac{1}{2}} S= & \zeta_{8}^{-1} \frac{1}{\sqrt{7}}\left[\kappa \widetilde{M}\left(\frac{1}{7}, 7 z\right)+\lambda \widetilde{M}\left(\frac{2}{7}, 7 z\right)+\mu \widetilde{M}\left(\frac{3}{7}, 7 z\right)\right. \\
& \left.-\frac{\kappa f_{3}^{2}(z)-\lambda f_{1}^{2}(z)-\mu f_{2}^{2}(z)}{\eta(z)}\right] \\
= & \zeta_{8}^{-1} \frac{1}{\sqrt{7}}\left(\kappa G_{1}(z)+\lambda G_{2}(z)+\mu G_{3}(z)\right)
\end{aligned}
$$

The transformations for G_{2} and G_{3} are similarly obtained using Lemmas 2 and 3, respectively.

3 Vector-valued Modular Forms and the Weil Representation

In this section we define vector-valued modular forms which transform according to the Weil representation, and we construct such a form from the components of $\boldsymbol{F}-\boldsymbol{G}$. A good reference for this material is [6, Sect. 1.1].

Let $L=\mathbb{Z}$ be the lattice with associated bilinear form $(x, y)=-84 x y$ and quadratic form $q(x)=-42 x^{2}$. The dual lattice is $L^{\prime}=\frac{1}{84} \mathbb{Z}$. Let $\left\{\mathfrak{e}_{h}: \frac{h}{84} \in \frac{1}{84} \mathbb{Z} / \mathbb{Z}\right\}$ denote the standard basis for $\mathbb{C}\left[L^{\prime} / L\right]$. Let $\mathrm{Mp}_{2}(\mathbb{R})$ denote the metaplectic two-fold cover of $\mathrm{SL}_{2}(\mathbb{R})$; the elements of this group are pairs (M, ϕ), where $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in$ $\mathrm{SL}_{2}(\mathbb{R})$ and $\phi^{2}(z)=c z+d$. Let $\mathrm{Mp}_{2}(\mathbb{Z})$ denote the inverse image of $\mathrm{SL}_{2}(\mathbb{Z})$ under the covering map; this group is generated by

$$
\widetilde{T}:=(T, 1) \quad \text { and } \quad \widetilde{S}:=(S, \sqrt{z}) .
$$

The Weil representation can be defined by its action on these generators, namely

$$
\begin{align*}
\rho_{L}(T, 1) \mathfrak{e}_{h} & :=\zeta_{168}^{-h^{2}} \mathfrak{e}_{h}, \tag{27}\\
\rho_{L}(S, \sqrt{z}) \mathfrak{e}_{h} & :=\frac{1}{\sqrt{-84 i}} \sum_{h^{\prime}(84)} \zeta_{84}^{h h^{\prime}} \mathfrak{e}_{h^{\prime}} . \tag{28}
\end{align*}
$$

A holomorphic function $\mathscr{F}: \mathbb{H} \rightarrow \mathbb{C}\left[L^{\prime} / L\right]$ is a vector-valued modular form of weight $1 / 2$ and representation ρ_{L} if

$$
\begin{equation*}
\mathscr{F}(\gamma z)=\phi(z) \rho_{L}(\gamma, \phi) \mathscr{F}(z) \quad \text { for all }(\gamma, \phi) \in \operatorname{Mp}_{2}(\mathbb{Z}) \tag{29}
\end{equation*}
$$

and if \mathscr{F} is holomorphic at ∞ (i.e. if the components of \mathscr{F} are holomorphic at ∞ in the usual sense). The following lemma shows how to construct such forms from vectors that transform as in Propositions 1 and 2.

Lemma 4. Suppose that $\boldsymbol{H}=\left(H_{1}, H_{2}, H_{3}\right)$ satisfies

$$
\left.\boldsymbol{H}\right|_{\frac{1}{2}} T=M_{T} \boldsymbol{H} \quad \text { and }\left.\quad \boldsymbol{H}\right|_{\frac{1}{2}} S=\zeta_{8}^{-1} \frac{1}{\sqrt{7}} M_{S} \boldsymbol{H}
$$

where M_{T} and M_{S} are as in Proposition 1, and define

$$
\begin{aligned}
& \mathscr{H}(z):=\sum_{h=1,13,29,41} a(h) H_{1}(z)\left(\mathfrak{e}_{h}-\mathfrak{e}_{-h}\right) \\
& \quad-\sum_{h=5,19,23,37} H_{2}(z)\left(\mathfrak{e}_{h}-\mathfrak{e}_{-h}\right)-\sum_{h=11,17,25,31} H_{3}(z)\left(\mathfrak{e}_{h}-\mathfrak{e}_{-h}\right),
\end{aligned}
$$

where

$$
a_{h}= \begin{cases}+1 & \text { if } h=1,41 \\ -1 & \text { if } h=13,29\end{cases}
$$

Then $\mathscr{H}(z)$ satisfies (29).
Proof. The proof is a straightforward but tedious verification involving (27) and (28) that is best carried out with the aid of a computer algebra system; the author used MATHEMATICA.

4 Proof of the Mock Theta Conjectures

Let \boldsymbol{F} and \boldsymbol{G} be as in Sect. 2. To prove (19)-(21) we will prove that $\boldsymbol{H}:=\boldsymbol{F}-\boldsymbol{G}=$ 0 . It is easy to see that the nonholomorphic parts of \boldsymbol{F} and \boldsymbol{G} agree, as do the terms in the Fourier expansion involving negative powers of q. It follows that the function \mathscr{H} defined in Lemma 4 is a vector-valued modular form of weight $1 / 2$ with representation ρ_{L}. By Theorem 5.1 of [7], the space of such forms is canonically isomorphic to the space $J_{1,42}$ of Jacobi forms of weight 1 and index 42 . By a theorem of Skoruppa [13, Satz 6.1] (see also [7, Theorem 5.7]), we have $J_{1, m}=\{0\}$ for all m; therefore $\mathscr{H}=0$. The seventh order mock theta conjectures (1)-(3) follow.

5 Proof of Lemma 1

We begin with a lemma which describes the modular transformation properties of $f_{\rho}(z)$. Let v_{η} denote the multiplier system for the eta function (see [4, (2.5)]). For $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, define

$$
\gamma_{n}:=\left(\begin{array}{cc}
a & n b \\
c / n & d
\end{array}\right) .
$$

Lemma 5. Let $\rho \in\{1,2,3\}$. If

$$
\gamma \in \Gamma(7)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad(\bmod 7)\right\},
$$

then

$$
\begin{equation*}
f_{\rho}(\gamma z)=v_{\eta}^{3}\left(\gamma_{7}\right) \sqrt{c z+d} f_{\rho}(z) \tag{30}
\end{equation*}
$$

Proof. Suppose that $\rho \in\{1,2,3\}$ and that $\gamma \in \Gamma(7)$. Lemma 2.1 of [4] gives

$$
f_{\rho}(\gamma z)=(-1)^{\rho b+\lfloor\rho a / 7\rfloor} \zeta_{14}^{\rho^{2} a b} v_{\eta}^{3}\left(\gamma_{\zeta}\right) \sqrt{c z+d} f_{\rho}(z)
$$

Writing $a=1+7 r$ and $b=7 b^{\prime}$, we find that

$$
\begin{equation*}
(-1)^{\rho b+\lfloor\rho a / 7\rfloor} \zeta_{14}^{\rho^{2} a b}=(-1)^{\rho\left(b+r+\rho b r+\rho b^{\prime}\right)} \tag{31}
\end{equation*}
$$

Using the fact that $b r+r \equiv 0(\bmod 2)$ we find that, in each case, the right-hand side of (31) equals 1 . This completes the proof.

We are now ready to prove Lemma 1. Let $L(z)$ and $R(z)$ denote the left-hand and right-hand sides of (24), respectively. Let Γ denote the congruence subgroup

$$
\Gamma=\Gamma_{0}(49) \cap \Gamma_{1}(7)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): c \equiv 0 \bmod 49 \text { and } a, d \equiv 1 \bmod 7\right\}
$$

We claim that

$$
\begin{equation*}
\eta(z) L(z), \eta(z) R(z) \in M_{1}(\Gamma) \tag{32}
\end{equation*}
$$

where $M_{k}(G)\left(\operatorname{resp} . M_{k}^{!}(G)\right)$ denotes the space of holomorphic (resp. weakly holomorphic) modular forms of weight k on $G \subseteq \mathrm{SL}_{2}(\mathbb{Z})$. We have

$$
\frac{1}{12}\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma\right]=14
$$

so once (32) is established it suffices to check that the first 15 coefficients of $\eta(z) L(z)$ and $\eta(z) R(z)$ agree. A computation shows that the Fourier expansion of each function begins

$$
\begin{aligned}
2\left(\frac{1}{\kappa}-\kappa\right) & +2 \kappa q-2 \mu q^{3}-2\left(\frac{2}{\mu}-\mu-\frac{1}{\lambda}\right) q^{4}-2 \kappa q^{5}+2 \lambda q^{6}+2\left(\frac{2}{\kappa}-2 \kappa+\frac{1}{\mu}\right) q^{7} \\
& +4 \kappa q^{8}+2\left(k-\frac{2}{\kappa}+2 \mu-\frac{1}{\mu}\right) q^{9}-2 \mu q^{10}+2(\mu+\lambda-2 \kappa) q^{14}+\ldots
\end{aligned}
$$

To prove (32), we first note that Theorem 5.1 of [8] shows that $\eta(49 z) L(z) \in$ $M_{1}^{!}(\Gamma)$; since $\eta(z) / \eta(49 z) \in M_{0}^{!}\left(\Gamma_{0}(49)\right)$ it follows that $\eta(z) L(z) \in M_{1}^{!}(\Gamma)$. Using Lemma 5 we find that $\eta(z) R(z) \in M_{1}^{!}(\Gamma)$ provided that

$$
\begin{equation*}
\frac{v_{\eta}(\gamma) v_{\eta}^{6}\left(\gamma_{49}\right)}{v_{\eta}\left(\gamma_{7}\right)}=1 \tag{33}
\end{equation*}
$$

This follows from a computation involving the definition of $v_{\eta}[4,(2.5)]$.

It remains to show that $\eta(z) L(z)$ and $\eta(z) R(z)$ are holomorphic at the cusps. Using MAGMA we compute a set of Γ-inequivalent cusp representatives:

$$
\begin{align*}
&\left\{\infty, 0, \frac{1}{7}, \frac{3}{17}, \frac{5}{28}, \frac{3}{16}, \frac{4}{21}, \frac{3}{14}, \frac{8}{35}, \frac{5}{21}\right. \\
&\left.\frac{2}{7}, \frac{5}{14}, \frac{18}{49}, \frac{13}{35}, \frac{8}{21}, \frac{19}{49}, \frac{11}{28}, \frac{3}{7}, \frac{4}{7}, \frac{13}{21}, \frac{9}{14}, \frac{5}{7}, \frac{11}{14}, \frac{6}{7}\right\} . \tag{34}
\end{align*}
$$

Given a cusp $\mathfrak{a} \in \mathbb{P}^{1}(\mathbb{Q})$ and a meromorphic modular form f of weight k with Fourier expansion $f(z)=\sum_{n \in \mathbb{Q}} a(n) q^{n}$, the invariant order of f at \mathfrak{a} is defined as

$$
\begin{aligned}
\operatorname{ord}(f, \infty) & :=\min \{n: a(n) \neq 0\} \\
\operatorname{ord}(f, \mathfrak{a}) & :=\operatorname{ord}\left(\left.f\right|_{k} \delta_{\mathfrak{a}}, \infty\right)
\end{aligned}
$$

where $\delta_{\mathfrak{a}} \in \mathrm{SL}_{2}(\mathbb{Z})$ sends ∞ to \mathfrak{a}. For $N \in \mathbb{N}$, we have the relation (see e.g. [4, (1.7)])

$$
\begin{equation*}
\operatorname{ord}\left(f(N z), \frac{r}{s}\right)=\frac{(N, s)^{2}}{N} \operatorname{ord}\left(f, \frac{N r}{s}\right) \tag{35}
\end{equation*}
$$

We extend this definition to functions f in the set
$S:=\left\{\widetilde{M}\left(\frac{a}{7}, z\right), \widetilde{N}\left(\frac{a}{7}, z\right): a=1,2,3\right\} \cup\{\widetilde{M}(a, b, z), \widetilde{N}(a, b, z): 0 \leq a \leq 6,1 \leq b \leq 6\}$
by defining the orders of these functions at ∞ to be the orders of their holomorphic parts at ∞ (see Sect. 6.2, (2.1)-(2.4), and (3.5)-(3.8) of [8]); that is,

$$
\begin{align*}
& \operatorname{ord}\left(\widetilde{M}\left(\frac{a}{7}, z\right), \infty\right)=\operatorname{ord}(\widetilde{M}(a, b, z), \infty):= \begin{cases}-\frac{1}{24} & \text { if } a=0, \\
-\frac{1}{1176} & \text { if } a=1,6, \\
\frac{3 a}{14}\left(1-\frac{a}{7}\right)-\frac{1}{24} & \text { otherwise, }\end{cases} \tag{36}\\
& \operatorname{ord}\left(\widetilde{N}\left(\frac{a}{7}, z\right), \infty\right):=-\frac{1}{24}, \tag{37}\\
& \operatorname{ord}(\widetilde{N}(a, b, z), \infty):=\frac{b}{7}\left(\frac{1}{2}+k(b, 7)\right)-\frac{3 b^{2}}{98}-\frac{1}{24}, \tag{38}
\end{align*}
$$

where

$$
k(b, 7):= \begin{cases}0 & \text { if } b=1 \\ 1 & \text { if } b=2,3 \\ 2 & \text { if } b=4,5 \\ 3 & \text { if } b=6\end{cases}
$$

Lastly, for $f \in S$ we define

$$
\begin{equation*}
\operatorname{ord}(f, \mathfrak{a}):=\operatorname{ord}\left(\left.f\right|_{\frac{1}{2}} \delta_{\mathfrak{a}}, \infty\right) \tag{39}
\end{equation*}
$$

This is well-defined since S is closed (up to multiplication by roots of unity) under the action of $\mathrm{SL}_{2}(\mathbb{Z})$. By this same fact we have

$$
\begin{equation*}
\min _{\text {cusps } \mathfrak{a}} \operatorname{ord}(f, \mathfrak{a}) \geq \min _{g \in S} \operatorname{ord}(g, \infty)=-\frac{1}{24} \tag{40}
\end{equation*}
$$

for all $f \in S$, from which it follows that

$$
\operatorname{ord}(\eta f, \mathfrak{a}) \geq 0
$$

for all cusps \mathfrak{a} and for all $f \in S$.
To determine the order of $\eta(z) \widetilde{M}\left(\frac{a}{7}, 49 z\right)$ at the cusps of Γ, we write

$$
\eta(z) \widetilde{M}\left(\frac{a}{7}, 49 z\right)=\frac{\eta(z)}{\eta(49)} m(49 z), \quad \text { where } m(z)=\eta(z) \widetilde{M}\left(\frac{a}{7}, z\right)
$$

The cusps of $\Gamma_{0}(49)$ are ∞ and $\frac{r}{7}, 0 \leq r \leq 6$. By (35) the function $\eta(z) / \eta(49 z)$ is holomorphic at every cusp except for those which are $\Gamma_{0}(49)$-equivalent to ∞ (the latter are $\infty, \frac{18}{49}$, and $\frac{19}{49}$ in (34)); there we have ord $(\eta(z) / \eta(49 z), \infty)=-2$. By (40), to show that $\eta(z) \widetilde{M}\left(\frac{a}{7}, 49 z\right)$ is holomorphic at every cusp, it suffices to verify that $\operatorname{ord}\left(m(49 z), \frac{r}{49}\right) \geq 2$ for $r=18,19$. By (35), [8, Theorems 3.1 and 3.2], the fact that $\left(\begin{array}{cc}r & r-1 \\ 1 & 1\end{array}\right)=T^{r} S T$, and (4), we have

$$
\begin{aligned}
\operatorname{ord}\left(m(49 z), \frac{18}{49}\right) & =49 \operatorname{ord}(m(z), 18) \\
& =49\left(\frac{1}{24}+\operatorname{ord}(\widetilde{M}(4 a \bmod 7,4 a \bmod 7, z), \infty)\right) \\
& = \begin{cases}46 & \text { if } a=1, \\
2 & \text { if } a=2, \\
50 & \text { if } a=3 .\end{cases}
\end{aligned}
$$

A similar computation shows that $\operatorname{ord}\left(m(49 z), \frac{19}{49}\right) \geq 2$. Since $L(z)$ is holomorphic on \mathbb{H}, we have, for each cusp \mathfrak{a}, the inequality

$$
\begin{aligned}
& \operatorname{ord}(\eta(z) L(z), \mathfrak{a}) \\
\geq & \min \left\{\operatorname{ord}(\eta(z) f(z), \mathfrak{a}): f(z)=\widetilde{N}\left(\frac{1}{7}, z\right) \text { or } f(z)=\widetilde{M}\left(\frac{a}{7}, 49 z\right), 1 \leq a \leq 3\right\} \geq 0
\end{aligned}
$$

We turn to $\eta(z) R(z)$. Using Lemma 3.2 of [4], we find that

$$
\operatorname{ord}\left(f_{\rho}, \frac{r}{s}\right)=\left\{\begin{array}{lll}
\frac{25}{56} & \text { if } 7 \mid s \text { and } \rho r \equiv \pm 2 & (\bmod 7) \tag{41}\\
\frac{9}{56} & \text { if } 7 \mid s \text { and } \rho r \equiv \pm 3 & (\bmod 7) \\
\frac{1}{56} & \text { otherwise }
\end{array}\right.
$$

By (35) and (41) we have

$$
\operatorname{ord}\left(\eta(z) R(z), \frac{r}{s}\right) \geq \frac{1}{24}-\frac{(7, s)^{2}}{168}+2 \min _{\rho=1,2,3} \operatorname{ord}\left(f_{\rho}(7 z), \frac{r}{s}\right) \geq 0 .
$$

Therefore $\eta(z) R(z) \in M_{1}(\Gamma)$, which proves (32) and completes the proof of Lemma 1.

References

1. Andersen, N.: Vector-valued modular forms and the mock theta conjectures. Preprint, arXiv:1604.05294
2. Andrews, G.E., Garvan, F.G.: Ramanujan's "lost" notebook VI: The mock theta conjectures. Adv. in Math. 73(2), 242-255 (1989)
3. Berndt, B.C., Rankin, R.A.: Ramanujan: Letters and commentary, History of Mathematics, vol. 9. American Mathematical Society, Providence, RI (1995)
4. Biagioli, A.J.F.: A proof of some identities of Ramanujan using modular forms. Glasgow Math. J. 31(3), 271-295 (1989)
5. Bringmann, K., Ono, K.: Dyson's ranks and Maass forms. Ann. of Math. (2) 171(1), 419-449 (2010)
6. Bruinier, J.H.: Borcherds products on $\mathrm{O}(2, l)$ and Chern classes of Heegner divisors, Lecture Notes in Mathematics, vol. 1780. Springer-Verlag, Berlin (2002)
7. Eichler, M., Zagier, D.: The theory of Jacobi forms, Progress in Mathematics, vol. 55. Birkhäuser Boston, Inc., Boston, MA (1985)
8. Garvan, F.: Transformation properties for Dyson's rank function. Preprint, arXiv:1601.05781v2
9. Gordon, B., McIntosh, R.J.: Modular transformations of Ramanujan's fifth and seventh order mock theta functions. Ramanujan J. 7(1-3), 193-222 (2003)
10. Hickerson, D.: On the seventh order mock theta functions. Invent. Math. 94(3), 661-677 (1988)
11. Hickerson, D.: A proof of the mock theta conjectures. Invent. Math. 94(3), 639-660 (1988)
12. Iwaniec, H.: Topics in classical automorphic forms, Graduate Studies in Mathematics, vol. 17. American Mathematical Society, Providence, RI (1997)
13. Skoruppa, N.P.: Über den Zusammenhang zwischen Jacobiformen und Modulformen halbganzen Gewichts. Bonner Mathematische Schriften [Bonn Mathematical Publications], 159. Universität Bonn, Mathematisches Institut, Bonn (1985)
14. Zwegers, S.P.: Mock theta functions. Ph.D. Thesis, Universiteit Utrecht, 2002

[^0]: UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555
 e-mail: nandersen@math.ucla.edu

