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Abstract
In this paper a new S-local formula is given for the Weil distribution, which is shown
to be the sum of nonnegative traces of a non-positive trace class Hilbert-Schmidt operator
on two orthogonal subspaces of a L? space. One of the two traces can be written in two
different forms. This flexibility, the new S-local formula, and the two nonnegative traces
all together give the desired positivity for the Weil distribution. Finally, Weil’s criterion
implies that all nontrivial zeros of the Riemann zeta-function lie on the critical line.

Subject Class: Primary 11M26, 42B10, 47G10
Key Words: Fourier transform, Hilbert-Schmidt operator, trace, Weil’s positivity, zeta zeros

1 Introduction

The Riemann zeta function ( is defined by

pl
for s > 1. It extends to an analytic function in the whole complex plane except for having a
simple pole at s = 1. Trivially, ((—2n) = 0 for all positive integers n. All other zeros of the
Riemann zeta function are called its nontrivial zeros.

In connection with investigating the frequency of prime numbers, B. Riemann conjec-
tured in 1859 [10] that all nontrivial zeros of ¢ have real part equal to 1/2. In this paper, we
confirm this conjecture.

To avoid the complication of writings, the author only considered the the Riemann zeta
function in this paper. He will consider Dirichlet L-functions in a separate paper.

Meanings of all notations in this paper are given by their first appearances except for
obvious exceptions. Let () denote the field of rational numbers. For each prime p we denote
by ||, the p-adic valuation of @) normalized so that ||, is the ordinary absolute value if p is the
infinity prime and |p|, = p~! if p is a rational prime. @, is the p-adic completion of Q.

For the rational number field, the Weil distribution A(h) [15, p. 18] is given by

A(h) = h(0) + h( Z/ 1|ﬁ|u‘p (1.1)




where the sum on p is over all primes of ) including the infinity prime. For p # oo,

//* <|u|u‘p Z]ogp h(p_m)} .

If p is the infinity prime of @), then

// h(|u|71)d*u = (7 + log(2m))h(1) + lim (/1 N h(|u|71)d*u + h(1)log e)

1— e—0 11— ul

with v being Euler’s constant. Weil’s explicit formula reads

S hip) = h(0) + h( Z/* 1|f|u|p (1.2)

p

where the sum on p is over all nontrivial zeros of the Riemann zeta function and

his) = / Bty dt. (1.3)
0
In Section 2 we will prove the following theorem.

Theorem 1.1 Let

A=Y=y

p P

where the sum is over all nontrivial zeros of ((s) with p and 1 — p being paired together. Then
there exist a family of real-valued smooth functions g.(t) given in (2.16) on (0,00) such that
3:(0) =0, g.(t) =0 fort & (u-',1) with p. = (1 + €)/€e* and such that

Hm A(hn) = 2A,

e—0+

where

P, () = / 9e(xy)ge(y)dy. (1.4)
0
In Section 3 we derive following new formula for the Weil distribution.

Theorem 1.2 Let §sg be the Fourier transform of g on the S-local adele group Ag, and let

g(t) =t71g(t7") = Jge(t), h(ﬂ?):/ooog(xt)g(t)dt- (1.5)

Then - -
Aw:/'mm%mw+/|%WWmmw (1.6)
0 0



In Section 4 we collect some preliminary results which will be used in later sections.

Let S be given as in (2.20), Oy ={{ € Q" : [£], =1, p ¢ S}. Note that [{|s =1
for all £ € Og. We denote S" = § — {oo}, Ag = R X [[ e @p, Js = R* X [[ s @},
O, ={z € Q,: |z|, <1}, and Cs = Js/O%. For Xg = Ag/O%, we define L*(Xg) as in [4,
(5), p. 54] to be the Hilbert space that is the completion of the Schwartz-Bruhat space S(Ag)
[3, 16] for the inner product given by

(9o = [ B EG@ds

Cs
for f,g € S(Ag), where
Bs(f)(x) = Vel 3 f(&x). (L7)
¢€0y
Let L7(Xs) be the subspace of L?(Xg) spanned by the set Se(R) x [ <o lo,, where S.(R)

consists of all even functions in S(R). Let Q4 be the subspace of all functions f in L3(Xg) such
that §sf(z) =0 for |z| < A. Then

L(Xs) = Qx ® Qa. (1.8)
We define
Vs(h)F(z) = /C h(x /X |z /A F(X)d* A (1.9)
for FF € L?(Cs). Let
Ty = Vs(h) (Sa — Es§sPASsEs "), (1.10)

where Py(z) = 11if |z] < A and 0 if |z] > A and Sy(x) =1 if |z| > A~ and 0 if |z] < AL
In Section 5, we compute the trace of T} on the subspace E5(Q7) of L?(Cs) in two ways
and obtained the following two theorems.

Theorem 1.3 We have
1 1
tracegg g, (Tr) = / Tsg(t)|*logt dt + / Ts9(t)Fs{g(u)log ul}(t)dt
0 0

_ / Fsg(t)dt / g(u) Tog |ut| W s (—ut)du.
L i<t As, t<|u|<pe

He

Theorem 1.4 We have
tracegy gy, (1e) = 0.

In section 6, we compute the trace of T, on the subspace Es(Qx) of L?(Cs) and prove
its positivity. In particular, we proved the following two theorems.

Theorem 1.5 We have

tracerion: (1) = | [Fsa(0)Plogtdt + [ Sg(t)s{olu)los ul} ()t
1

1

1
= [ Ssatoar [ 9(2) log || W (—2t)d=.
Tls As,%<‘2|<,u,5
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Theorem 1.6 We have
traceEs(QA)l(Tﬁ) 2 0.

To bypass a technical difficulty in obtaining Theorem 1.6, we decompose T as a sum of two
trace class Hilbert-Schmidt operators. One of them has trace 0. The other one has nonnegative
trace by the positivity of the convolution operator Vg(h).

Finally, we prove the following Riemann hypothesis in Section 7.

Theorem 1.7 All nontrivial zeros of the Riemann zeta function lie on the line Rs = 1/2.

2 Adjustment of 1(0), 2(1) to 0 and proof of Theorem 1.1

Briefly speaking, we add in this section a function of the form Y >° | f(nz) to g so that the new
g remains compactly supported and the value of the new A(h) remains almost the same while
h(0) and h(1) become zero for the new h.

Lemma 2.1 ([8, Theorem 1, p. 326]) A necessary and sufficient condition for the nontrivial
zeros of ((s) to lie on the critical line is A, =2 0 forn=1,2,---

Lemma 2.2 For each positive integer n and a sufficiently small € > 0, there exist a smooth
function £, (x) on (0,00) with €, (x) =0 for v & (*=,1) and satisfying that

T+e?
61—1}&26"6 (1 —p) =2\,
Proof. Let
"\ ti!
P,(t) = ,
" ;()u—w
and
P,(logz) if0<z<1
gn(T) =< n ifr=1
0 if x> 1.

Then [1, Lemma 2, p. 282]

Gu(s) = 1— (1-%)71

forn=1,2,---
For 0 < € < 1 we replace g,(x) by the function
(0 ifl—-e<az<oo
tgn(l—¢€) fz=1—c¢
Gn.c(x) = < gu(x) ife<zr<l—e (2.1)
1g.(€) ifr=ce¢
0 iftr <e




Let

o) = {%Oexp (—1/[1 = (=2)2) itz —1] <e, 2.9

0 if |z —1] > e
where ¢yt = [ -1 dz and I (2)de = 1.
We define -
o) = [ gnclenr o)y 23)
0

Then £, () is a smooth function on R whose support is contained in the interval (%,1). Since

-~

Upe(1 —5) = Gne(l —5)T(s) (2.4)

with

T(s) = CO/ exp( 1_ 1)(1 + ew)* du,

1 u?

we have

lne(1 = 8)l0e(8) = Gunc(1 — )G (5) (2.5)
= Gne(1 = 8)Gne(s) ({F(s)(F(L — 5) — 1) + (7(s) — 1)}

By partial integration,

1 € 1
Gels) = / g ()21 — / ()N — / gu(2)2 N
0 0 1—e

s Rs
=1-—(1- é)" — P,(log e)% +0 (6 | log e\”2> _ads) (2.6)

|s]? s
1 Rs
=0 (— + |log e["1E )
5| ||

for 0 < Rs < 1 and |s| > 1, where

1
ac.(s) =n— P,(log(1 —€))(1 —¢€)° — / P! (log z)z*~‘dx.
1—e
The proof of [1, (3.9), p. 284] shows that

max ¥p|7? =0 (e_cl\/ “Ogd) (2.7)

for some constant ¢ > 0. For 0 < Rs < 1,

Loy 1
et -1 (1 + 1—)dt < 1. (2.8)
—€

1 1
1—?(5)200/ e?1 [1— (1+te)* '] dtgco/

1 -1



By (2.4), (2.5), (2.6) and (2.8),
Zgne P)gn.e(p) {T(p)(T(L —p) = 1) + (T(p) — 1)}

Z( loge %)( + [loge %)

< + [log e[ + |log €|t —

ol ol J \I1 = pl 1= pl
1 1 1

X max (|/ el [1— (1+te)” "] dif, |/ e?1 [1— (1+te)™’] dt|> :
_ -1

1

From (2.7) we deduce that

Rp 1 1-Rp

€ €

+ [ log e[ ) < +] ogel’“—)
(I | ol /) \I1—p| 11— p|

1 n— — n— —
:m{1+\loge| L™ 4+ €77 + |log "%} < |p|~¥2.

It follows that

Zgne P)gne(p) {T(P)(T(1 = p) = 1) + (T(p) = 1)}

<>
For any ¢y > 0, there exists a positive ky such that

> 1ol < e/2.

|p|=ko

PE |/ el [1— (1+te)” "] dtH/ e T [1— (1+te)~"] dt]).

Since

iy 3

lp|<ko Pl

1 1

(|/ ™5 [1— (1+te) ] dt], |/ e [1— (1+te)*] dt]) =
-1 -1

there exists a ¢; with 0 < €; < ¢p such that

| Z

\P|<k0

1 1

(|/ e [1— (1+te,) ] dil, |/ e [1— (14 te)) ] di])| < 2.
-1 -1

Thus, we have proved that for any €y > 0 there exists a 0 < ¢; < ¢y satisfying that

1
Z|| |/ = [1— (1+te)" '] dt], |/ et21 [1— (1+ter) "] dt]) < €.
Pl?

It follows that

lim Zgne 0)iine(0) ((F(P)(F(1 = p) — 1) + (F(p) — 1)} = 0.

e—0+



We deduce from (2.5) that
€l_i>131+ Zﬁn,e(p)ﬁn,e = eli%l Zgne 0)Gn.e(1 —p).
p

We can write

9n(8)Gn(L = 8) = Gne(8)Gn.e(1 — 5)
[/g\n(s) - /g\n,s(s)]/g\n(l - 3) + fq\n,e(s)[gn(l - S) - Z]\n,e(l - S)]

= gn(1 — s)[P,(log 6)6—; +0 <r§72|10g e|"” 2) + aeis)]
1—s 1-Rs
) Palog ) +0 (o) 4 2=
<L floge e 1 la(s)] + o flog ™
s(1 —s)] ‘ ||
b oge e [log e e (1 — )] +
|s(1—s)] 1 — s

There exists a constant ¢, such that |a.(s)| < ¢, for all s inside the strip 0 <

| log e|™™

(2.9)

(2.10)

s <1

For each fixed s, we have a.(s) — 0 as € — 04. An argument similar to that made in the

paragraph containing (2.9) shows that

Z\ae p) +lal—p)l _,
A p(1 = p)| '

Thus, from (2.7), (2.10) and (2.11) we derive that

Jim > [92(p)9n(1 = p) = Gue(P)Gne(1 = p)] = 0.
P

The stated identity then follows from (2.9).
This completes the proof of the lemma.

Proof of Theorem 1.1. Let a(t) = 1/t(t — 1),

ay = /O Dat/{ (/ “(t)dt)2 — (/11 a(®) dt) (/01 te“(t)dt)},
/ tealt) dt//

a(t) = {(alt +ag)e® if0 <t <1,

and

0 ft<0orl<t.

(2.11)



Then - - ”
/ a(t)dt =0 and / alt)— = 1.
0 0 t

o0 o0

If we denote

9(t) =D (=1)"a(nt) = Zant —22 (n2t),

n=1

by the Poisson summation formula

n 1 = n
=3 ZSO&(?) 3 Z@ﬂg)

n#0 n#0

(2.12)

(2.13)

(2.14)

This implies that 9(t) is of rapid decay when ¢ — 0, 0c. It follows that 9(s) is an entire function.

Since

> E -2

n=1

for s > 0, by analytic extension we have

I(s) = (1= 27)¢(s)als)
for complex s. By (2.15) and (2.12), we have

~ 1 ~
9¥(0) = 3 and 9J(1) = 0.

Let
1 &0 du
) = ) = 5 [ a5
and -
hoe(z) = /0 9e(2y)ge(y)dy,
where

V() ifx>e
Vi(z) = S 1d(e) ifz=ce,
0 if x <e.

Since 1/9\(p) = 0 for nontrivial zeros p of ((s), we have

(2.15)

(2.16)



Let ho(z) = [~ ln.c(@y)ln.c(y)dy. Then

~ ~ ~

hw@w4mm=@mﬂau—m5mﬁéﬁ@mﬂwm+4%@mﬂw (2.17)

511(0) /Ogﬁ(x)xp_ldx /Oeﬁ(x)x_pdx}

Since both zo/(x) and its Fourier transform vanish at x = 0, by the Poisson summation

' (x Z nza/(nx) — 2 Z n2za’ (n2x)

== Z&(ua'(u))(g) - Z&(UO/(U))(E

n#0 n#£0
This implies that J'(z) is of rapid decay when z — 0. Since ¥(z) is also of rapid decay when
x — 0, we have

max{|d(z)], [ ()|} < |z["
for any positive integer n as * — 0+. By partial integration,
‘ V(e) 1 ‘ ce
W)z de = ——=+ —— [ ¥(x)a! de < — 2.18
| o@de = 79w — [t < (218)
for 0 < Rs < 1 and |s| > 2, where ¢ is an absolute constant independent of s.
By (2.4) and (2.6) we have

+[loge" !t « 2B (2.19)

uels) < 1 SR

for 0 < Rs < 1, where the implied constant depends only on n.
From (2.17), (2.18) and (2.19) we derive that

Z@ww%@«mw“zmﬁo

p

Ns |10g6|" 1

as € = 0+. That is,

e—0+4
By (2.9),
lim A(hy,e) = 2A,.
e—0+4
This completes the proof of Theorem 1.1. O

We denote p = 3¢, Since g.(t) = 0 for ¢ & (IJr ,1), we have g.(t) = 0 for ¢t & (u-',1)
and h,(z) = 0 for z & (u-*, u.). We also define g.(t) = g.(—t) for ¢ < 0. From now on we
choose

S = {00, all primes p < X'} (2.20)

for some X > ..
By (2.16), g.(0) = 0. It follows that

T e (0) = T e (1) = 0. (2.21)

9



3 A formula for the Weil distribution and proof of The-
orem 1.2

In this section we derive a new formula for the Weil distribution A(h).

Let Ng be the set consisting of 1 and all positive integers which are products of powers
of primes in S’. 1), is the character on the additive group @), given as in [13] and Y (z) =
exp(—2mix).

The Fourier transform of f € L*(R) is

51 = [ rwe
For f € L*(Q,) its Fourier transform is defined by
8pf(8) = g f(@)gp(—ap)da

for B € Q,.
Let ¢ = [[,cg¥p- When f =[] .5 f, € L*(Ag) we define

Ssf(B) = A fla)vs(—ap)da.

Then Fsf = Hpes Spfp- As S(Ag) is dense in L?(Ag), the definition of Fg can be extended to
all functions in L?*(Ag).

Lemma 3.1 We can write

Fog(t) = Y @Sg(%)

k,leNg
1 c+i0c0 /\ 1— psfl
= — t° d 3.1
27TZ i gg(s) p]éIS/ 1 _ p—g s ( )

for c >0, where@s =3(1 — s)x(1 — s8) with x(s) = 2°77T'(1 — s)sin Z and
2

Fg(t) =2 /0 N 9(y) cos(2mty)dy.

We have - -
| satoPie= [ g 32)
0 0

and

/0 T S (O)Fsgdt = / oo (3.3)

Moreover, if g is a real-valued function so is §sg.

10



Proof. As |y| =1 for v € O, by [6, (3.3), p

2468] we obtain the following formula, which also
shows that if ¢ is a real-valued function so is §gyg,

Ssg(t)Z/A gW)¥s(—y([t],1,---,1))dy
> [ tust-ui. 1 D)y

veoy Y ls
=) @ / g(y)e*™ I dy
v€0% 0
2 3" w0) [ gty coszmylih)
0<vEOX 0
with
L—pt if |y, <1,
o) =[[{-»" ifhl=npr (3.4)
= o itk >
That is,
w(k 1 [t
Fsg(t) = ulk) [T - —)Sg(ﬂ)
k P k
k,l€Ng, (k,1)=1 ptk
1 p(k) Lozl |t| H o |t|
IHa-> > -1l =2
peNs P kaens (k) plk k,l€Ng
Thus, for ¢ > 0 we have
1 c+ioo - 1 _ p871
t) = — s d
Sealt) =5 [Tl [] Tl
peS’
for ¢ > 0. By Plancherel’s Theorem [12, Theorem 1.1, p. 208]
| saPa = [ GaPu= [ o= [ sat)ae= [ la P
0 —o00 —00 0 0
where s = 1/2 + 2miu. It follows that
| wsr0Fss®a= [ soaw
0 0
This completes the proof of the lemma a
Lemma 3.2 ([7, Theorem 3.1, p. 796]) We have

/}Rgh(U) COS(27Tu) log"u’du _ _// h(|U|_ )d*u.

1 —u

*

11



Lemma 3.3 We have

oo 0o , »
/ |9(75)|210gtdt+/ |3g(t)|21ogtdt:_/ Al ™) e,
0 0 )

1 —u

where Fg(u) =2 [ g(t) cos(2mtu)dt.

Proof. Since h(z) = [["g t)dt, 1 < |xt| < pe, and 1 < [t| < pe as g vanishes outside the
interval (1, ), we have

Shiu) = /R cos(2muz)dz /0 " o(at)g(t)dt = /“ cos(2ru)da /1 " wt)g(t)dt.

He

Because the above double integral is absolute integrable, by the Fubini Theorem we can change
the order of integration to write

Sh(u) = /Ooog(t)dt/Rg(xt) cos(2mux)dx = /Omg(t)%gg(%)dt
Notice that

/IR h(u) cos(2mu) log [u] du = /

R

cos(2mu) log |u| du /OO %g(t)&q(%)dt
0

where the double integral on the right side is absolute integrable because ¢t € (1, u.) and
Sg(u/t)] < (t/u)? for large |u| by using partial integration twice. Hence, we can change the
order of integration and derive that

/Sh(u) cos(2mu) log |u| du = /OO lg(t)dt/ cos(2mu) log|u|§g(g)du
R o 1t R t
:/ g(t)dt/cos(27rut) log |ut|Fg(u)du
0 R
_ / G log tdt / cos(2mut) §g(u)du + / ottt / cos(2rut)Fg(u) log |u|du
0 R 0 R
- /OO ]g(t)|2log7fdt+/C>O g(t)dt/cos(Qﬁut)Sg(u) log |u|du.
0 0 R

By Plancherel’s Theorem [12, Theorem 1.1, p. 208] and the inversion formula [12, Theorem
4.2, p. 87]

/OO g(t)dt/ cos(2mut)Fg(u) log |u|du = /OO 1Tg(u)|* log udu
0 R 0

as both Fg(u)log|u| and [ cos(2mut)Fg(u) log |u|du are in L'(R) because for large |ul

—1

e /1 " (t) cos(2mtu)dt.

Solu) =2 /1 " (1) cos(2mtu)dt = e

12



Therefore,

/Sh(u) cos(2mu) log |u| du = /OO lg(t)|* log t dt + /OO 1Fg(t)|* log tdt.
R 0 0

The stated identity then follows from Lemma 3.2.
This completes the proof of the lemma. a

Proof of Theorem 1.2. By Lemma 3.1,

Ssg(t) = @

k,€ENg

&q(%)-

Since the sum on k’s is a finite sum as S is a finite set, we can change the order of integration
and summation to write

e ,u ]{32 lgt
/0 |Fsg(t)]* log tdt = Z k2 / Z )logtdt

k1,k2€Ng l1,l20€Ng

= Y p(kn)p(ks) / > Fg(likat)Tg(lakit) log (ki kst )dt

ki,k2€Ng l1,l12€Ng

/0 Z p(k) p(k2)Fg(likat)Fg(lokyt) log (ki ko) dt

k1,k2,l1,l2€Ng

/ > plk)p(ke)§g(lkat)Tg(lakat) log tdt.

k‘1 kQ 15 ZQENS

For n € Ng, we have

1 ifn=1
> u(k):{o N
k|n,keNg In>1

If we denote n; = lsky and ny = l1ko, then

/Ooo > k) p(ke)g(hkat)Fg(lakit) log tdt

k1,k2,l1,l2€Ng

_ / T Y | [ sk | SetnanFetmitog

O nin2eNs \kilni ki€Ng ka|nz2,k2€Ng
oo
:/ \S’g(t)|210gtdt
0

where the rearrangement of the summation is permissible because §Fg(l;k;t) < 1/1;k;t for fixed
t > 0 by partial integration. It follows that

/ Bs9(t) log tdt / B(t)P log tdt
0 0

/0 Z p(k) p(k2)Fg(Likat)Fg(lokit) log (ki ks)dt.

ki1,k2,l1,l0€Ng

13



Let A(k) = logp if K = p® for some prime p and some integer a > 1 and A(k) =
otherwise. Then
— Z wu(d)logd

d|k

for all positive integers k, and >__, u(m) =0 if k > 1. Thus,

[ % teut)setit Falhi log(h k)

k1,k2,l1,l2€Ng

— 2R / > plky) (k) log ki g(likat)Fg(lakit)dt
0

k1,k2,l1,l2€Ng

—2§R/ Z Z p(ky)log ky Z w(ka) | Fg(nat)Fg(nat)dt

n1,n2ENg k1|n1 k1€Ng ]CQ‘”Q,]{QENS

_ _2§R/ > Am)Fg(t)Fg(nat)dt

n1ENg

—- Y ) [ So(Falmnd

nleNS

where changing the order of integration and summation after the 4th equality is permissible
because by Hoélder’s inequality

/ Z A(n)|Fg()Fg(nat)|dt < Z A(ny) \// |Sg(t)|2dt/ |Sg(nyt)|2dt
0

’nléNs n1ENS
- / (t)|?dt Z
0 n1ENg
By Plancherel’s Theorem [12, Theorem 1.1, p. 208],
| so@Fatmtii = [ g0 a(Dyit= [ goutigtide = him).
0 0 ny m 0
Therefore,
/ Fsg(t)* log tdt = / [3g(t)|*logtdt — 2R Y A(k)h(k).
0 0 kENg
Also,
o0 oo 1
u
2 Z A(k)h(k):ZZlogp[h(pm)+p Z/ |_|u|
keNg k=1 peS’ m=1 peS p
Hence,

Sgtﬂogtdtz/ Fg(t)|? log tdt — /
| st [ Isatt) > [ e

peS’

14



By Lemma 3.3, we have

| Postae+ [ sgoF togtar = - -
0 0

peES

[ M,

1 —ul,

Since (=)
/ h"’ﬁ Ul * - m —-m -m
Q; ’]‘ - ulp m=1
if p ¢ S by the choice of h, . in (2.21), we have the formula

A(h):/ |g(t)|210gtdt+/ 1Fsg(t)|? log tdt.
0

0
This completes the proof of Theorem 1.2. |

4 Preliminary results

In this section, we collect some preliminary results which will be used in later sections.
We denote
_ *
Is=Ry x [[ 05
peSs’
1 dxp
1—p~1 [zp[p
d*z, is a Haar measure on Jg.

Let d*t = 4 be the multiplicative measure on R* and d*z, = the multiplicative

It

measure on Q. Then d*zg = Hpes

Lemma 4.1 Ig is a fundamental domain for the action of O§ on Js and Jg = Ugeog ¢ls, a
disjoint union.

Proof. Each o € Jg can be written as « = tb with ¢ = |a|s € Ry and b = at™! € JI, where ¢!
also stands for the idele (¢71,1,---). Since |¢|s = 1 for & € OF, if ay, ap € Jg with |ay|s # |aels,
then the intersection of ayO% and aO% is empty. Thus

Cs =Ry x (J4/0%) .

As K = Q, for each b € J§ there are uniquely determined £ € OF and by € {1} x [] 5 O} such
that b = £by. Also, if by, by are distinct elements in HPGS, O;, then the intersection of b;Oj%
and b,O% must be empty. Otherwise, we have b;b," € O%. Then b b, € Q* and |b,by |, = 1
for all p ¢ S. Since by, by are elements in [] s O, we have 6165, = 1 for all p € S’. Hence

blbgl = 1; that is, by = by. Therefore

peS’

Ts/05= 1] 0;.
peS’
Thus
Cs =R, x [] 05
peS’
We have also obtained the decomposition Jg = Ugeog &lg, a disjoint union.
This completes the proof of the lemma. O
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Lemma 4.2 ([6, Lemmas 3.18 and 3,14, pp. 2471-2477]) The operator
Vs(h) (Sy — EsBsPrSsEs')
is a trace class Hilbert-Schmidt integral operator on L3(Cs).

Lemma 4.3 ([9, Theorem VI.25 (b)(c), p. 212]) trace(A') = trace(A), and trace(AB) =
trace( BA) if A is of trace class and B is bounded.

Lemma 4.4 ([9, Theorem VI.19(b)(a), p. 207]) Let A, B be bounded linear operators on a
Hilbert space H. If A is of trace class on H, so are AB and BA with trace(AB) = trace(BA).

Lemma 4.5 (Lidskii’s Theorem [5, Theorem 8.4, p. 101]) If A is of trace class on a Hilbert
space, then the functional trace of A coincides with its spectral trace.

Lemma 4.6 ([9, Theorem VI.24, p. 211]) If A is a bounded linear operator of trace class on
a Hilbert space H and {©,}5°, is any orthonormal basis, then

[e.9]

> {Apn, ondu

n=1

converges absolutely and the limit is independent of the choice of basis.

Lemma 4.7 (2, Corollary 3.2, p. 237]) Let u be a o-finite Borel measure on a second countable
space M, and let A be a trace class Hilbert-Schmidt integral operator on L*(M, du). If the kernel
k(x,y) is continuous at (x,x) for almost every x, then

tmce(A):/Mk(x,x)d,u(x).

The left regular representation V' of Cs on L?(Cy) is given by

(V(9)/)(e) = flg~ )

for g, € Cg and f € L*(Cs). Let Cf = JL/O%. Since the restriction of V' to C4§ is unitary, we
can decompose L?(Cg) as a direct sum of subspaces

L3 (Cs) ={f € L*(Cs) : f(g'a) =x(9)f(a) forall g€ Cgand a € Cs} (4.1)
for all characters x of C{.

Lemma 4.8 Let

3 .
n(x) _ 2636/2 Z Tk2e2® (ﬂ_kQGZI _ 5) €7Wk2e2 .

keNg
Then .

sn(t) = 155(5 + 2mit)
where .

_s,S
€5(s) = s(s — D 1) I =
- D
peS’



Proof. By computations,

/ n(x>€x(sfl/2)dx

= / 2v/u Y k) (m(ku)? — §)e*ﬂ<ku>2u8*%du
0 2
keNg
1 s S 1 1
= — —_ 1 _71—‘ —_ = —
45(3 Y2 (2)p|65|/ —p 455(5)

for $&s > 0. Putting s = 1/2 + 2mwit into above identity we get

sn(t) = ifs(% + 27it).

This completes the proof of the lemma. O

A subspace of M of L*(R) is translation-invariant if f € M implies that f, € M for
every real «, where f,(x) = f(x — «).

Let M be a closed translation-invariant subspace of L*(R), and let M be the image
of M under the Fourier transformation. Then M is closed (since the Fourier transform is an
L2-isometry). By [11, Theorem 9.17, p. 190], a Lebesgue measurable set E exists in R such
that M consists precisely of those elements f € L*(R) which vanish almost everywhere on FE.

Lemma 4.9 Let Mg be the closed translation-invariant subspace of L*(R) generated by n. Then
Mg = L*(R).

Proof. The idea of this proof is due to A. Connes in an email to the author on September
11, 2008. Let §Mg be the image of Mg under the Fourier transformation. Then a Lebesgue
measurable set F in R exists such that §Ms consists precisely of those elements f € L?*(R)
which vanish almost everywhere on E. Since

1.1
Sn(t) = Z§S<§ + 2mit)
by Lemma 4.8 and since .
3’%@) — €2mat37]<t)
for every real a, E can be chosen to be the set of all real numbers ¢ such that 1/2 — 2mit
are zeros of . Then E has zero Lebesgue measure. Hence every function in L?(R) vanishes
almost everywhere on E. That is, §Ms = L*(R). Since the mapping f — Ff is a Hilbert space
isomorphism of L*(R) onto L*(R), we have Mg = L*(R).
This completes the proof of the lemma. a

Lemma 4.10 Let L3(Cs) be given as in (4.1), and let

3
)= (02 2) - Tt

peS’

Then the set {Es(0s4) : a € (0,00)} is dense in Li(Cs).
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Proof. Let g be any element in J& with |g|ls = 1, by Lemma 4.1 there exist elements v € O
and g1 € {1} x [] g O, such that g = vg;. Thus

Es(0s,4)(97 ') = Es(0s4)(97 '2) = Es(0s,4)(2)

for all x € Cs. Hence Es(0s4) € L3(Cs).
Let ¢ be any element in L#(Cs). We can write

o(z) = p(|z|),

where |z| is also meant to be the idele (|z|,1,1,---,1). If ¢ is orthogonal to the image of
Se(R) x [[,cs 1o, under Es, then

/C Es(£)(2)@(|x))d*z = 0

for all f € Se(R) x [[,cg lo,- In particular we have

/R B Yalz)dz = 0

for all real . Since ¢ € L#(Cy), p(e®) € L*(R). By Lemma 4.9, {n, : @ € R} is dense in
L*(R). Hence @(e*) = 0 as an element in L?(R). Therefore {Es(0s,) : a € (0,00)} is dense in
L3(Cs), and Es extends to a surjective isometry from L?(Xg) onto L?(Cs).

This completes the proof of the lemma. O

5 Trace of T, on E5(Qy), its positivity, and proofs of The-
orems 1.3, 1.4

In this section, we compute the trace of T, on the subspace Es(Qx) of L?(Cs) in two ways.

Lemma 5.1 Let By = [[ 0™ 'Op. If F(y) = [(lyl) for some function f, then

/A F(y)\IIS(y:c)dy:/ F(y)Us(ylz|)dy

RxBgr

Proof. Since the complement of Jg in Ag is negligible, as [{| = 1 for £ € Of we can write

/ASF( \I'sywdy—Z/ y)Vs(yzé)d

£e0y

Since F'(y) = f(|y|), if we change variables y — y|z|/x with |z| = (|z|,1,---,1) then

_ _ —27rzt|z\5
/A P sty = Y / ) Us(ylele)dy = / 70 dt,

£e0g EEO*
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where w(€) is given as in (3.4).
If £ € OF satisfies w(§) # 0, then £ = [/k for some integers k, | € Ng with square free k.
Thus, {[],cq O, C Bsr. Hence,

U €&scR xBs.
£€0%,@(§)#0
Conversely, if z = (x,) € R* x By then there exists a £ € O% such that £ 'z € Ig, ie.,
€], = |z|, < pforpe S By (34), w() # 0. Hence, z € Ugeog,w(g);éo ¢lg. Thus,
R*x By c |J s
£€0%,@(§)#0

Also if £, are distinct elements in OF, then {0% and yO% are disjoint sets. Therefore,

R* X Bg: = U ¢lg, a disjoint union.
£€05,m(£)#0
Therefore,
| Pwvsulslod = [ F@stlledy
560577}(6)7&0 Ig RxBgs

That is,

| Pty = [ Pty

As Rx Bg/
This completes the proof of the lemma. a

Lemma 5.2 Let f(A A T 9(wN)Fsg(x/v)d*v. Then

/A Ws(—u)du | FO)Ts()dA = £(y).

Proof. We denote x = (z,, ) with ., € R and 2, € Ag. By [6, Lemma 3.4 and Remark, p.
2467),

(Bs3sEs") [V]ul NWs(Au)dN(y) = ]yl (s)., | A FONTs(Au)dN(y)
= \/W/ —uy)du f(/\)\lfg(/\u)d)\.
Since

FO)TsAu)dr = > FO)TsAu)dr = > (M) Tg(Ayu)dA,

veO% Vs v€eO% IS
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we have

1{\/|u MUs(Au)dA} = [ fF(N)Ws(Au)dA.
Is
Hence,
GBSV [ TN ) = [ Us-ug)du [ FO)BsOu)x
Asg Is
=/ 6_27rm’“yrdur/ U o (—upyp)dup A(Xo) Wsr (Apup)dAy
— 00 AS/ AS’
where ‘
s = LI UMDy, 36, € T, O
0 it Ay & [Lew O
Also,

FOTs(Mu)dA = w(u) /O " (et gy

Is

where w(u) is given as in (3.4). This implies that

¢()\b>\I’S’ ()\bub)d)\b
Agr

as a function of u, is supported on the compact set Bsr = [] g p~'0,. Since ¢(Ny) is locally
constant as a function of A\, € Ag and is supported on the compact set Hpe ¢ Oy, the condition
of [13, Theorem 2.2.2, p. 310] is satisfied by this function. Note that this theorem is still true
if we replace k" there by Ag . Thus, by the Fourier inversion formula we have

/ ‘Ps'(—ubyb)dub ¢(Ab)‘I’S’(>\bub)d)\b = ¢(yb)
A

Sl Asl

where ¢(yy) = 0 if yp, & [[,c5 O
Since f(t|ys|) is a continuous and compactly supported function of ¢ € [0, 00), t # A/|ys|
and is of bounded variation in an interval including Yy, by Fourier’s single-integral formula [14,

Theorem 12, p. 25] we have for y, € [[ .5 O;

(FsEs") /]l / FVTs()dA} ()

— / 627riUry7»duT / f(|)\r | |yb|)€—2m‘)\rurd)\r
- 0 o K '
= lim / FUNyo|) AN / e2miur (Ur=Ar) gy,

=t [ ) =2, — g
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where the 2nd equality holds because f has a compact support on [0, 00). It follows that

(EsSsEs' {\/\7 A)Ws(Au)dA}(y) }Hy)
-

écos if {y & Is

because for each y € Ag with |y| # 0 there exists exactly one £ € Of such that {y € Is.
Therefore,

(Es§sEs?), [ \/W NWs(Azw)dN(y) = /]yl f(y

This completes the proof of the lemma. O
By Lemma 4.10,

L3(Cs) = {Es(Qx) ® Es(Qn)} [ | L3(Cs) = Es(Qx)r @ Es(Qah

where Fg is the extended map as in Lemma 4.10.

Proof of Theorem 1.3. We choose a;(x) € Qy, bj(z) € Qa, i,j = 1,2, such that they are
invariant under the action A, for all g € [ .5 O with A\, f(z) = f(g~'x) and such that their
images under Eg form an orthonormal basis of L2(Cl).

By Lemma 4.2, T is of trace class on L?(Cs). By Lemma 4.5

o(T1) = Z{ TiEs(a;), Es(a;)) + (ToEs(b;), Es(b;)}.

7,7=1

tracerz(cg)

Since Es(a;), Es(b;)’s form an orthonormal basis of L?(Cs) and since EsTLPA\FsEg" is the
orthogonal projection of L?(Cs) onto Es(Qz )1, we have

(TyEs(a;), Es(a;)) = (Es§sPaSsEg TyEs(a;), Es(a;))

and
(BEs§sPASsES ' Tof, [)r2cq) = 0
for all f € Eg(Qa):. Hence,

tracegy (o1, (1¢) = traceg, (o1, (EsTsPASsES'Ty)
= traceszcy) (Es8sPaSsEg Ty).

As T} is of trace class and Es commutes with Py, by Lemma 4.4
trace2(og) (Es§s PaSs Eg 'To) = tracerzog) (PaEsSs By ' TiEsSsEg').
By Lemma 4.3,

trace (o) (PaEsSs B TeEs5 Es') = traceps o) (Es§s Eg ' T{ Es§sEg ' Pa).
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So,
traceg, 1), (12) = tracesz(og) (EsFsEg' T/ EsF5ES Py). (5.1)

Let F' = Eg(f) with f € Se(R) X [[,c 1o, Since

Va(h)F(z) = /C VIeTlh(a /) Fy)d*y = /C Nl / " (at)gyt)de} F(y)dy,

we have

E5'Vs(h)F(z) = /C W fy)f (9)d"y.

Because f € Se(R) x [],cq lo, and h has a compact support in (0, 00), we have

/Owdas (/) f ()| d*y = /C F@)lld*y /Ooo|h<as>|da:<oo.

Cs

This absolute convergence implies that we can change the order of integration to derive

35 B3 Vs(W)F(z) = / Y8 sh(ye) f(y)d"y.

Cs

Since f € Se(R) x [[,cs Lo,, Pa(z) =0 for |[z] > A and [Fsh(yz)| < 1/4/|yz| by (3.1),

we have

/0 " Pa(a)de / Y8 sh(yz)f()|d*y < co.

Hence we can change the order of integration and get

3 PrGs 5 Vs (h)F(z) = /

C

1y ( / " &h(ytws(m)dt) Fdy.

That is,
B PySs B Vs F@) = [ Vil ( /

Cg A

=/ \/IxyIF(y)de/

Cg A

By changing variables u — u/t, v — vt we deduce that

ssh@t)\vs(m)dt) Fly)d*y

Sv‘t|<A

\Ifg(tx)dt/A \IJS(—uyt)du/Ooo g(uv)g(v)dv.

S’|t‘<A

Es§sPAsEg'Vs(h)F (x)
:/ |xy|F(y)de/ \I/S(tx)dt/ Ws(—uy)du/ g(uv)g(vt)dv.
Cs A Jtl<A Asg 0

Since [t| < A and we can assume that 1 < |vt| < p. (because g(vt) = 0 when v, ¢ don’t satisfy

this inequality), we can assume that

1 1 Lhe
<< < B
A
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Thus, we can write

EsFsPrFsEg' Vs(h)F(x)

:/CS ]xy|F(y)de/As7lt<A \Ifs(tx)dt/AS \IJS(—uy)du/1 g(uv)g(vt)dv.

Since

[ stunywst-uy = 2 @ | stun)costamupya

k,lENg

Y

’y| k,leNg

for a constant ¢ depending only on S, the integral (or series)

/A g(uv)¥g(—uy)du

converges uniformly with respect to v. So, we can change the order of integration to get

Ee
t

/0 “gso(Lglon)dv = /

g(mﬁ)dv/A g(uv)¥g(—uy)du

g(uv)g(vt)dv :/A Vo (—uy)du /Ooog(uv)g(vt)dv.

Thus, we have

> d
s34 Pr3sEs Vs(h)F(x) = / 2y F(y)d"y / W ()i / w559
Cs Aglt|<A 0 v’ v

By using (3.1) we find that |[Fsg(v)| < |[v|7/2 when |v| < 1 if choosing ¢ = 1/2 and
1Fs9(v)] <5 [v|72 when |v| > 1 if choosing ¢ = 2. After changing variables vt — ¢, y/v — v
inside the following integral we find that

/ it / oo)sa(ITT = o / Fsg(v)ldo / lg(t)dt < ox. (5.2)

So, we can change the order of integration to write

/ \Ilg(tx)dt/oo (vt) Sgg / Ssg( g(vt)Wg(tx)dt. (5.3)
Ag,ltl<A 0 ’U| Ag,ltl<A

It follows from (5.3) that
EsFsPAFsEs' Vs(h)F(z )

/CS\/|I_?/{/ Ssg

g(vt)Ws(tx)dt} F(y)d”

|U| Ag,|t|<A
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for = Es(f) with f € Sc(R) x [[ g lo,. Thus, we have derived that
=/ VIzyl[{Sa(z / g(wt)g(yt)dt
Cs
- [ sl ()90 Us (1)t} F ()"
v | | AS

for F' = Eg(f) with f € SeaR) X HpES’ 19

Since

/359 / (vt)Wg(tx)dt = /359 dx g(t)‘l’s(?)dt
_ / Ss9(y0)Fag(@o)dv = / " glt)alat)dt

I
O\
Q
—~
8
~
SN—
Q
~—~
<
~
SN—
QL
~

as ¢ is real-valued, we can write (5.4) as

- /C VIegHISa () = 1] / " glat)glyt)dt
/ Fol” / (1) — 1g(0t) Us(t2)dt} F(y)dy

E5'TIF(2) = / PHENC, / " gt

/ Fol” / S g(0t) U (i)t} f (y)d*

and hence

Note that

ES'T}F(x) = Eg'T}F(|z|), and Sx(z) — 1 =0 when |z| > A~
Since g vanishes outside (1, p), we have
[PA(t) = 1]g(vt) = 0

for all ¢ if |v| > pe/A. Also, (Sp(z) — 1)g(at) = 0 if |¢t| < A. So,
faT

ES'TF) = [ [yl{[Su(x —1/

C
/ Fol” / (PA(t) — 1]g(ut) s(ta)dt} £ (y)d"
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If we choose ¢ =2 in (3.1), we obtained that for large |z|

/A Pt) — 1]g(vt)\IlS(t:U)dt' < # (5.8)

From (5.6), (5.7), (5.8) and f € S¢(R) x [],cq Lo, we find that

| f 130~ | statigtutra

- [ oy [ i) - gt vsteman )07y < oo

Because of the absolute convergence of the above double integral and because of Eg' T} F(z) =
ES'TEF(|z|) by (5.6), by using Lemma 5.1 as By is a compact set in Ag we can change the
order of integration to get

Bs§s B3 TLF( / N RN / | [ g(ztygtt)at (5.9)
/ Fso(D)a / [Pu(t) — 1)g(ut) Us(t2)de} () F(y)d"y.

By using (5.5) again we can rewrite (5.9) back in a form as deriving from (5.4)

Apie
Es3sEg ' TLF( /C V]zy|Fs{Sa(z / g(zt)g(yt)dt
- [T asahee [ Pogenusea@Fway
- e | st [ gtews(—so: (5.10)

1 <l2|

- /Ooo §s9(L)Pa(@)g va)d" v} F(y)d*y,

where the 2nd term after above 2nd equality is obtained by using Lemma 5.2 because by (5.3)
we can write

/ 5s9(L)a / . (1)g(0t) U (12)dE = / (1) / " Pa()g(0t)3s9(y/0)d*v

Since f € Se(R) x [[,cq lo,, both Pr(y)f(y) and FsPrf(y) are in L'(Ag), by using
both Plancherel’s formula (3.3) and the Fourier inversion formula [13, Theorem 4.1.2, p. 328]
to get rid of the inner most Fourier transform in front of PyF(y) on the right side after the
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following 1st equality, we obtain that
Es§sEs' T Es§sEg' PAF ()

/ \/lx_y{/ g(yt dt/ g(2t)Ug(—zz)dz

A<l

_/0 gsg(;)PA(x)g(vx)dXv}ESngEglPAF(y)de (5.11)
o Y. dt
- /C & / Fso(H)T / o sz
- / 9(y0)g(va)dvPy(z)} Pa(y) F(y)d"y

for F' = Eg(f) with f € S¢(R) x [[ e lo,- Since Es§sEg T} Es§5Eg" Py is bounded, (5.11)
holds for all F' € L3(Cs) by Lemma 4.10.

Let
d
kE(x,y) = /|zy| {/ Ssg( Q —t g(z2t)Vg(—x2)dz

Ag,x<l2|

— /000 g(yv)g(va)dvPy(x)} Pa(y).
Then

ko) = loll [ s [ otenustris = [T iganan i)

as ¢ is a real-valued function. By (5.1),

tracepg gty (Ty)

dt >
- / { / Fso(H)Y / 9(2t)Us(—22)dz — / lg(zv)Pdv}fxld*x.
Cg,|z|<A As,%<|z| 0

Since §gg is also a real-valued function, we can write

[Tosa [ stewsornis = [T mahRg = [Clateoran

0
by (3.2) after changing 1/t — t. It follows that

a: dt
traceg iy, (Tr) = / |z|d*x / Ssg(— / g(zt)Vg(—x2)dz.
Cg, |.r‘<A t t As,|z‘<%

By changing variables z — Az, t — At and z — z/A we derive that

:v dt
traceg gLy, (1y) = / |z|d*x / Ssg(— / g(zt)Vg(—x2)dz.
Cs,lz|<1 t b Jag,z1<1
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That is,

tracep, o1y, (Tr) = —/ |a:|dxx/ &gg(mz)dxz/ g(g)\llg(—xu)du (5.12)
A Cs lx|<1 0 Agiul<t %

1
= —/ |x|dxx/ &gg(xz)dz/ g(u)Vs(—zzu)du.
Cs,|z|<1 0 A5,1<|u\<min(ue,ﬁ)

If we choose ¢ = 1/4 in (3.1), we get |Fsg(z2)| <g |vz|~/* and
y 9(u) Us(—2u)du] <s w2V,
Ag,1<|ul<min(pe i ‘)

This implies that the front double integral in (5.12) is absolute integrable. By the Fubini
Theorem, we can change the order of integration to write

o) 1 U
tracep, (1), (Ty) = —/ dxz/ Ssg(xz)dm/ g(—=)Vs(—zu)du. (5.13)
0 0 Ag,lul<1

z

Also, by changing variables xz — z, xu — u on the right side after 1st equality in (5.12) we
can write

1
traceg gty / Ss9(z Xz/ dxac/ g(g)\lls(—u)du. (5.14)
0 Ag lul<lz]  #
By (3.1),
|| u l
(=)Vs(—u)du =2 / )cos(?wu )du
/As,u|<m| 2 k% g
|z
= Z sm(27r]a:\ )—1/ g (=) sin(2mu—)du}
k,l€Ng ZJo
<y ’{ma gl + [l @) < o0
k,l€Ng

This implies that integral (or series)

u
/ o (YW s(—u)du
Aglul<]z]  #

converges uniformly with respect to x. So, we can change the order of integration to get

/dX L ful<le| (Z)\PS( )du_/xsxsmq (Z)\DS(_U)du/mlm Ju)) T 5

= —/ g(g) log max(v, |u])Vs(—u)du.
Ag "LL‘<]. <

27



It follows from (5.14) that

v—0

traceES(QL)l(Tg):/ %’Sg(z)dleim/ g(g)logmax(y, |u| ) Vs (—u)du,
A 0 AS7‘U|<1 Z

where g(u/z) = 0 when z > 1.
By changing variables u — uz and noticing g(u) = 0 for |u| < 1 we find

traceg o1, (11) = S’Sg(z)|z\dleim/ g(u)log max(v, |uz|)Wg(—uz)du
Cs Jul

v—0 1
USTy

= [ Fs9(2)|z|d*z lim g(u)logmax(v/|u|, |z|)Vs(—uz)du  (5.15)
Cs

+ | Fsg(z)l2laxz / g(u) log [u| s (—uz)du
Cs Ag

— [ Fsg(2)ald / 9(u) log |uz| W s(—uz)du
CS AS?‘U‘>Ti|

because |uz| > 1 so that we can take off the limit in the above 4th line.

Since Fsg(2) = O(]log|2||'¥'I=1) as z — 0 which is obtained by calculating the residue

at s = 0 on the right side of (3.1), we can take off the limit in the 2nd line of (5.15) and get
the following identity by using (3.3)

trace o1, (Th) = / 1§ s9(2) log || d= + / 9(w)P log [u] du
0 0

- Ssg(z)\z|dxz/ g(u)log |uz|¥s(—uz)du.
Cg AS,‘U|>ﬁ
Because g(u) = 0 when u & (1, u), for |z| > 1 we have

[ sl [ gwosluslUs(-uz)du
z€Cg,|z|>1

As,lu‘>ﬁ
_ / Fs9(2)|=ld* 2 / 9(u) log [uz|Us(—uz)du
z€Cg,|z|>1 Ag

_/C " 1\%g(z)|21og|z| |ZIdXz+/ Fs9(2)Fs{g(u) log ul}(2)]2]d" 2.
2€Cg,|z|=

Cs,lz[>1
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Therefore,

traceES(Qk)l(Tg):/ \Ssg(z)|2logzdz+/ |g(u)|? log u du
0 0

-/ a(:) |21 | () g [uz| U (—uz)du
Cs,i<|z\<1

As’ﬁ<|u‘<u5

- / §s9(2)*log 2] |2]d* = — / 3s9(2)3s{g(wlog lu} ()|ld*z  (5.16)
z€Cg,|z|>1 Cg,|z|>1
1 [e'e)
- / §s9(2)*log 2] |2]d*= + / 9(w)[?log u du
0 0
- / Fs9(2)|2ld = / g(u)log |uz| Us(—uz)du
Csye<lzl<1 As, iy <|ul<pe
= [ FooteIBs o) tox ul} )l
By (3.3),
[ Ssale)3s (gt ogul (=)l = / l9(w)|? log w du.
Thus,
- /C L Bs9(e)s gt og ul} 2) ol
_ / B9t os ()" ~ / §59(2)3s{g(w) log [ul} (2)||d* =
S,12|< S
_ / B9t los ()" ~ / l9(w)|? log u du.

It follows from (5.16) that

1
tracepy qu), (Tr) = / §s9(2)2og = |14z + /C 359(2)8s{g(w) log [ul}(2)| 210" =

Sv‘Z|<1

—/ 359(2)\Z!dxz/ g(u)log |uz|¥g(—uz)du
Cs,i<\2|<1

AS,‘?]"<‘U|<,M€

- / Bsg(t) logt di + / $59(t)8 s {g(u) log [ul} (1)t

- / Ssg(t)dt/ g(u)log |ut|Vg(—ut)du.
L«

HE\ AS7%<‘UI<H‘€

This completes the proof of Theorem 1.3. |
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Proof of Theorem 1.4. Because g(u/z) =0 when |z| > 1 and |u| < 1, by (5.13)

tracep, (o1, (12) /clX / Ssg(zz)|z|d / g( VWs(—zu)du (5.17)
Cg,|z|<1 Ag,lu|<1 Z
1
= —/ d*z lim ]a:\dxx/ g(v)\Ifg(—vxz)dv/ g(—)\IfS(—xu)du.
0 v=0+ Jogv<)zl<1 Ag Aslul<l %
By (3.1),
l
/ g(v)Vs(—vzz)dv =2 Z / )COS(QWU%ZE)CZU
k,I€Ns
(k) /“E oA o !
= — _— 2 —
Z ez ), g (v) sin( ﬂvzzk)du
k,l€Ng
and )
k l
/ g(g)\PS(—xu)du:Q Z M/ g(g)cos(27rua:—)du
Aglul<l # k,leNg koJo 72 k
k), 1 o1 l
= Z %{g(;)sin@ﬂxg)—g/o g'(j)sm(?wum Ydu}.
k,€Ns
Because
Pe(— d )|dv 1
[ stowstuaal < S B Mg < 5 (5.18)
k:l Ng
u IM )| c
[ st < Y B fmax ot >|+/ g/ ldu} <
Aglul<t # kl€Ng ||

for some constant ¢ depending only on S, the double integral (or series)

/ASQ@)‘I’S(_WW” / 9(2) Ws(—zu)du

Ag,|ul<1

converges absolutely and uniformly with respect to x € (v,1). So, we can change the order of

integration and summation to obtain that

/y i /A o)) /A . o)W s(~ru)du (5.19)
- /As g(v)dv /&s,uglg(g)du/cs,y<|x|<l\I]S(_(u—i_Uz)x”xldxx‘

By (5.17) and (5.19),

—tracegg gLy, (T2)

1
:/ d*z lim g(v)dv/ g(g)du/ Uo(—(u+vz)x)|z|d x.
0 v—0 Ag Ag,lul<1 Z cs,v<|z|<1
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According to [13, Lemma 4.1.2, p. 329] we can write

1
Uo(—(u+vz)x)|z|d s = Uo(—z)|x|d*x
/CS r<|z|<1 ‘u + UZ‘ Cs,u<| lfl ‘<1
/|“+vz| cos(2mz)da = sin(2w|u 4+ vz|) — sin(27v|u + Uz|)
\u+vz| -tz m|u + vz|

As the measure difference between Ag and Jg is negligible for any finite set .S, we have

— traceg, (g1, (12)
_ /1 . g(v)dv/ g(g)sin(%r]u +vz|) — sin(2nv|u + UZDdu.
0 v=0J; Aslul<t % m|u + vzl
By changing variable u — uv we derive
— traceg gLy, (T2)
_ /1 . g(v)dv/ g(@)sin(QﬂvHu—l—zD —sin(27w\v[|u+z|)du
0 v=0 /g Agluw|<l  Z mlu + z|
_ /1 7% > lim g(|v\)dv/ g<|uv|>sin(27r|v]|u + z|) — sin(27v|v||u + z‘)du.
0 v—0 Js Jluv|<1 ‘Z| 7T|U + Z|

Since Jg = Ugeor§1s by Lemma 4.1, we can write

1
—traceES(Qk)l(Tg):/ d” z lim
0

v—0

wvé|, sin(2m|vél|u + z|) — sin(2rv|v€||u + 2
Y i [ gl dnrel o) sl o),
Ig,1<|vé|<pe Ag,luvé|<1

2 2] ru+ 2]

Since [{|s = 1 for all £ € OF, we have

/ g(|v§|)dv/ g(|uv§])sin(27r\vf|]u+z\) —sin(27ry\v£]]u+z\)du (5.20)
Ig,1<|v€|<pe luvé|<1

|| T|u + 2|
wo|, sin(2w|v||u + z|) — sin(27v|v||u + 2z
[ i [ gyt 2 st 2,
Is AS,|uv\<1 |Z| 7T|U+Z|

for all £ € Of. So, the right side of (5.20) is independent of £. As O% contains infinitely many
distinct elements &, (5.20) implies that

wv|, sin(2m|v€||u + z|) — sin(2rv|v||u + 2
ccor, / Is 1 <lve|<pe Ag,luve|<1 |2| mlu + 2|
=0, or £ o0.
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That is,

/ |x|dxx/ g(v)\lfg(—vxz)dv/ g(g)\lls(—xu)du:o, or =+ oo. (5.21)
Cs,w<|z|<1 Ag Ag,|ul<1

z
By (5.18),

dx c?

/ |z|d™ x| g(v)\lfs(—vxz)dv/ g(g)\llg( ru)du| < — | — < —— < o0.
Cs,v<|z|<1 Ag

<t 2 \ | V||
(5.22)
From (5.21) and (5.22) we deduce that

/ |x|dxa7/ g(v)\IIS(—vxz)dv/ g(E)\I/S(—xu)du = 0. (5.23)
Csw<|z|<1 As As lul<t #
Combining (5.17) and (5.23) we get that

traceg, (o1, (12) = 0.

This completes the proof of Theorem 1.4. O

6 Trace of T; on E4(Q,), its positivity, and proofs of The-
orems 1.5, 1.6

In this section, we compute the trace of T, on the subspace E5(Qy) of L?(Cs) and prove its
positivity.

Lemma 6.1 Vs(h) is a positive operator on L*(Cs).

Proof. Let F be any element in L?(Cg) with compact support. By definition,

Vs(h)F(z) = (/ OV / e/ My)g(y)dy.

By changing variables y — |A|y we can write
/C Ve(h) F(x)F(z)d*z
:/‘ﬂx )V N / (/Mg (y)dy
Cs
:/’ﬂ@¢mwx/ WINEA [ gllatna(nn)dy
Cs

Since the triple integral above is absolute integrable as F, g are compactly supported, we can
change order of integration to derive

/CS Vel () Pyt = [ (/CS o([el) Taldea)( / STy > 0
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where g is a real-valued function. Since compactly supported functions are dense in L?(Cl)

and Vg(h) is bounded, we have

for all F € L*(Cg).
This completes the proof of the lemma.

a

Proof of Theorem 1.5. By Lemma 4.2, T, is of trace class on L}(Cs). By using (5.4), (5.10)

and similarly as in (5.1), (5.11) we derive both
tracepg(qgu), (Tr) = trace,2 oo { Es§sEs ' T, Es§sEs ' (1 — Pr)}
and
Es3sEg'TIEsFsEg (1 — PA)F( )
= [ Vil sl [ L s
- [ stmigtua)ao @)} = P Py

for F € L2(Cs). Let
a: dt
z, 1) T 2VWWe(—x2)dz
) = ol [ Ss0DT [ olvsta
B /0 g(zv)g(vr)dv Py(z)}(1 — Pr(x)).

Since Pp(x)(1 — Py(z) = 0 for all z, we have

dt
k(z,z) = |z|(1 — Py(z / Ts9( f ; / | ‘g(zt)\Ifs(—xz)dz.
As,l<z

Hence

:cdt

tracegg oy, (1) = / |z|d / Ss9(—)— / g(zt)Ug(—xz)dz.
Cs,A<|z] ot Jag e

By changing variables © — Az, t — At and z — z/A we deduce that

x dt
traceggu), (1r) = / |z|d* x/ Ssg(=)— / g(zt)Vg(—x2)dz.
Cs,1<|z| tt Ag,1<]z]

By changing variables z/t — ¢, xz — z we obtain that

o dt z
traceEs(QAh(Tf) :/ dxx/ %Sg(t)7/ g(¥)\115(—z)dz.
Cs,1<|x| 0 A57|I‘<|Z‘
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Since g(z/t) = 0 if |z/t| & (1, ue), we can assume that |z] < p|t|. Also, |z| < |z| implies that
|z| < pe|t|- That is, we can assume that |z|/p. < |t|. Hence, we can write

> d
traceEs(QA)l(TZ> :/ d*z 3Sg(t)—t/ 5l<] Q(E)‘I’S(_Z)d2~ (6.3)
Ag,|lz|<|z

Cs.1<[z| ls| t t

By (3.1),

E\If —2z)dz = 2 M z cos 27rz£ dz
/Axs,w|<z|g(t) s=2) 2 k /|z<|zg(t) Brey)

= k%g %‘{—9(%) Sin@ﬁlﬂé) - %/x|<z| g’(%) Sin(ZWZ%)dz} (6.4)
< 3 PO gt + [ 1ol < o
k,l€eNg 1

This implies that the integral (or series)

VU g(—2)dz
/A G Es2)

converges uniformly with respect to 2 and ¢. Note that |Fsg(t)| < [t|7* for large [¢] if choosing
¢=11n (3.1). This implies that the front double integral in both (6.2) and (6.3) are absolute
integrable. Then the Fubini Theorem implies that we can change the order of integration for
the two front double integrals and write

& dt [ z
tracer o, (T) = | Fsa® [ a'e [ o(C)us(-2ds
0 1 Ag,|z|<|]

oo d |2]
_ / Ss0() 2 / o2 Ws(—2)dz / x
0 t Ag,1<|z| t 1

o dt
_ / Ssa() s / 9(%)log |2 Ws(—2)d
0 13 A5,1<|Z| 13

where the change of order of the inner double integral after the 1st equality is permissible by
(6.4) because as g vanishes outside the interval (1, 1c) we can write

[ee) et
/ dxaj/ g(z)\I/S(—z)dz:/ an:/ g(z)\Ifg(—z)dz.
1 Aglzl<|z] T 1 Aglzl<|zl<pet T

By changing z — zt we derive that

trace s (@), (1) — / Ssglt)dt / g(2)log =t s(~=t)dz.
0 As,;<‘z|
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Since ¢g(z) = 0 for |z| & (1, j1), we can write

tracepg(0,), (1) = / Ssg( )dt/ g(z)log |zt|¥g(—zt)dz

Ag

t)d z)log |zt|We(—2t)dz
/ssg t/ 9 og atlws(—=0
_ / Bsg(t)Plogtdi + / Ss9()s{g(=) log |2} (1)t

1

1
i / Ssglt)dt / 9(2) log |t U s(—=t)dz.
L Ag,3<]z|<pe

This completes the proof of Theorem 1.5. O

Proof of Theorem 1.6. Let F;,i =1,2,--- be an orthnormal base of Es(Q4);. By Lemmas 4.6
and 4.7,

o0

tracepy gy, (1r) = Z(Vg(h) (Sa — Es3sPASsES') i, F).

=1

Since F; € E5(Qa)1, we have FsEg'Fy(z) = 0 for |#| < A. This implies that
PAgsEgle(l’) = O

for all z, and hence

traces, @, (T1) = D (Vs(h)ShFi, ). (65)
i=1
Since Ty is of trace class, so is (1 — Sx)Ty by Lemma 4.4 as 1 — S, is a bounded linear
operator on L?(Cg). It follows from Lemma 4.6 that the series

[e.e] [e.e]

D (1= Sy)Vs(h) (Sa — EsSsPASsEs") Fi, Fi) = > (Vs(h)SaF;, (1 — Sx)Fy)

i=1 =1

is absolutely convergent. As the right side of (6.5) is also absolutely convergent by Lemma 4.6
we can write

(Va(R)SAF SAE) 13 (Vs(R)ShFs (1 — Sa) )

=1

Mg

tracegg(qa), (Tr) =

.
Il
fa

Il
,Mg

s
I
—

<V5(h)SAFZ, SAFZ> + i((l — SA)TgFZ', E) (66)

[
Mg

(Vs(h)SaF:, SaFy) + tracepg g, {(1 — Sa) T}

=1
> tracegg(0,), {(1 — Sa)Te}
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by Lemma 6.1.
By using (5.4), (5.10) and similarly as in (5.1), (5.11) we derive both

tracepg (a1 (1 — Sa)Tr} = traces oy { Es§s Eg ' Tp (1 — Sa) Es§sEs' (1 — Pa)}

and
EggsEilTZ(l - SA>E58¢ 71(1 - PA)F(QZ)
:/CS Vx| {/ dt /u| g(ut)We( —uy)du/}\<z| g(2t)VUg(—zx)dz
- [ s uPr @)} (L~ Pr) F )y
Hence,

traceEs(QA 1 — SA)TK}

/CS{/ dt/AS » g(ut)Wg(— ua:)du/AS’iﬂZIg(zt)\lfs(—zx)dz

/ v /A » gsg Ug(—uz)duPy (x)g(vx)}(1 — Pr(x))]eld"s.
Since Py(x)(1 — PA(x)) =0 for all z,

tracegy (g, {(1 — Sa)Te}

:/ |x|d™x / dt/ g(ut)We(— ua:)du/ g(2t)VUg(—zx)dz.
Cs,A<|z| Ag,lul< As, 5 <l

By changing variables © — Az, t — At, u— u/A and z — z/A we get

tracepg(Qu). {(1 - SA)TE}

:/ \x|dxx/ dt/ g(ut)\llg(—ux)du/ g(zt)Vg(—zx)dz.
Cs,1<|z| 0 Ag,|ul<1 Ag,1<|z|

Since we can assume that 1 < |ut| < p. and 1 < |zt| < pe (because g(ut)g(zt) = 0 when
u, z,t don’t satisfy both inequalities simultaneously), we have

He e
maX( ) < |t| < min(-—, —).
Jul " [] Jul " |2]
As |u] < 1and 1 < |z|, we get
1 fhe
— < |t < =
Jul [EX
In particular, we can assume that
1 <t< phe. (6.7)

Note that g vanishes outside the interval (1, u.). Considering g(ut) with |u| < 1 and g(zt) with
1 < |z|, by (6.7) we can assume that

2| < pe and -t < |ul. (6.8)
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From (6.7) and (6.8) we can write
He
tracepg(0,), (1 — Sa)1e} = |as\dxzv/ dt (6.9)
Cg,|z|>1 1

X / g(ut)\llg(—ux)du/ g(zt)VUg(—zx)dz.
Ay <lul<1 A, 1<zl <pe

By (3.1),

|/AS7;€<|“|<1 g(ut)\I/S(—ux)du/ g(2t)VUg(—zx)dz| = CE

A571<|Z‘<iu“€

k1,k2;l1,l2€Ng e

l l
x {g(t) sin(2rz—) +t/ g'(2t) cos(2mza-2>) dz|
k1 1<zl <pie ko

< 1 (m3X|g(U)|+/1“€|g’(u)|du) 3 %«)@

2
(7'('1') k1,k2;l1,l2€Ng

for |x| > 1 as g(t/ue.) = 0 and g(u.t) =0 for 1 < |[¢| < pe. That is, the double integral

AS71<‘Z|<NE

wt)Wo(—uzx)du 2)\We(—zx)dz
/ sy 000 | aews-z

converges uniformly with respect to both ¢t and 1 < |z|. Thus, we can change the order of

integration and write (6.9) as

tracepg (), 1 (1 — Sa)Te}

He
:/ dt lim g(ut)du/ g(zt)dz/ Uo(—(u+ 2)x)|z|d x
1 V=00 Jag, L <lul<1 Ag,1<]2]<pre Cs,1<]z|<Y

He

e g(zt)
—/ dt lim g(ut)du/ dz/ Ve(—z)|x|d x.
1 Y—=00 Jpg L <lul<1 Ag,1<]2|<pe u+ 2| Cs 1< L2 <y

e STuta]

By computations,

Y|u+z| n(onYy ~ in(2
/ Us(—a)|z|d z = 2/ cos(2mz)dx = sin(27Y fu + z) — sin(2rfu + Z|)
v€Cs 1< <y Jut-2| T

lutz]

Hence,

tracegg(Qq), {(1 — Sa)Te}
sin(2rY|u + z|) — sin(27|u + z|)

He
= dt lim g(ut)du/ g(zt) dz,
/1 Y —oo Ag,E<Jul<1 Ag,1<]2]<pe Tlu + z|
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where in the right side after the 1st equality |u + z| # 0 because |u| < 1 and |z| > 1.
By changing variable z — uz we can write

traceny o, {(1 — Sa)Ti} = /dt lim o(ut)dy ¢, ul)du,  (6.11)

Y —oo 16<|u|<1

where

sin(27Y |u||1 + z|) — sin(27|u||1 + z|)
it = [ glfusit a:
Ag, 1< uz|<pe 7T|1 + Z|

Note that dy (¢, |Eu|) = 0y (¢, Ju|) for all £ € OF.
As Jg = Ugeogﬁls by Lemma 4.1 and the measure difference between Ag and Jg is
negligible for any finite set S, we have

ut|)oy (¢, |uf)du = ult)dy (¢, |ul)du
/Aslqumg(‘ )y (8 ful) / g([ult)dy (2, ul)

Js7i<|u|<1
- Z/ g([§ult)dy (¢, |€ul)du (6.12)
gcor, J u€ls ;o <Igul<1
->/ g([ult)oy (1, Jul)du = 0 or + o0
g0y, Y u€ls, o <|ul<1

because OF contains infinitely many elements and the integral

/ o(lult)oy (, u])du
uels,i<|u\<1

is independent of €.
By (6.10) we have

| g(ut)\Ilg(—ux)du/ g(2t)Vg(—zx)dz| <

As,-<ul<1 Ag 1<z <pe (7)

C

2
for a constant ¢ depending only on S. It follows that
| |x|dxx/ g(ut)‘lfg(—u:v)du/ g(zt)VUg(—zx)dz| (6.13)
1<]z|<Y Ag,=<Ju|<1 Ag,1<|z|<pe

c d*x c
T Ji<)z|<y || n

Combining (6.12) and (6.13) we obtain that
[t udydu o
A.'57i<|u|<1

tracepg (), (1 — Sa)Te} = 0. (6.14)

It follows from (6.11) that

By (6.6) and (6.14),
traceEs(QA)l(TZ> 2 0.

This completes the proof of Theorem 1.6. a
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7 Proof of Theorem 1.7

Proof of Theorem 1.7. By Theorems 1.3 and 1.5 we have

tracegy (1), (12) + tracer,(qy), (10)

1 1
_ / 1sg(t)[2log £ di + / Fs9(t)s{g(w) log |ul} (t)dt
0 0
_ / Ssg(t)dt / 9(u) log lut| ¥ s(—ut)du
o St<1 As,g<lul<pe
+ [ so@P tostd+ [ Fsglt)a{aw)logul o)t
1 1
1
i / Ssg(t)dt / 9(=) log | A Ws(—=t)d
i AS,%<‘2|<’L‘45
— [ sg®Plogtat+ [ Sso(Fs(gtu)log ul) ()t
0 0

:/ |359(t)|210gtdt+/ lg(u)|?log |u|du = A(R)
0 0

by using (3.3), the fact that Fs{g(u)log|u|} and g are real-valued, and Theorem 1.2. Also, by
Theorems 1.4 and 1.6 we have

A(h) = tracegg gy, (Te) + tracegy gy, (Te) = 0.

Because h(z) = 7 'h(z™1), we can write

> t dt < 1. dt
h = Jge(=)Jge(t)— = (5)9e(=) 5 = hne .
@ = [ JaDI005 = [ aa)% = o)
Hence,
A(hpe) = 0.
By Theorem 1.1 we have
An =0

form=1,2,---.

Finally, the Riemann hypothesis for the Riemann zeta-function follows from Li’s crite-
rion, which states that all nontrivial zeros of ((s) lie on the vertical line ®1 = 1/2 if, and only
ift\,>0forn=1,2,3,---.

This completes the proof of Theorem 1.7. O
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