The radius of convergence of $\sum_{n=0}^{\infty} x^n$ is _____

Indicate which convergence test one would use in determining the convergence/ divergence of

i. $\sum \frac{1}{n^2}$

ii. $\sum \frac{1}{\sqrt{n}}$

iii. $\sum \frac{1}{n^2+n}$

iv. $\sum \frac{1}{n^2-n}$

 $v. \sum \frac{(-1)^n}{\sqrt{n}}$

vi. $\sum \left(\frac{1}{n}\right)^n$

q) The MacLaurin series for $\cos x$ is (Write at least 5 nonzero terms.)

- Fob Give the limit of the sequence $\left\{\left(1-\frac{1}{n}\right)^n\right\}$ as $n\to\infty$ if it is convergent, otherwise write DIVERGENT.
 - (1) Let State the (2n)-th term of the MacLaurin series for $\frac{\sin x}{x}$
 - True/False: Write T if statement always holds, F otherwise. Let $\sum a_n = \sum_{n=1}^{\infty} a_n$ be an arbitrary series.
 - (a) ____ If $\{a_n\}$ is a positive decreasing sequence then $\sum (-1)^n a_n$ converges
 - (b) ____ If $\sum a_n$ converges then $a_n \to 0$
 - (c) ____ If the partial sums of $\sum a_n$ are bounded, then $\sum a_n$ converges
- ω_0 4. The Taylor series for e^{2x} , centered at 0, is _____
- FDV (e) The radius of convergence of $\sum_{n=0}^{\infty} 3^n x^n$ is ______
 - (g) The series $x^2 \frac{x^4}{3!} + \frac{x^6}{5!} \frac{x^8}{7!} + \dots$ is the MacLaurin series for the function _____
 - (i) The series $2 \frac{2}{3} + \frac{2}{9} \frac{2}{27} + \dots$ converges to _____
- What does the ratio test predict with regard to the convergence of the series $\sum_{n=1}^{\infty} \frac{n^2}{n^4 + 1}?$
 - What is the radius of convergence of the series $\sum_{n=1}^{\infty} \frac{4^n}{n} x^n?$

For 3 The sum $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if

(I)
$$\int_{1}^{\infty} x^{-p} dx \text{ converges}$$

(IV)
$$p \ge 1$$

(II)
$$p > 1$$

(III)
$$p \le 1$$

Which of the above are true?

(a) (I),(II)

- (e) (I) and (IV)
- (i) None of the above

(b) (II) only

- (f) (IV) only
- (c) (I) and (II)
- (g) (I) and (V)

(d) (III) only

(h) (V) only

6 Find the sum of the series $\sum_{n=1}^{\infty} n (-1)^n \left(\frac{1}{2}\right)^n$.

(a) $-\frac{13}{18}$

(e) $\frac{1}{9}$

(b) $-\frac{20}{9}$

(f) $-\frac{5}{9}$

(c) $\frac{7}{9}$

(g) $\frac{5}{18}$

(d) $-\frac{2}{9}$

(h) None of the above

For $\sqrt[4]{1}$ The series $x^2 + x^4 + \frac{x^6}{2} + \frac{x^8}{6} + \dots = \sum_{n=0}^{\infty} \frac{x^{(2n+2)}}{n!}$ converges to the function

- (a) $\frac{x^2}{1+x^2}$
- (e) $x^2(\sin x^2 + \cos x^2)$
- (b) $x^2 \tan^{-1} x$
- (f) $\sin x^2 + \cos x^2$
- (c) e^{x^2+2}

(g) None of these

(d) $x^2e^{x^2}$

8. The interval of convergence of the power series $\sum_{n=1}^{\infty} n^2 (5x-3)^n$ is

- (a) (-3/5, 3/5)
- (e) (2/5, 4/5)
- (i) None of the above

- (b) (-5/3, 5/3)
- (f) (1/5, 1)

(c) (0,1)

(g) $(0,\infty)$

- (d) (-1,1)
- (h) $(-\infty, \infty)$

9. The coefficient	of x^3	in the	e series	expansion	of (1	$+x)^{1}$	$^{/4}$ is

(a) $\frac{1}{4^3} = \frac{1}{64}$

(e) $\frac{20}{4^3 3!} = \frac{5}{96}$

(i) None of the above

(b) $\frac{1}{4^3 3!} = \frac{1}{384}$

 $(f) \quad \frac{21}{4^3 3!} = \frac{7}{128}$

(c) $\frac{6}{4^3 3!} = \frac{1}{64}$

(g) $\frac{25}{4^3 3!} = \frac{25}{384}$

(d) $\frac{15}{4^3 3!} = \frac{5}{128}$

(h) $\frac{35}{4^3 3!} = \frac{35}{384}$

wol

- (a) converges absolutely
- (b) converges conditionally, not absolutely
- (c) doesn't converge

- (d) converges to infinity
- (e) converges to negative infinity

12. By using two non-zero terms of the Taylor series, the integral $\int_0^1 \sin(x^2) dx$ is approximately (to two digit accuracy)

- (a) .96
- (b) .43
- (c) .31
- (d) .29
- (e) .12
- (f) .03

FOW 5. The series $\sum_{n=2}^{\infty} \frac{3^n}{n!}$ converges to

(a) ln 3

(d) $\frac{3^{n+1}}{n+1}$

(g) $\cos 3$

(b) ln 2

(e) ∞

(h) $e^3 - 4$

(c) ln(3) - 1

(f) e^3

(i) 3^e

6. The interval of convergence of the power series $\sum_{n=1}^{\infty} n^2 (7x-3)^n$ is

(a) $\left(-\frac{3}{7}, \frac{3}{7}\right)$

(d) (0,1)

(g) $(0,\infty)$

(b) $\left(-\frac{7}{3}, \frac{7}{3}\right)$

(e) $\left(\frac{1}{7},1\right)$

(h) $(-\infty, \infty)$

(c) (-1,1)

- (f) $\left(\frac{2}{7}, \frac{4}{7}\right)$
- (i) None of these

For \bullet Which of the following series has as its interval of convergence $(-\infty, 1]$?

a) $\sum x^2/n!$

b) $\sum e^{-n} x^{2n}$

c) $\sum \frac{(x-1)^n}{2^n}$

d) $\sum x^{n-1}/n^2$

- e) $\sum (x+1)^{n+1}/n^n$
- f) None of these
- 5. Determine whether the following series is convergent. If it is, find its sum.

$$\sum_{n=1}^{\infty} \left(e^{1/n} - e^{1/(n+1)} \right)$$

- a) It is divergent.
- b) *e*

c) $\frac{1}{e}$

d) $e - e^{1/2}$

e) ln(1)

f) None of these.

6) If we differentiate the power series

$$\frac{x^3}{3!} - \frac{x^5}{5!} + \frac{x^7}{7!} - \frac{x^9}{9!} + \dots$$

the resulting function is

a) e^{-x}

b) $\cos 2x$

c) $\sin x$

- d) only expressible as a series.
- e) $-(\cos x 1)$

- f) $\cosh x + 1$
- Write down the Taylor series for $f(x) = \frac{1+x}{1-x}$ about x = 0. You should include the *n*th term in the Taylor series. Hence find the fifth derivative of f(x) at x = 0:

$$\left. \frac{d^5}{dx^5} \left(\frac{1+x}{1-x} \right) \right|_{x=0}$$

- Fo. 5 17. (a) Determine the power series expansion of $\int \tan^{-1} x \, dx$.
 - b Find first two nonzero terms of the Taylor series of $\ln(1 + \sin^2 x)$ at $x = \pi$. What is the remainder after these terms?

16. Determine whether each infinite series is absolutely convergent, conditionally convergent, or divergent. Give reasons for your conclusion.

(a)
$$\sum_{n=1}^{\infty} \frac{\ln n}{3n+7}$$

(b)
$$\sum_{n=1}^{\infty} (3^{-n} - 5^{-n})$$

(c)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln n}$$

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{\ln(2n)}$$

- ω Find the Taylor series for the function $f(x) = x^2 + 2x + 5$ centered at the point x = 2. Show your work.
 - 21. For each of the following power series, determine what function it converges to, and find the interval of convergence (watch the end-points).

(a)
$$\sum_{n=0}^{\infty} nx^{n-1}$$

(b)
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{3n}}{n!}$$

22. (a) Give the formal definition of the statement $\lim_{n\to\infty} a_n = L$.

- (b) Determine the limit $\lim_{n\to\infty} \left(1+\frac{\pi}{n}\right)^n$ (by any means).
- Folo 14. Use the first three non-zero terms of the MacLaurin series for e^{-x^2} to estimate the definite integral $\int_0^2 e^{-x^2} dx$. Write your answer as a fraction, if possible.

- 16. Find the sum of the power series $\sum_{n=1}^{\infty} nx^{n-1}$ (as a rational function of x).
- 17. Determine whether each of the following infinite series converges. State any convergence/divergence test you used.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$

(b)
$$\sum_{n=1}^{\infty} \frac{e^n}{n^{30} + 2^n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$$

(6 points) Determine whether the following series converges and explain your answer.

$$\sum_{n=1}^{\infty} \frac{1}{3n^2 + 2}$$

(6 points) Compute the first 4 nonzero terms of the MacLaurin series for the function $f(x) = \ln(x^2 + 1)$.