Math 113-008, Exam 3
2-5 November 2007
D. G. Wright

Name
Row \qquad

1. (10%) Find the length of the curve $y=\ln (\cos x), \quad 0 \leq x \leq \pi / 3$.
2. (10%) Show that the area S of a sphere or radius r is given by $S=4 \pi r^{2}$. Do this by rotating a half circle of radius r about the x-axis.
3. (15%) A large whale aquarium has a circular window at one end of radius 3 ft , The center of the window is 10 ft below the surface
(a) Set up an integral to evaluate the force of water on the window. Use δ for the density of water.
(b) Find the force on the window by using the theorem of Pappus. Leave your answer in terms of δ.
4. (10%) Find the centroid of the region under the curve $y=\sin x$ and above the x-axis for $0 \leq x \leq \pi$.
5. (15\%) For $c>0$, consider the function $f(t)=\left\{\begin{array}{ll}0 & \text { if } t<0 \\ c e^{-c t} & \text { if } t \geq 0\end{array}\right.$.
(a) Show that f is a probability density function.
(b) Find the mean μ in terms of c. (Show your work.)
(c) Find a formula for the median M in terms of c. (Show your work.)
6. (10%) Find the centroid of the following system consisting of a rectangle and and an isosceles triangle.

7. (5%) Give the definition of $\lim _{n \rightarrow \infty} a_{n}=L$.
8. (15%) Evaluate the following limits if they exist. If the limit does not exist, so state.
(a) $\lim _{n \rightarrow \infty} \sqrt{n} \sin \frac{\pi}{\sqrt{n}}$
(b) $\lim _{n \rightarrow \infty} \sin \frac{\pi}{\sqrt{n}}$
(c) $\lim _{n \rightarrow \infty} \cos n \pi$
9. (10\%) Show $\lim _{n \rightarrow \infty} r^{n}=0$ if $0<r<1$. Explain all of your reasoning.
10. (Bonus) Show the sequence $\{\sqrt{2}, \sqrt{2 \sqrt{2}}, \sqrt{2 \sqrt{2 \sqrt{2}}}, \cdots\}$ is bounded and increasing. Find the limit. Hint: If the terms in the sequence are given by a_{n}, find a formula for a_{n+1} in terms of a_{n}. Show the sequence is increasing and bounded above by 2 .
