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Abstract

In this paper a new S-local formula is given for the Weil distribution, which is shown
to be the sum of nonnegative traces of a non-positive trace class Hilbert-Schmidt operator
on two orthogonal subspaces of a L2 space. One of the two traces can be written in two
different forms. This flexibility, the new S-local formula, and the two nonnegative traces
all together give the desired positivity for the Weil distribution. Finally, Weil’s criterion
implies that all nontrivial zeros of the Riemann zeta-function lie on the critical line.
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1 Introduction

The Riemann zeta function ζ is defined by

ζ(s) =
∞∑
n=1

1

ns

for ℜs > 1. It extends to an analytic function in the whole complex plane except for having a
simple pole at s = 1. Trivially, ζ(−2n) = 0 for all positive integers n. All other zeros of the
Riemann zeta function are called its nontrivial zeros.

In connection with investigating the frequency of prime numbers, B. Riemann conjec-
tured in 1859 [10] that all nontrivial zeros of ζ have real part equal to 1/2. In this paper, we
confirm this conjecture.

To avoid the complication of writings, the author only considered the the Riemann zeta
function in this paper. He will consider Dirichlet L-functions in a separate paper.

Meanings of all notations in this paper are given by their first appearances except for
obvious exceptions. Let Q denote the field of rational numbers. For each prime p we denote
by | |p the p-adic valuation of Q normalized so that | |p is the ordinary absolute value if p is the
infinity prime and |p|p = p−1 if p is a rational prime. Qp is the p-adic completion of Q.

For the rational number field, the Weil distribution ∆(h) [15, p. 18] is given by

∆(h) = ĥ(0) + ĥ(1)−
∑
p

∫ ′

Q∗
p

h(|u|−1
p )

|1− u|p
d∗u, (1.1)
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where the sum on p is over all primes of Q including the infinity prime. For p ̸= ∞,∫ ′

Q∗
p

h(|u|−1
p )

|1− u|p
d∗u =

∞∑
m=1

log p
[
h(pm) + p−mh(p−m)

]
.

If p is the infinity prime of Q, then∫ ′

R∗

h(|u|−1)

|1− u|
d∗u = (γ + log(2π))h(1) + lim

ϵ→0

(∫
|1−u|>ϵ

h(|u|−1)

|1− u|
d∗u+ h(1) log ϵ

)
with γ being Euler’s constant. Weil’s explicit formula reads

∑
ρ

ĥ(ρ) = ĥ(0) + ĥ(1)−
∑
p

∫ ′

Q∗
p

h(|u|−1
p )

|1− u|p
d∗u, (1.2)

where the sum on ρ is over all nontrivial zeros of the Riemann zeta function and

ĥ(s) =

∫ ∞

0

h(t)ts−1dt. (1.3)

In Section 2 we will prove the following theorem.

Theorem 1.1 Let

λn =
∑
ρ

[1− (1− 1

ρ
)n]

where the sum is over all nontrivial zeros of ζ(s) with ρ and 1− ρ being paired together. Then
there exist a family of real-valued smooth functions gϵ(t) given in (2.16) on (0,∞) such that
ĝϵ(0) = 0, gϵ(t) = 0 for t ̸∈ (µ−1

ϵ , 1) with µϵ = (1 + ϵ)/ϵ2 and such that

lim
ϵ→0+

∆(hn,ϵ) = 2λn

where

hn,ϵ(x) =

∫ ∞

0

gϵ(xy)gϵ(y)dy. (1.4)

In Section 3 we derive following new formula for the Weil distribution.

Theorem 1.2 Let FSg be the Fourier transform of g on the S-local adele group AS, and let

g(t) = t−1gϵ(t
−1) = Jgϵ(t), h(x) =

∫ ∞

0

g(xt)g(t)dt. (1.5)

Then

∆(h) =

∫ ∞

0

|g(t)|2 log t dt+
∫ ∞

0

|FSg(t)|2 log t dt. (1.6)
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In Section 4 we collect some preliminary results which will be used in later sections.
Let S be given as in (2.20), O∗

S = {ξ ∈ Q∗ : |ξ|p = 1, p ̸∈ S}. Note that |ξ|S = 1
for all ξ ∈ O∗

S. We denote S ′ = S − {∞}, AS = R ×
∏

p∈S′ Qp, JS = R× ×
∏

p∈S′ Q∗
p,

Op = {x ∈ Qp : |x|p 6 1}, and CS = JS/O
∗
S. For XS = AS/O

∗
S, we define L2(XS) as in [4,

(5), p. 54] to be the Hilbert space that is the completion of the Schwartz-Bruhat space S(AS)
[3, 16] for the inner product given by

⟨f, g⟩L2(XS) =

∫
CS

ES(f)(x)ES(g)(x)d
×x

for f, g ∈ S(AS), where

ES(f)(x) =
√

|x|
∑
ξ∈O∗

S

f(ξx). (1.7)

Let L2
1(XS) be the subspace of L2(XS) spanned by the set Se(R) ×

∏
p∈S′ 1Op , where Se(R)

consists of all even functions in S(R). Let QΛ be the subspace of all functions f in L2
1(XS) such

that FSf(x) = 0 for |x| < Λ. Then

L2
1(XS) = Q⊥

Λ ⊕QΛ. (1.8)

We define

VS(h)F (x) =

∫
CS

h(x/λ)
√

|x/λ|F (λ)d×λ (1.9)

for F ∈ L2(CS). Let
Tℓ = VS(h)

(
SΛ − ESF

t
SPΛFSE

−1
S

)
, (1.10)

where PΛ(x) = 1 if |x| < Λ and 0 if |x| > Λ and SΛ(x) = 1 if |x| > Λ−1 and 0 if |x| 6 Λ−1.
In Section 5, we compute the trace of Tℓ on the subspace ES(Q

⊥
Λ) of L

2
1(CS) in two ways

and obtained the following two theorems.

Theorem 1.3 We have

traceES(Q
⊥
Λ )1(Tℓ) =

∫ 1

0

|FSg(t)|2 log t dt+
∫ 1

0

FSg(t)FS{g(u) log |u|}(t)dt

−
∫

1
µϵ

6t<1

FSg(t)dt

∫
AS ,

1
t
6|u|<µϵ

g(u) log |ut|ΨS(−ut)du.

Theorem 1.4 We have
traceES(Q

⊥
Λ )1(Tℓ) = 0.

In section 6, we compute the trace of Tℓ on the subspace ES(QΛ) of L
2
1(CS) and prove

its positivity. In particular, we proved the following two theorems.

Theorem 1.5 We have

traceES(QΛ)1(Tℓ) =

∫ ∞

1

|FSg(t)|2 log t dt+
∫ ∞

1

FSg(t)FS{g(u) log |u|}(t)dt

+

∫ 1

1
µϵ

FSg(t)dt

∫
AS ,

1
t
6|z|<µϵ

g(z) log |zt|ΨS(−zt)dz.
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Theorem 1.6 We have
traceES(QΛ)1(Tℓ) > 0.

To bypass a technical difficulty in obtaining Theorem 1.6, we decompose Tℓ as a sum of two
trace class Hilbert-Schmidt operators. One of them has trace 0. The other one has nonnegative
trace by the positivity of the convolution operator VS(h).

Finally, we prove the following Riemann hypothesis in Section 7.

Theorem 1.7 All nontrivial zeros of the Riemann zeta function lie on the line ℜs = 1/2.

2 Adjustment of ĥ(0), ĥ(1) to 0 and proof of Theorem 1.1

Briefly speaking, we add in this section a function of the form
∑∞

n=1 f(nx) to g so that the new
g remains compactly supported and the value of the new ∆(h) remains almost the same while

ĥ(0) and ĥ(1) become zero for the new h.

Lemma 2.1 ([8, Theorem 1, p. 326]) A necessary and sufficient condition for the nontrivial
zeros of ζ(s) to lie on the critical line is λn > 0 for n = 1, 2, · · · .

Lemma 2.2 For each positive integer n and a sufficiently small ϵ > 0, there exist a smooth
function ℓn,ϵ(x) on (0,∞) with ℓn,ϵ(x) = 0 for x ̸∈ ( ϵ

1+ϵ
, 1) and satisfying that

lim
ϵ→0+

∑
ρ

ℓ̂n,ϵ(ρ)ℓ̂n,ϵ(1− ρ) = 2λn.

Proof. Let

Pn(t) =
n∑

j=1

(
n

j

)
tj−1

(j − 1)!

and

gn(x) =


Pn(log x) if 0 < x < 1

n if x = 1

0 if x > 1.

Then [1, Lemma 2, p. 282]

ĝn(s) = 1−
(
1− 1

s

)n

for n = 1, 2, · · · .
For 0 < ϵ < 1 we replace gn(x) by the function

gn,ϵ(x) =



0 if 1− ϵ < x <∞
1
2
gn(1− ϵ) if x = 1− ϵ

gn(x) if ϵ < x < 1− ϵ
1
2
gn(ϵ) if x = ϵ

0 if x < ϵ.

(2.1)
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Let

τ(x) =

{
c0
ϵ
exp

(
−1/[1− (x−1

ϵ
)2]
)

if |x− 1| < ϵ,

0 if |x− 1| > ϵ.
(2.2)

where c−1
0 =

∫ 1

−1
e

1
x2−1dx and

∫∞
0
τ(x)dx = 1.

We define

ℓn,ϵ(x) =

∫ ∞

0

gn,ϵ(xy)τ(y)dy. (2.3)

Then ℓn,ϵ(x) is a smooth function on R whose support is contained in the interval ( ϵ
1+ϵ

, 1). Since

ℓ̂n,ϵ(1− s) = ĝn,ϵ(1− s)τ̂(s) (2.4)

with

τ̂(s) = c0

∫ 1

−1

exp(
1

u2 − 1
)(1 + ϵu)s−1du,

we have

ℓ̂n,ϵ(1− s)ℓ̂n,ϵ(s)− ĝn,ϵ(1− s)ĝn,ϵ(s) (2.5)

= ĝn,ϵ(1− s)ĝn,ϵ(s) ({τ̂(s)(τ̂(1− s)− 1) + (τ̂(s)− 1)} .

By partial integration,

ĝn,ϵ(s) =

∫ 1

0

gn(x)x
s−1 −

∫ ϵ

0

gn(x)x
s−1dx−

∫ 1

1−ϵ

gn(x)x
s−1dx

= 1− (1− 1

s
)n − Pn(log ϵ)

ϵs

s
+O

(
ϵℜs

|s|2
| log ϵ|n−2

)
− aϵ(s)

s
(2.6)

= O

(
1

|s|
+ | log ϵ|n−1 ϵ

ℜs

|s|

)
for 0 < ℜs < 1 and |s| > 1, where

aϵ(s) = n− Pn(log(1− ϵ))(1− ϵ)s −
∫ 1

1−ϵ

P ′
n(log x)x

s−1dx.

The proof of [1, (3.9), p. 284] shows that

max
ρ

ϵℜρ|ρ|−1/2 = O
(
e−c′

√
| log ϵ|

)
(2.7)

for some constant c′ > 0. For 0 < ℜs < 1,

1− τ̂(s) = c0

∫ 1

−1

e
1

t2−1

[
1− (1 + tϵ)s−1

]
dt ≤ c0

∫ 1

−1

e
1

t2−1 (1 +
1

1− ϵ
)dt≪ 1. (2.8)
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By (2.4), (2.5), (2.6) and (2.8),∑
ρ

ĝn,ϵ(1− ρ)ĝn,ϵ(ρ) ({τ̂(ρ)(τ̂(1− ρ)− 1) + (τ̂(ρ)− 1)}

≪
∑
ρ

(
1

|ρ|
+ | log ϵ|n−1 ϵ

ℜρ

|ρ|

)(
1

|1− ρ|
+ | log ϵ|n−1 ϵ

1−ℜρ

|1− ρ|

)
×max

(
|
∫ 1

−1

e
1

t2−1

[
1− (1 + tϵ)ρ−1

]
dt|, |

∫ 1

−1

e
1

t2−1

[
1− (1 + tϵ)−ρ

]
dt|
)
.

From (2.7) we deduce that(
1

|ρ|
+ | log ϵ|n−1 ϵ

ℜρ

|ρ|

)(
1

|1− ρ|
+ | log ϵ|n−1 ϵ

1−ℜρ

|1− ρ|

)
=

1

|ρ(1− ρ)|
{
1 + | log ϵ|n−1(ϵℜρ + ϵ1−ℜρ) + | log ϵ|2n−2ϵ

}
≪ |ρ|−3/2.

It follows that∑
ρ

ĝn,ϵ(1− ρ)ĝn,ϵ(ρ) ({τ̂(ρ)(τ̂(1− ρ)− 1) + (τ̂(ρ)− 1)}

≪
∑
ρ

1

|ρ| 32
max(|

∫ 1

−1

e
1

t2−1

[
1− (1 + tϵ)ρ−1

]
dt|, |

∫ 1

−1

e
1

t2−1

[
1− (1 + tϵ)−ρ

]
dt|).

For any ϵ0 > 0, there exists a positive k0 such that∑
|ρ|>k0

|ρ|−3/2 < ϵ0/2.

Since

lim
ϵ→0

∑
|ρ|<k0

1

|ρ| 32
max(|

∫ 1

−1

e
1

t2−1

[
1− (1 + tϵ)ρ−1

]
dt|, |

∫ 1

−1

e
1

t2−1

[
1− (1 + tϵ)−ρ

]
dt|) = 0,

there exists a ϵ1 with 0 < ϵ1 < ϵ0 such that

|
∑
|ρ|<k0

1

|ρ| 32
max(|

∫ 1

−1

e
1

t2−1

[
1− (1 + tϵ1)

ρ−1
]
dt|, |

∫ 1

−1

e
1

t2−1

[
1− (1 + tϵ1)

−ρ
]
dt|)| < ϵ0

2
.

Thus, we have proved that for any ϵ0 > 0 there exists a 0 < ϵ1 < ϵ0 satisfying that∑
ρ

1

|ρ| 32
max(|

∫ 1

−1

e
1

t2−1

[
1− (1 + tϵ1)

ρ−1
]
dt|, |

∫ 1

−1

e
1

t2−1

[
1− (1 + tϵ1)

−ρ
]
dt|) < ϵ0.

It follows that

lim
ϵ→0+

∑
ρ

ĝn,ϵ(1− ρ)ĝn,ϵ(ρ) ({τ̂(ρ)(τ̂(1− ρ)− 1) + (τ̂(ρ)− 1)} = 0.
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We deduce from (2.5) that

lim
ϵ→0+

∑
ρ

ℓ̂n,ϵ(ρ)ℓ̂n,ϵ(1− ρ) = lim
ϵ→0+

∑
ρ

ĝn,ϵ(ρ)ĝn,ϵ(1− ρ). (2.9)

We can write

ĝn(s)ĝn(1− s)− ĝn,ϵ(s)ĝn,ϵ(1− s)

= [ĝn(s)− ĝn,ϵ(s)]ĝn(1− s) + ĝn,ϵ(s)[ĝn(1− s)− ĝn,ϵ(1− s)]

= ĝn(1− s)[Pn(log ϵ)
ϵs

s
+O

(
ϵℜs

|s|2
| log ϵ|n−2

)
+
aϵ(s)

s
] (2.10)

+ ĝn,ϵ(s)[Pn(log ϵ)
ϵ1−s

1− s
+O

(
ϵ1−ℜs

|1− s|2
| log ϵ|n−2

)
+
aϵ(1− s)

1− s
]

≪ 1

|s(1− s)|
[| log ϵ|n−1ϵℜs + |aϵ(s)|+

ϵℜs

|s|
| log ϵ|n−2]

+
1

|s(1− s)|
(
1 + | log ϵ|n−1ϵℜs

)
[| log ϵ|n−1ϵ1−ℜs + |aϵ(1− s)|+ ϵ1−ℜs

|1− s|
| log ϵ|n−2].

There exists a constant cn such that |aϵ(s)| 6 cn for all s inside the strip 0 6 ℜs 6 1.
For each fixed s, we have aϵ(s) → 0 as ϵ → 0+. An argument similar to that made in the
paragraph containing (2.9) shows that

lim
ϵ→0+

∑
ρ

|aϵ(ρ) + |aϵ(1− ρ)|
|ρ(1− ρ)|

= 0. (2.11)

Thus, from (2.7), (2.10) and (2.11) we derive that

lim
ϵ→0+

∑
ρ

[ĝn(ρ)ĝn(1− ρ)− ĝn,ϵ(ρ)ĝn,ϵ(1− ρ)] = 0.

The stated identity then follows from (2.9).
This completes the proof of the lemma. 2

Proof of Theorem 1.1. Let a(t) = 1/t(t− 1),

a1 =

∫ 1

0

ea(t)dt/{
(∫ 1

0

ea(t)dt

)2

−
(∫ 1

0

1

t
ea(t)dt

)(∫ 1

0

tea(t)dt

)
},

a2 = −a1
∫ 1

0

tea(t)dt/

∫ 1

0

ea(t)dt,

and

α(t) =

{
(a1t+ a2)e

a(t) if 0 < t < 1,

0 if t 6 0 or 1 6 t.
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Then ∫ ∞

0

α(t)dt = 0 and

∫ ∞

0

α(t)
dt

t
= 1. (2.12)

If we denote

ϑ(t) =
∞∑
n=1

(−1)n−1α(nt) =
∞∑
n=1

α(nt)− 2
∞∑
n=1

α(n2t), (2.13)

by the Poisson summation formula

ϑ(t) =
1

t

∞∑
n̸=0

Fα(
n

t
)− 1

t

∞∑
n̸=0

Fα(
n

2t
). (2.14)

This implies that ϑ(t) is of rapid decay when t→ 0,∞. It follows that ϑ̂(s) is an entire function.
Since

∞∑
n=1

(−1)n−1

ns
= (1− 21−s)ζ(s)

for ℜs > 0, by analytic extension we have

ϑ̂(s) = (1− 21−s)ζ(s)α̂(s) (2.15)

for complex s. By (2.15) and (2.12), we have

ϑ̂(0) =
1

2
and ϑ̂(1) = 0.

Let

gϵ(x) = ℓn,ϵ(x)−
1

ϑ̂1(0)

∫ ∞

0

ℓn,ϵ(x/u)ϑ1(u)
du

u
(2.16)

and

hn,ϵ(x) =

∫ ∞

0

gϵ(xy)gϵ(y)dy,

where

ϑ1(x) =


ϑ(x) if x > ϵ,
1
2
ϑ(ϵ) if x = ϵ,

0 if x < ϵ.

Since ϑ̂(ρ) = 0 for nontrivial zeros ρ of ζ(s), we have

ĥn,ϵ(ρ) = ℓ̂n,ϵ(ρ)

(
1− 1

ϑ̂1(0)
[ϑ̂(ρ))−

∫ ϵ

0

ϑ(x)xρ−1dx]

)

× ℓ̂n,ϵ(1− ρ)

(
1− 1

ϑ̂1(0)
[ϑ̂(1− ρ))−

∫ ϵ

0

ϑ(x)x−ρdx]

)

=ℓ̂n,ϵ(ρ)ℓ̂n,ϵ(1− ρ)

(
1 +

1

ϑ̂1(0)

∫ ϵ

0

ϑ(x)xρ−1dx

)(
1 +

1

ϑ̂1(0)

∫ ϵ

0

ϑ(x)x−ρdx

)
.
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Let h0(x) =
∫∞
0
ℓn,ϵ(xy)ℓn,ϵ(y)dy. Then

ĥn,ϵ(ρ)− ĥ0(ρ) =ℓ̂n,ϵ(ρ)ℓ̂n,ϵ(1− ρ)
1

ϑ̂1(0)
{
∫ ϵ

0

ϑ(x)xρ−1dx+

∫ ϵ

0

ϑ(x)x−ρdx (2.17)

+
1

ϑ̂1(0)

∫ ϵ

0

ϑ(x)xρ−1dx

∫ ϵ

0

ϑ(x)x−ρdx}

Since both xα′(x) and its Fourier transform vanish at x = 0, by the Poisson summation

xϑ′(x) =
∞∑
n=1

nxα′(nx)− 2
∞∑
n=1

n2xα′(n2x)

=
1

x

∞∑
n̸=0

F(uα′(u))(
n

x
)− 1

x

∞∑
n̸=0

F(uα′(u))(
n

2x
).

This implies that ϑ′(x) is of rapid decay when x → 0. Since ϑ(x) is also of rapid decay when
x→ 0, we have

max{|ϑ(x)|, |ϑ′(x)|} ≪ |x|n

for any positive integer n as x→ 0+. By partial integration,∫ ϵ

0

ϑ(x)x−sdx =
ϑ(ϵ)

1− s
+

1

s− 1

∫ ϵ

0

ϑ′(x)x1−sdx <
cϵ

|s|
(2.18)

for 0 < ℜs < 1 and |s| > 2, where c is an absolute constant independent of s.
By (2.4) and (2.6) we have

ℓ̂n,ϵ(s) ≪
1

|s|
+ | log ϵ|n−1 ϵ

ℜs

|s|
≪ | log ϵ|n−1

|s|
(2.19)

for 0 < ℜs < 1, where the implied constant depends only on n.
From (2.17), (2.18) and (2.19) we derive that∑

ρ

(
ĥn,ϵ(ρ)− ĥ0(ρ)

)
≪ ϵ| log ϵ|2n−2

∑
ρ

1

|ρ|3
→ 0

as ϵ→ 0+. That is,
lim
ϵ→0+

(∆(h0)−∆(hn,ϵ)) = 0.

By (2.9),
lim
ϵ→0+

∆(hn,ϵ) = 2λn.

This completes the proof of Theorem 1.1. 2

We denote µϵ =
1+ϵ
ϵ2

. Since gϵ(t) = 0 for t ̸∈ ( ϵ2

1+ϵ
, 1), we have gϵ(t) = 0 for t ̸∈ (µ−1

ϵ , 1)
and hn,ϵ(x) = 0 for x ̸∈ (µ−1

ϵ , µϵ). We also define gϵ(t) = gϵ(−t) for t < 0. From now on we
choose

S = {∞, all primes p ≤ X} (2.20)

for some X > µϵ.
By (2.16), ĝϵ(0) = 0. It follows that

ĥn,ϵ(0) = ĥn,ϵ(1) = 0. (2.21)
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3 A formula for the Weil distribution and proof of The-

orem 1.2

In this section we derive a new formula for the Weil distribution ∆(h).
Let NS be the set consisting of 1 and all positive integers which are products of powers

of primes in S ′. ψp is the character on the additive group Qp given as in [13] and ψ∞(x) =
exp(−2πix).

The Fourier transform of f ∈ L2(R) is

Ff(x) =

∫ ∞

−∞
f(t)e−2πixtdt.

For f ∈ L2(Qp) its Fourier transform is defined by

Fpf(β) =

∫
Qp

f(α)ψp(−αβ)dα

for β ∈ Qp.
Let ψS =

∏
p∈S ψp. When f =

∏
p∈S fp ∈ L2(AS) we define

FSf(β) =

∫
AS

f(α)ψS(−αβ)dα.

Then FSf =
∏

p∈S Fpfp. As S(AS) is dense in L2(AS), the definition of FS can be extended to

all functions in L2(AS).

Lemma 3.1 We can write

FSg(t) =
∑

k,l∈NS

µ(k)

k
Fg(

lt

k
)

=
1

2πi

∫ c+i∞

c−i∞
t−sF̂g(s)

∏
p∈S′

1− ps−1

1− p−s
ds (3.1)

for c > 0, where F̂g(s) = ĝ(1− s)χ(1− s) with χ(s) = 2sπs−1Γ(1− s) sin πs
2

and

Fg(t) = 2

∫ ∞

0

g(y) cos(2πty)dy.

We have ∫ ∞

0

|FSg(t)|2dt =
∫ ∞

0

|g(t)|2dt (3.2)

and ∫ ∞

0

FSf(t)FSg(t)dt =

∫ ∞

0

f(t)g(t)dt. (3.3)

Moreover, if g is a real-valued function so is FSg.
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Proof. As |γ| = 1 for γ ∈ O∗
S, by [6, (3.3), p. 2468] we obtain the following formula, which also

shows that if g is a real-valued function so is FSg,

FSg(t) =

∫
AS

g(y)ΨS(−y(|t|, 1, · · · , 1))dy

=
∑
γ∈O∗

S

∫
γIS

g(y)ΨS(−y(|t|, 1, · · · , 1))dy

=
∑
γ∈O∗

S

ϖ(γ)

∫ ∞

0

g(y)e2πi|t|yγdy

= 2
∑

0<γ∈O∗
S

ϖ(γ)

∫ ∞

0

g(y) cos(2πy|t|γ)dy

with

ϖ(γ) =
∏
p∈S′


1− p−1 if |γ|p 6 1,

−p−1 if |γ|p = p,

0 if |γ|p > p.

(3.4)

That is,

FSg(t) =
∑

k,l∈NS ,(k,l)=1

µ(k)

k

∏
p-k

(1− 1

p
)Fg(

l|t|
k
)

=
∏
p∈NS

(1− 1

p
)

∑
k,l∈NS ,(k,l)=1

µ(k)

k

∏
p|k

1

1− p
Fg(

l|t|
k
) =

∑
k,l∈NS

µ(k)

k
Fg(

l|t|
k
).

Thus, for t > 0 we have

FSg(t) =
1

2πi

∫ c+i∞

c−i∞
t−sF̂g(s)

∏
p∈S′

1− ps−1

1− p−s
ds

for c > 0. By Plancherel’s Theorem [12, Theorem 1.1, p. 208],∫ ∞

0

|FSg(t)|2dt =
∫ ∞

−∞
|F̂Sg(s)|2du =

∫ ∞

−∞
|F̂g(s)|2du =

∫ ∞

0

|Fg(x)|2dx =

∫ ∞

0

|g(t)|2dt

where s = 1/2 + 2πiu. It follows that∫ ∞

0

FSf(t)FSg(t)dt =

∫ ∞

0

f(t)g(t)dt.

This completes the proof of the lemma. 2

Lemma 3.2 ([7, Theorem 3.1, p. 796]) We have∫
R
Fh(u) cos(2πu) log |u| du = −

∫ ′

R∗

h(|u|−1)

|1− u|
d∗u.

11



Lemma 3.3 We have∫ ∞

0

|g(t)|2 log t dt+
∫ ∞

0

|Fg(t)|2 log tdt = −
∫ ′

R∗

h(|u|−1)

|1− u|
d∗u

where Fg(u) = 2
∫∞
0
g(t) cos(2πtu)dt.

Proof. Since h(x) =
∫∞
0
g(xt)ḡ(t)dt, 1 < |xt| < µϵ, and 1 < |t| < µϵ as g vanishes outside the

interval (1, µϵ), we have

Fh(u) =

∫
R
cos(2πux)dx

∫ ∞

0

g(xt)ḡ(t)dt =

∫ µϵ

1
µϵ

cos(2πux)dx

∫ µϵ

1

g(xt)ḡ(t)dt.

Because the above double integral is absolute integrable, by the Fubini Theorem we can change
the order of integration to write

Fh(u) =

∫ ∞

0

ḡ(t)dt

∫
R
g(xt) cos(2πux)dx =

∫ ∞

0

ḡ(t)
1

t
Fg(

u

t
)dt.

Notice that∫
R
Fh(u) cos(2πu) log |u| du =

∫
R
cos(2πu) log |u| du

∫ ∞

0

1

t
ḡ(t)Fg(

u

t
)dt,

where the double integral on the right side is absolute integrable because t ∈ (1, µϵ) and
Fg(u/t)| ≪ (t/u)2 for large |u| by using partial integration twice. Hence, we can change the
order of integration and derive that∫

R
Fh(u) cos(2πu) log |u| du =

∫ ∞

0

1

t
ḡ(t)dt

∫
R
cos(2πu) log |u|Fg(u

t
)du

=

∫ ∞

0

ḡ(t)dt

∫
R
cos(2πut) log |ut|Fg(u)du

=

∫ ∞

0

ḡ(t) log tdt

∫
R
cos(2πut)Fg(u)du+

∫ ∞

0

ḡ(t)dt

∫
R
cos(2πut)Fg(u) log |u|du

=

∫ ∞

0

|g(t)|2 log t dt+
∫ ∞

0

ḡ(t)dt

∫
R
cos(2πut)Fg(u) log |u|du.

By Plancherel’s Theorem [12, Theorem 1.1, p. 208] and the inversion formula [12, Theorem
4.2, p. 87] ∫ ∞

0

ḡ(t)dt

∫
R
cos(2πut)Fg(u) log |u|du =

∫ ∞

0

|Fg(u)|2 log udu

as both Fg(u) log |u| and
∫
R cos(2πut)Fg(u) log |u|du are in L1(R) because for large |u|

Fg(u) = 2

∫ µϵ

1

g(t) cos(2πtu)dt =
−1

2(πu)2

∫ µϵ

1

g′′(t) cos(2πtu)dt.

12



Therefore, ∫
R
Fh(u) cos(2πu) log |u| du =

∫ ∞

0

|g(t)|2 log t dt+
∫ ∞

0

|Fg(t)|2 log tdt.

The stated identity then follows from Lemma 3.2.
This completes the proof of the lemma. 2

Proof of Theorem 1.2. By Lemma 3.1,

FSg(t) =
∑

k,l∈NS

µ(k)

k
Fg(

lt

k
).

Since the sum on k’s is a finite sum as S is a finite set, we can change the order of integration
and summation to write∫ ∞

0

|FSg(t)|2 log tdt =
∑

k1,k2∈NS

µ(k1)µ(k2)

k1k2

∫ ∞

0

∑
l1,l2∈NS

Fg(
l1t

k1
)Fg(

l2t

k2
) log tdt

=
∑

k1,k2∈NS

µ(k1)µ(k2)

∫ ∞

0

∑
l1,l2∈NS

Fg(l1k2t)Fg(l2k1t) log(k1k2t)dt

=

∫ ∞

0

∑
k1,k2,l1,l2∈NS

µ(k1)µ(k2)Fg(l1k2t)Fg(l2k1t) log(k1k2)dt

+

∫ ∞

0

∑
k1,k2,l1,l2∈NS

µ(k1)µ(k2)Fg(l1k2t)Fg(l2k1t) log tdt.

For n ∈ NS, we have ∑
k|n,k∈NS

µ(k) =

{
1 if n = 1

0 if n > 1.

If we denote n1 = l2k1 and n2 = l1k2, then∫ ∞

0

∑
k1,k2,l1,l2∈NS

µ(k1)µ(k2)Fg(l1k2t)Fg(l2k1t) log tdt

=

∫ ∞

0

∑
n1,n2∈NS

 ∑
k1|n1,k1∈NS

µ(k1)

 ∑
k2|n2,k2∈NS

µ(k2)

Fg(n2t)Fg(n1t) log tdt

=

∫ ∞

0

|Fg(t)|2 log tdt

where the rearrangement of the summation is permissible because Fg(likjt) ≪ 1/likjt for fixed
t > 0 by partial integration. It follows that∫ ∞

0

|FSg(t)|2 log tdt =
∫ ∞

0

|Fg(t)|2 log tdt

+

∫ ∞

0

∑
k1,k2,l1,l2∈NS

µ(k1)µ(k2)Fg(l1k2t)Fg(l2k1t) log(k1k2)dt.
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Let Λ(k) = log p if k = pa for some prime p and some integer a > 1 and Λ(k) = 0
otherwise. Then

Λ(k) = −
∑
d|k

µ(d) log d

for all positive integers k, and
∑

m|k µ(m) = 0 if k > 1. Thus,∫ ∞

0

∑
k1,k2,l1,l2∈NS

µ(k1)µ(k2)Fg(l1k2t)Fg(l2k1t) log(k1k2)dt

= 2ℜ
∫ ∞

0

∑
k1,k2,l1,l2∈NS

µ(k1)µ(k2) log k1Fg(l1k2t)Fg(l2k1t)dt

= 2ℜ
∫ ∞

0

∑
n1,n2∈NS

 ∑
k1|n1,k1∈NS

µ(k1) log k1

 ∑
k2|n2,k2∈NS

µ(k2)

Fg(n2t)Fg(n1t)dt

= −2ℜ
∫ ∞

0

∑
n1∈NS

Λ(n1)Fg(t)Fg(n1t)dt

= −2ℜ
∑

n1∈NS

Λ(n1)

∫ ∞

0

Fg(t)Fg(n1t)dt,

where changing the order of integration and summation after the 4th equality is permissible
because by Hölder’s inequality∫ ∞

0

∑
n1∈NS

Λ(n1)|Fg(t)Fg(n1t)|dt ≤
∑

n1∈NS

Λ(n1)

√∫ ∞

0

|Fg(t)|2dt
∫ ∞

0

|Fg(n1t)|2dt

=

∫ ∞

0

|Fg(t)|2dt
∑

n1∈NS

Λ(n1)√
n1

<∞.

By Plancherel’s Theorem [12, Theorem 1.1, p. 208],∫ ∞

0

Fg(t)Fg(n1t)dt =

∫ ∞

0

g(t)
1

n1

ḡ(
t

n1

)dt =

∫ ∞

0

g(n1t)ḡ(t)dt = h(n1).

Therefore, ∫ ∞

0

|FSg(t)|2 log tdt =
∫ ∞

0

|Fg(t)|2 log tdt− 2ℜ
∑
k∈NS

Λ(k)h(k).

Also,

2
∞∑

k∈NS ,k=1

Λ(k)h(k) =
∑
p∈S′

∞∑
m=1

log p
[
h(pm) + p−mh(p−m)

]
=
∑
p∈S

∫ ′

Q∗
p

h(|u|−1)

|1− u|p
d∗u.

Hence, ∫ ∞

0

|FSg(t)|2 log tdt =
∫ ∞

0

|Fg(t)|2 log tdt−
∑
p∈S′

∫ ′

Q∗
p

h(|u|−1)

|1− u|p
d∗u.
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By Lemma 3.3, we have∫ ∞

0

|g(t)|2 log t dt+
∫ ∞

0

|FSg(t)|2 log tdt = −
∑
p∈S

∫ ′

Q∗
p

h(|u|−1)

|1− u|p
d∗u.

Since ∫ ′

Q∗
p

hn,ϵ(|u|−1
p )

|1− u|p
d∗u =

∞∑
m=1

log p
[
hn,ϵ(p

m) + p−mhn,ϵ(p
−m)

]
= 0

if p ̸∈ S by the choice of hn,ϵ in (2.21), we have the formula

∆(h) =

∫ ∞

0

|g(t)|2 log t dt+
∫ ∞

0

|FSg(t)|2 log tdt.

This completes the proof of Theorem 1.2. 2

4 Preliminary results

In this section, we collect some preliminary results which will be used in later sections.
We denote

IS = R+ ×
∏
p∈S′

O∗
p.

Let d×t = dt
|t| be the multiplicative measure on R∗ and d×xp = 1

1−p−1

dxp

|xp|p the multiplicative

measure on Q∗
p. Then d

×xS =
∏

p∈S d
×xp is a Haar measure on JS.

Lemma 4.1 IS is a fundamental domain for the action of O∗
S on JS and JS =

∪
ξ∈O∗

S
ξIS, a

disjoint union.

Proof. Each α ∈ JS can be written as α = tb with t = |α|S ∈ R+ and b = αt−1 ∈ J1
S, where t

−1

also stands for the idele (t−1, 1, · · · ). Since |ξ|S = 1 for ξ ∈ O∗
S, if α1, α2 ∈ JS with |α1|S ̸= |α2|S,

then the intersection of α1O
∗
S and α2O

∗
S is empty. Thus

CS = R+ ×
(
J1
S/O

∗
S

)
.

As K = Q, for each b ∈ J1
S there are uniquely determined ξ ∈ O∗

S and b1 ∈ {1}×
∏

p∈S′ O∗
p such

that b = ξb1. Also, if b1, b2 are distinct elements in
∏

p∈S′ O∗
p, then the intersection of b1O

∗
S

and b2O
∗
S must be empty. Otherwise, we have b1b

−1
2 ∈ O∗

S. Then b1b
−1
2 ∈ Q∗ and |b1b−1

2 |p = 1
for all p ̸∈ S. Since b1, b2 are elements in

∏
p∈S′ O∗

p, we have |b1b−1
2 |p = 1 for all p ∈ S ′. Hence

b1b
−1
2 = 1; that is, b1 = b2. Therefore

J1
S/O

∗
S
∼=
∏
p∈S′

O∗
p.

Thus
CS

∼= R+ ×
∏
p∈S′

O∗
p.

We have also obtained the decomposition JS =
∪

ξ∈O∗
S
ξIS, a disjoint union.

This completes the proof of the lemma. 2
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Lemma 4.2 ([6, Lemmas 3.13 and 3,14, pp. 2471–2477]) The operator

VS(h)
(
SΛ − ESF

t
SPΛFSE

−1
S

)
is a trace class Hilbert-Schmidt integral operator on L2

1(CS).

Lemma 4.3 ([9, Theorem VI.25 (b)(c), p. 212]) trace(At) = trace(A), and trace(AB) =
trace(BA) if A is of trace class and B is bounded.

Lemma 4.4 ([9, Theorem VI.19(b)(a), p. 207]) Let A,B be bounded linear operators on a
Hilbert space H. If A is of trace class on H, so are AB and BA with trace(AB) = trace(BA).

Lemma 4.5 (Lidskii’s Theorem [5, Theorem 8.4, p. 101]) If A is of trace class on a Hilbert
space, then the functional trace of A coincides with its spectral trace.

Lemma 4.6 ([9, Theorem VI.24, p. 211]) If A is a bounded linear operator of trace class on
a Hilbert space H and {φn}∞n=1 is any orthonormal basis, then

∞∑
n=1

⟨Aφn, φn⟩H

converges absolutely and the limit is independent of the choice of basis.

Lemma 4.7 ([2, Corollary 3.2, p. 237]) Let µ be a σ-finite Borel measure on a second countable
spaceM , and let A be a trace class Hilbert-Schmidt integral operator on L2(M,dµ). If the kernel
k(x, y) is continuous at (x, x) for almost every x, then

trace(A) =

∫
M

k(x, x)dµ(x).

The left regular representation V of CS on L2(CS) is given by

(V (g)f)(α) = f(g−1α)

for g, α ∈ CS and f ∈ L2(CS). Let C
1
S = J1

S/O
∗
S. Since the restriction of V to C1

S is unitary, we
can decompose L2(CS) as a direct sum of subspaces

L2
χ(CS) = {f ∈ L2(CS) : f(g

−1α) = χ(g)f(α) for all g ∈ C1
S and α ∈ CS} (4.1)

for all characters χ of C1
S.

Lemma 4.8 Let

η(x) = 2ex/2
∑
k∈NS

πk2e2x
(
πk2e2x − 3

2

)
e−πk2e2x .

Then

Fη(t) =
1

4
ξS(

1

2
+ 2πit)

where

ξS(s) = s(s− 1)π− s
2Γ(

s

2
)
∏
p∈S′

1

1− p−s
.
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Proof. By computations,∫ ∞

−∞
η(x)ex(s−1/2)dx

=

∫ ∞

0

2
√
u
∑
k∈NS

π(ku)2(π(ku)2 − 3

2
)e−π(ku)2us−

3
2du

=
1

4
s(s− 1)π− s

2Γ(
s

2
)
∏
p∈S′

1

1− p−s
=

1

4
ξS(s)

for ℜs > 0. Putting s = 1/2 + 2πit into above identity we get

Fη(t) =
1

4
ξS(

1

2
+ 2πit).

This completes the proof of the lemma. 2

A subspace of M of L2(R) is translation-invariant if f ∈ M implies that fα ∈ M for
every real α, where fα(x) = f(x− α).

Let M be a closed translation-invariant subspace of L2(R), and let M̂ be the image

of M under the Fourier transformation. Then M̂ is closed (since the Fourier transform is an
L2-isometry). By [11, Theorem 9.17, p. 190], a Lebesgue measurable set E exists in R such

that M̂ consists precisely of those elements f ∈ L2(R) which vanish almost everywhere on E.

Lemma 4.9 LetMS be the closed translation-invariant subspace of L2(R) generated by η. Then
MS = L2(R).

Proof. The idea of this proof is due to A. Connes in an email to the author on September
11, 2008. Let FMS be the image of MS under the Fourier transformation. Then a Lebesgue
measurable set E in R exists such that FMS consists precisely of those elements f ∈ L2(R)
which vanish almost everywhere on E. Since

Fη(t) =
1

4
ξS(

1

2
+ 2πit)

by Lemma 4.8 and since
Fηα(t) = e2πiαtFη(t)

for every real α, E can be chosen to be the set of all real numbers t such that 1/2 − 2πit
are zeros of ξS. Then E has zero Lebesgue measure. Hence every function in L2(R) vanishes
almost everywhere on E. That is, FMS = L2(R). Since the mapping f → Ff is a Hilbert space
isomorphism of L2(R) onto L2(R), we have MS = L2(R).

This completes the proof of the lemma. 2

Lemma 4.10 Let L2
1(CS) be given as in (4.1), and let

ϱS,a(x) = πax2∞

(
πax2∞ − 3

2

)
e−πax2

∞
∏
p∈S′

1Op(xp).

Then the set {ES(ϱS,a) : a ∈ (0,∞)} is dense in L2
1(CS).
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Proof. Let g be any element in J1
S with |g|S = 1, by Lemma 4.1 there exist elements γ ∈ O∗

S

and g1 ∈ {1} ×
∏

p∈S′ O∗
p such that g = γg1. Thus

ES(ϱS,a)(g
−1x) = ES(ϱS,a)(g

−1
1 x) = ES(ϱS,a)(x)

for all x ∈ CS. Hence ES(ϱS,a) ∈ L2
1(CS).

Let φ be any element in L2
1(CS). We can write

φ(x) = φ(|x|),

where |x| is also meant to be the idele (|x|, 1, 1, · · · , 1). If φ is orthogonal to the image of
Se(R)×

∏
p∈S′ 1Op under ES, then∫

CS

ES(f)(x)φ̄(|x|)d×x = 0

for all f ∈ Se(R)×
∏

p∈S′ 1Op . In particular we have∫
R
φ̄(ex)ηα(x)dx = 0

for all real α. Since φ ∈ L2
1(CS), φ(e

x) ∈ L2(R). By Lemma 4.9, {ηα : α ∈ R} is dense in
L2(R). Hence φ̄(ex) = 0 as an element in L2(R). Therefore {ES(ϱS,a) : a ∈ (0,∞)} is dense in
L2
1(CS), and ES extends to a surjective isometry from L2

1(XS) onto L
2
1(CS).

This completes the proof of the lemma. 2

5 Trace of Tℓ on ES(Q
⊥
Λ), its positivity, and proofs of The-

orems 1.3, 1.4

In this section, we compute the trace of Tℓ on the subspace ES(Q
⊥
Λ) of L

2
1(CS) in two ways.

Lemma 5.1 Let BS′ =
∏

p∈S′ p−1Op. If F (y) = f(|y|) for some function f , then∫
AS

F (y)ΨS(yx)dy =

∫
R×BS′

F (y)ΨS(y|x|)dy.

Proof. Since the complement of JS in AS is negligible, as |ξ| = 1 for ξ ∈ O∗
S we can write∫

AS

F (y)ΨS(yx)dy =
∑
ξ∈O∗

S

∫
IS

F (y)ΨS(yxξ)dy.

Since F (y) = f(|y|), if we change variables y → y|x|/x with |x| = (|x|, 1, · · · , 1) then∫
AS

F (y)ΨS(yx)dy =
∑
ξ∈O∗

S

∫
IS

f(|y|)ΨS(y|x|ξ)dy =
∑
ξ∈O∗

S

ϖ(ξ)

∫ ∞

0

f(t)e−2πit|x|ξdt,
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where ϖ(ξ) is given as in (3.4).
If ξ ∈ O∗

S satisfies ϖ(ξ) ̸= 0, then ξ = l/k for some integers k, l ∈ NS with square free k.
Thus, ξ

∏
p∈S′ O∗

p ⊂ BS′ . Hence, ∪
ξ∈O∗

S ,ϖ(ξ)̸=0

ξIS ⊂ R∗ ×BS′ .

Conversely, if x = (xp) ∈ R∗ × BS′ then there exists a ξ ∈ O∗
S such that ξ−1x ∈ IS, i.e.,

|ξ|p = |x|p ≤ p for p ∈ S ′. By (3.4), ϖ(ξ) ̸= 0. Hence, x ∈
∪

ξ∈O∗
S ,ϖ(ξ) ̸=0 ξIS. Thus,

R∗ ×BS′ ⊂
∪

ξ∈O∗
S ,ϖ(ξ)̸=0

ξIS.

Also if ξ, γ are distinct elements in O∗
S, then ξO

∗
S and γO∗

S are disjoint sets. Therefore,

R∗ ×BS′ =
∪

ξ∈O∗
S ,ϖ(ξ)̸=0

ξIS, a disjoint union.

Therefore, ∑
ξ∈O∗

S ,ϖ(ξ)̸=0

∫
IS

F (y)ΨS(y|x|ξ)dy =

∫
R×BS′

F (y)ΨS(y|x|ξ)dy.

That is, ∫
AS

F (y)ΨS(yx)dy =

∫
R×BS′

F (y)ΨS(y|x|)dy.

This completes the proof of the lemma. 2

Lemma 5.2 Let f(λ) = PΛ(λ)
∫∞
0
g(vλ)FSg(x/v)d

×v. Then∫
AS

ΨS(−uy)du
∫
AS

f(λ)ΨS(λu)dλ = f(y).

Proof. We denote x = (xr, xb) with xr ∈ R and xb ∈ AS′ . By [6, Lemma 3.4 and Remark, p.
2467],

(
ESFSE

−1
S

)
u
[
√
|u|
∫
AS

f(λ)ΨS(λu)dλ](y) =
√
|y| (FS)u [

∫
AS

f(λ)ΨS(λu)dλ](y)

=
√
|y|
∫
AS

ΨS(−uy)du
∫
AS

f(λ)ΨS(λu)dλ.

Since∫
AS

f(λ)ΨS(λu)dλ =
∑
γ∈O∗

S

∫
γIS

f(λ)ΨS(λu)dλ =
∑
γ∈O∗

S

∫
IS

f(λ)ΨS(λγu)dλ,
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we have

E−1
S {
√

|u|
∫
AS

f(λ)ΨS(λu)dλ} =

∫
IS

f(λ)ΨS(λu)dλ.

Hence,

(FSE
−1
S )u{

√
|u|
∫
AS

f(λ)ΨS(λu)dλ}(y) =
∫
AS

ΨS(−uy)du
∫
IS

f(λ)ΨS(λu)dλ

=

∫ ∞

−∞
e−2πiuryrdur

∫
AS′

ΨS′(−ubyb)dub
∫
AS′

ϕ(λb)ΨS′(λbub)dλb

where

ϕ(λb) =

{∫∞
−∞ f(|λr||λb|)e2πiλrurdλr if λb ∈

∏
p∈S′ O∗

p

0 if λb ̸∈
∏

p∈S′ O∗
p.

Also, ∫
IS

f(λ)ΨS(λu)dλ = ϖ(u)

∫ ∞

0

f(t)e−2πiturdt

where ϖ(u) is given as in (3.4). This implies that∫
AS′

ϕ(λb)ΨS′(λbub)dλb

as a function of ub is supported on the compact set BS′ =
∏

p∈S′ p−1Op. Since ϕ(λb) is locally
constant as a function of λb ∈ AS′ and is supported on the compact set

∏
p∈S′ O∗

p, the condition
of [13, Theorem 2.2.2, p. 310] is satisfied by this function. Note that this theorem is still true
if we replace k+p there by AS′ . Thus, by the Fourier inversion formula we have∫

AS′

ΨS′(−ubyb)dub
∫
AS′

ϕ(λb)ΨS′(λbub)dλb = ϕ(yb)

where ϕ(yb) = 0 if yb ̸∈
∏

p∈S′ O∗
p.

Since f(t|yb|) is a continuous and compactly supported function of t ∈ [0,∞), t ̸= Λ/|yb|
and is of bounded variation in an interval including yr, by Fourier’s single-integral formula [14,
Theorem 12, p. 25] we have for yb ∈

∏
p∈S′ O∗

p

(FSE
−1
S )u{

√
|u|
∫
AS

f(λ)ΨS(λu)dλ}(y)

=

∫ ∞

−∞
e2πiuryrdur

∫ ∞

−∞
f(|λr||yb|)e−2πiλrurdλr

= lim
K→∞

∫ ∞

−∞
f(|λr||yb|)dλr

∫ K

−K

e2πiur(yr−λr)dur

= lim
K→∞

1

π

∫ ∞

−∞
f(|λr||yb|)

sin 2πK(yr − λr)

yr − λr
dλr = f(y)
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where the 2nd equality holds because f has a compact support on [0,∞). It follows that

(ESFSE
−1
S )u{

√
|u|
∫
AS

f(λ)ΨS(λu)dλ}(y)}(y)

=
√

|y|
∑
ξ∈O∗

S

{
f(ξy) if ξy ∈ IS,

0 if ξy ̸∈ IS
=
√

|y|f(y)

because for each y ∈ AS with |y| ̸= 0 there exists exactly one ξ ∈ O∗
S such that ξy ∈ IS.

Therefore, (
ESFSE

−1
S

)
u
[
√

|u|
∫
AS

f(λ)ΨS(λzu)dλ](y) =
√

|y|f(y).

This completes the proof of the lemma. 2

By Lemma 4.10,

L2
1(CS) = {ES(Q

⊥
Λ)⊕ ES(QΛ)}

∩
L2
1(CS) =: ES(Q

⊥
Λ)1 ⊕ ES(QΛ)1

where ES is the extended map as in Lemma 4.10.

Proof of Theorem 1.3. We choose ai(x) ∈ Q⊥
Λ , bj(x) ∈ QΛ, i, j = 1, 2, · · · such that they are

invariant under the action λg for all g ∈
∏

p∈S′ O∗
p with λgf(x) = f(g−1x) and such that their

images under ES form an orthonormal basis of L2
1(CS).

By Lemma 4.2, Tℓ is of trace class on L2
1(CS). By Lemma 4.5

traceL2
1(CS)(Tℓ) =

∞∑
i,j=1

{⟨TℓES(ai), ES(ai)⟩+ ⟨TℓES(bj), ES(bj)}.

Since ES(ai), ES(bj)’s form an orthonormal basis of L2
1(CS) and since ESF

t
SPΛFSE

−1
S is the

orthogonal projection of L2
1(CS) onto ES(Q

⊥
Λ)1, we have

⟨TℓES(ai), ES(ai)⟩ = ⟨ESF
t
SPΛFSE

−1
S TℓES(ai), ES(ai)⟩

and
⟨ESF

t
SPΛFSE

−1
S Tℓf, f⟩L2

1(CS) = 0

for all f ∈ ES(QΛ)1. Hence,

traceES(Q
⊥
Λ )1(Tℓ) = traceES(Q

⊥
Λ )1(ESF

t
SPΛFSE

−1
S Tℓ)

= traceL2
1(CS)(ESF

t
SPΛFSE

−1
S Tℓ).

As Tℓ is of trace class and ES commutes with PΛ, by Lemma 4.4

traceL2
1(CS)(ESF

t
SPΛFSE

−1
S Tℓ) = traceL2

1(CS)(PΛESFSE
−1
S TℓESF

t
SE

−1
S ).

By Lemma 4.3,

traceL2
1(CS)(PΛESFSE

−1
S TℓESF

t
SE

−1
S ) = traceL2

1(CS)(ESFSE
−1
S T t

ℓESF
t
SE

−1
S PΛ).
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So,
traceES(Q

⊥
Λ )1(Tℓ) = traceL2

1(CS)(ESFSE
−1
S T t

ℓESF
t
SE

−1
S PΛ). (5.1)

Let F = ES(f) with f ∈ Se(R)×
∏

p∈S′ 1Op . Since

VS(h)F (x) =

∫
CS

√
|x/y|h(x/y)F (y)d×y =

∫
CS

√
|xy|{

∫ ∞

0

g(xt)g(yt)dt}F (y)d×y,

we have

E−1
S VS(h)F (x) =

∫
CS

h(x/y)f(y)d×y.

Because f ∈ Se(R)×
∏

p∈S′ 1Op and h has a compact support in (0,∞), we have∫ ∞

0

dx

∫
CS

|h(x/y)f(y)|d×y =

∫
CS

|f(y)||y|d×y
∫ ∞

0

|h(x)|dx <∞.

This absolute convergence implies that we can change the order of integration to derive

FSE
−1
S VS(h)F (x) =

∫
CS

|y|FSh(yx)f(y)d
×y.

Since f ∈ Se(R)×
∏

p∈S′ 1Op , PΛ(x) = 0 for |x| ≥ Λ and |FSh(yx)| ≪ 1/
√
|yx| by (3.1),

we have ∫ ∞

0

PΛ(x)dx

∫
CS

|yFSh(yx)f(y)|d×y <∞.

Hence we can change the order of integration and get

Ft
SPΛFSE

−1
S VS(h)F (x) =

∫
CS

|y|
(∫

AS ,|t|<Λ

FSh(yt)ΨS(tx)dt

)
f(y)d×y.

That is,

ESF
t
SPΛFSE

−1
S VS(h)F (x) =

∫
CS

√
|xy|

(∫
AS ,|t|<Λ

FSh(yt)ΨS(tx)dt

)
F (y)d×y

=

∫
CS

√
|xy|F (y)d×y

∫
AS ,|t|<Λ

ΨS(tx)dt

∫
AS

ΨS(−uyt)du
∫ ∞

0

g(uv)g(v)dv.

By changing variables u→ u/t, v → vt we deduce that

ESF
t
SPΛFSE

−1
S VS(h)F (x)

=

∫
CS

√
|xy|F (y)d×y

∫
AS ,|t|<Λ

ΨS(tx)dt

∫
AS

ΨS(−uy)du
∫ ∞

0

g(uv)g(vt)dv.

Since |t| < Λ and we can assume that 1 < |vt| < µϵ (because g(vt) = 0 when v, t don’t satisfy
this inequality), we can assume that

1

Λ
<

1

t
< |v| < µϵ

t
.
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Thus, we can write

ESF
t
SPΛFSE

−1
S VS(h)F (x)

=

∫
CS

√
|xy|F (y)d×y

∫
AS ,|t|<Λ

ΨS(tx)dt

∫
AS

ΨS(−uy)du
∫ µϵ

t

1
Λ

g(uv)g(vt)dv.

Since

|
∫
AS

g(uv)ΨS(−uy)du| = |2
∑

k,l∈NS

µ(k)

k

∫ ∞

0

g(uv) cos(2πuy
l

k
)du|

6 1

π|y|
∑

k,l∈NS

|µ(k)|
l

∫ µϵ

1

|g′(u)|du < c

|y|

for a constant c depending only on S, the integral (or series)∫
AS

g(uv)ΨS(−uy)du

converges uniformly with respect to v. So, we can change the order of integration to get∫ ∞

0

FSg(
y

v
)g(vt)d×v =

∫ µϵ
t

1
Λ

g(vt)dv

∫
AS

g(uv)ΨS(−uy)du

=

∫
AS

ΨS(−uy)du
∫ µϵ

t

1
Λ

g(uv)g(vt)dv =

∫
AS

ΨS(−uy)du
∫ ∞

0

g(uv)g(vt)dv.

Thus, we have

ESF
t
SPΛFSE

−1
S VS(h)F (x) =

∫
CS

√
|xy|F (y)d×y

∫
AS ,|t|<Λ

ΨS(tx)dt

∫ ∞

0

g(vt)FSg(
y

v
)
dv

|v|
.

By using (3.1) we find that |FSg(v)| ≪S |v|−1/2 when |v| < 1 if choosing c = 1/2 and
|FSg(v)| ≪S |v|−2 when |v| > 1 if choosing c = 2. After changing variables vt → t, y/v → v
inside the following integral we find that∫ ∞

0

dt

∫ ∞

0

|g(vt)FSg(
y

v
)|dv
|v|

=
1

|y|

∫ ∞

0

|FSg(v)|dv
∫ µϵ

1

|g(t)|dt <∞. (5.2)

So, we can change the order of integration to write∫
AS ,|t|<Λ

ΨS(tx)dt

∫ ∞

0

g(vt)FSg(
y

v
)
dv

|v|
=

∫ ∞

0

FSg(
y

v
)
dv

|v|

∫
AS ,|t|<Λ

g(vt)ΨS(tx)dt. (5.3)

It follows from (5.3) that

ESF
t
SPΛFSE

−1
S VS(h)F (x)

=

∫
CS

√
|xy|{

∫ ∞

0

FSg(
y

v
)
dv

|v|

∫
AS ,|t|<Λ

g(vt)ΨS(tx)dt}F (y)d×y
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for F = ES(f) with f ∈ Se(R)×
∏

p∈S′ 1Op . Thus, we have derived that

T t
ℓF (x) =

∫
CS

√
|xy|{SΛ(x)

∫ ∞

0

g(xt)g(yt)dt (5.4)

−
∫ ∞

0

FSg(
y

v
)
dv

|v|

∫
AS

PΛ(t)g(vt)ΨS(tx)dt}F (y)d×y

for F = ES(f) with f ∈ Se(R)×
∏

p∈S′ 1Op .
Since∫ ∞

0

FSg(
y

v
)d×v

∫
AS

g(vt)ΨS(tx)dt =

∫ ∞

0

FSg(
y

v
)
d×v

|v|

∫
AS

g(t)ΨS(
tx

v
)dt (5.5)

=

∫ ∞

0

FSg(yv)FSg(xv)dv =

∫ ∞

0

g(yt)ḡ(xt)dt =

∫ ∞

0

g(xt)g(yt)dt

as g is real-valued, we can write (5.4) as

T t
ℓF (x) =

∫
CS

√
|xy|{[SΛ(x)− 1]

∫ ∞

0

g(xt)g(yt)dt

−
∫ ∞

0

FSg(
y

v
)d×v

∫
AS

[PΛ(t)− 1]g(vt)ΨS(tx)dt}F (y)d×y,

and hence

E−1
S T t

ℓF (x) =

∫
CS

|y|{[SΛ(x)− 1]

∫ ∞

0

g(xt)g(yt)dt

−
∫ ∞

0

FSg(
y

v
)d×v

∫
AS

[PΛ(t)− 1]g(vt)ΨS(tx)dt}f(y)d×y

for f ∈ Se(R)×
∏

p∈S′ 1Op .
Note that

E−1
S T t

ℓF (x) = E−1
S T t

ℓF (|x|), and SΛ(x)− 1 = 0 when |x| > Λ−1. (5.6)

Since g vanishes outside (1, µϵ), we have

[PΛ(t)− 1]g(vt) = 0

for all t if |v| > µϵ/Λ. Also, (SΛ(x)− 1)g(xt) = 0 if |t| < Λ. So,

E−1
S T t

ℓF (x) =

∫
CS

|y|{[SΛ(x)− 1]

∫ µϵ
|y|

Λ

g(xt)g(yt)dt (5.7)

−
∫ µϵ

Λ

0

FSg(
y

v
)d×v

∫
AS

[PΛ(t)− 1]g(vt)ΨS(tx)dt}f(y)d×y.
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If we choose c = 2 in (3.1), we obtained that for large |x|∣∣∣∣∫
AS

[PΛ(t)− 1]g(vt)ΨS(tx)dt

∣∣∣∣≪S
1

|x|2
. (5.8)

From (5.6), (5.7), (5.8) and f ∈ Se(R)×
∏

p∈S′ 1Op we find that∫ ∞

0

dx

∫
CS

|y{[SΛ(x)− 1]

∫ ∞

0

g(xt)g(yt)dt

−
∫ ∞

0

FSg(
y

v
)d×v

∫
AS

[PΛ(t)− 1]g(vt)ΨS(tx)dt}f(y)|d×y <∞.

Because of the absolute convergence of the above double integral and because of E−1
S T t

ℓF (x) =
E−1

S T t
ℓF (|x|) by (5.6), by using Lemma 5.1 as BS′ is a compact set in AS′ we can change the

order of integration to get

ESFSE
−1
S T t

ℓF (x) =

∫
CS

√
|xy|FS{[SΛ(z)− 1]

∫ ∞

0

g(zt)g(yt)dt (5.9)

−
∫ ∞

0

FSg(
y

v
)d×v

∫
AS

[PΛ(t)− 1]g(vt)ΨS(tz)dt}(x)F (y)d×y.

By using (5.5) again we can rewrite (5.9) back in a form as deriving from (5.4)

ESFSE
−1
S T t

ℓF (x) =

∫
CS

√
|xy|FS{SΛ(z)

∫ Λµϵ

0

g(zt)g(yt)dt

−
∫ ∞

0

FSg(
y

v
)d×v

∫
AS

PΛ(t)g(vt)ΨS(tz)dt}(x)F (y)d×y

=

∫
CS

√
|xy|{

∫ ∞

0

g(yt)dt

∫
1
Λ
<|z|

g(zt)ΨS(−zx)dz (5.10)

−
∫ ∞

0

FSg(
y

v
)PΛ(x)g(vx)d

×v}F (y)d×y,

where the 2nd term after above 2nd equality is obtained by using Lemma 5.2 because by (5.3)
we can write∫ ∞

0

FSg(
y

v
)d×v

∫
AS

PΛ(t)g(vt)ΨS(tz)dt =

∫
AS

ΨS(tz)dt

∫ ∞

0

PΛ(t)g(vt)FSg(y/v)d
×v.

Since f ∈ Se(R) ×
∏

p∈S′ 1Op , both PΛ(y)f(y) and Ft
SPΛf(y) are in L1(AS), by using

both Plancherel’s formula (3.3) and the Fourier inversion formula [13, Theorem 4.1.2, p. 328]
to get rid of the inner most Fourier transform in front of PΛF (y) on the right side after the
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following 1st equality, we obtain that

ESFSE
−1
S T t

ℓESF
t
SE

−1
S PΛF (x)

=

∫
CS

√
|xy|{

∫ ∞

0

g(yt)dt

∫
1
Λ
<|z|

g(zt)ΨS(−zx)dz

−
∫ ∞

0

FSg(
y

v
)PΛ(x)g(vx)d

×v}ESF
t
SE

−1
S PΛF (y)d

×y (5.11)

=

∫
CS

√
|xy|{

∫ ∞

0

FSg(
y

t
)
dt

t

∫
AS ,

1
Λ
<|z|

g(zt)ΨS(−xz)dz

−
∫ ∞

0

g(yv)g(vx)dvPΛ(x)}PΛ(y)F (y)d
×y

for F = ES(f) with f ∈ Se(R) ×
∏

p∈S′ 1Op . Since ESFSE
−1
S T t

ℓESF
t
SE

−1
S PΛ is bounded, (5.11)

holds for all F ∈ L2
1(CS) by Lemma 4.10.

Let

k(x, y) =
√

|xy|{
∫ ∞

0

FSg(
y

t
)
dt

t

∫
AS ,

1
Λ
<|z|

g(zt)ΨS(−xz)dz

−
∫ ∞

0

g(yv)g(vx)dvPΛ(x)}PΛ(y).

Then

k(x, x) = |x|{
∫ ∞

0

FSg(
x

t
)
dt

t

∫
AS ,

1
Λ
<|z|

g(zt)ΨS(−xz)dz −
∫ ∞

0

|g(xv)|2dv}PΛ(x)

as g is a real-valued function. By (5.1),

traceES(Q
⊥
Λ )1(Tℓ)

=

∫
CS ,|x|<Λ

{
∫ ∞

0

FSg(
x

t
)
dt

t

∫
AS ,

1
Λ
<|z|

g(zt)ΨS(−xz)dz −
∫ ∞

0

|g(xv)|2dv}|x|d×x.

Since FSg is also a real-valued function, we can write∫ ∞

0

FSg(
x

t
)
dt

t

∫
AS

g(zt)ΨS(−xz)dz =
∫ ∞

0

|FSg(
x

t
)|2dt
t2

=

∫ ∞

0

|g(xv)|2dv

by (3.2) after changing 1/t→ t. It follows that

traceES(Q
⊥
Λ )1(Tℓ) = −

∫
CS ,|x|<Λ

|x|d×x
∫ ∞

0

FSg(
x

t
)
dt

t

∫
AS ,|z|< 1

Λ

g(zt)ΨS(−xz)dz.

By changing variables x→ Λx, t→ Λt and z → z/Λ we derive that

traceES(Q
⊥
Λ )1(Tℓ) = −

∫
CS ,|x|<1

|x|d×x
∫ ∞

0

FSg(
x

t
)
dt

t

∫
AS ,|z|61

g(zt)ΨS(−xz)dz.
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That is,

traceES(Q
⊥
Λ )1(Tℓ) = −

∫
CS ,|x|<1

|x|d×x
∫ ∞

0

FSg(xz)d
×z

∫
AS ,|u|61

g(
u

z
)ΨS(−xu)du (5.12)

= −
∫
CS ,|x|<1

|x|d×x
∫ 1

0

FSg(xz)dz

∫
AS ,1<|u|<min(µϵ,

1
|z| )

g(u)ΨS(−xzu)du.

If we choose c = 1/4 in (3.1), we get |FSg(xz)| ≪S |xz|−1/4 and

|
∫
AS ,1<|u|<min(µϵ,

1
|z| )

g(u)ΨS(−xzu)du| ≪S |xz|−1/4.

This implies that the front double integral in (5.12) is absolute integrable. By the Fubini
Theorem, we can change the order of integration to write

traceES(Q
⊥
Λ )1(Tℓ) = −

∫ ∞

0

d×z

∫ 1

0

FSg(xz)dx

∫
AS ,|u|61

g(
u

z
)ΨS(−xu)du. (5.13)

Also, by changing variables xz → z, xu → u on the right side after 1st equality in (5.12) we
can write

traceES(Q
⊥
Λ )1(Tℓ) = −

∫ ∞

0

FSg(z)d
×z

∫ 1

0

d×x

∫
AS ,|u|6|x|

g(
u

z
)ΨS(−u)du. (5.14)

By (3.1),∫
AS ,|u|6|x|

g(
u

z
)ΨS(−u)du = 2

∑
k,l∈NS

µ(k)

k

∫ |x|

0

g(
u

z
) cos(2πu

l

k
)du

=
∑

k,l∈NS

µ(k)

πl
{g(x

z
) sin(2π|x| l

k
)− 1

z

∫ |x|

0

g′(
u

z
) sin(2πu

l

k
)du}

6
∑

k,l∈NS

|µ(k)|
πl

{max
u

|g(u)|+
∫ µϵ

1

|g′(u)|du} <∞.

This implies that integral (or series)∫
AS ,|u|6|x|

g(
u

z
)ΨS(−u)du

converges uniformly with respect to x. So, we can change the order of integration to get∫ 1

ν

d×x

∫
AS ,|u|6|x|

g(
u

z
)ΨS(−u)du =

∫
AS ,|u|61

g(
u

z
)ΨS(−u)du

∫ 1

max(ν,|u|)

dx

x

= −
∫
AS ,|u|61

g(
u

z
) logmax(ν, |u|)ΨS(−u)du.
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It follows from (5.14) that

traceES(Q
⊥
Λ )1(Tℓ) =

∫ ∞

0

FSg(z)d
×z lim

ν→0

∫
AS ,|u|61

g(
u

z
) logmax(ν, |u|)ΨS(−u)du,

where g(u/z) = 0 when z > 1.
By changing variables u→ uz and noticing g(u) = 0 for |u| < 1 we find

traceES(Q
⊥
Λ )1(Tℓ) =

∫
CS

FSg(z)|z|d×z lim
ν→0

∫
|u|6 1

|z|

g(u) logmax(ν, |uz|)ΨS(−uz)du

=

∫
CS

FSg(z)|z|d×z lim
ν→0

∫
1<|u|

g(u) logmax(ν/|u|, |z|)ΨS(−uz)du (5.15)

+

∫
CS

FSg(z)|z|d×z
∫
AS

g(u) log |u|ΨS(−uz)du

−
∫
CS

FSg(z)|z|d×z
∫
AS ,|u|> 1

|z|

g(u) log |uz|ΨS(−uz)du

because |uz| > 1 so that we can take off the limit in the above 4th line.
Since FSg(z) = O(| log |z|||S′|−1) as z → 0 which is obtained by calculating the residue

at s = 0 on the right side of (3.1), we can take off the limit in the 2nd line of (5.15) and get
the following identity by using (3.3)

traceES(Q
⊥
Λ )1(Tℓ) =

∫ ∞

0

|FSg(z)|2 log |z| dz +
∫ ∞

0

|g(u)|2 log |u| du

−
∫
CS

FSg(z)|z|d×z
∫
AS ,|u|> 1

|z|

g(u) log |uz|ΨS(−uz)du.

Because g(u) = 0 when u ̸∈ (1, µϵ), for |z| > 1 we have∫
z∈CS ,|z|>1

FSg(z)|z|d×z
∫
AS ,|u|> 1

|z|

g(u) log |uz|ΨS(−uz)du

=

∫
z∈CS ,|z|>1

FSg(z)|z|d×z
∫
AS

g(u) log |uz|ΨS(−uz)du

=

∫
z∈CS ,|z|>1

|FSg(z)|2 log |z| |z|d×z +
∫
CS ,|z|>1

FSg(z)FS{g(u) log |u|}(z)|z|d×z.
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Therefore,

traceES(Q
⊥
Λ )1(Tℓ) =

∫ ∞

0

|FSg(z)|2 log z dz +
∫ ∞

0

|g(u)|2 log u du

−
∫
CS ,

1
µϵ

6|z|<1

FSg(z)|z|d×z
∫
AS ,

1
|z|<|u|<µϵ

g(u) log |uz|ΨS(−uz)du

−
∫
z∈CS ,|z|>1

|FSg(z)|2 log |z| |z|d×z −
∫
CS ,|z|>1

FSg(z)FS{g(u) log |u|}(z)|z|d×z (5.16)

=

∫ 1

0

|FSg(z)|2 log |z| |z|d×z +
∫ ∞

0

|g(u)|2 log u du

−
∫
CS ,

1
µϵ

6|z|<1

FSg(z)|z|d×z
∫
AS ,

1
|z|<|u|<µϵ

g(u) log |uz|ΨS(−uz)du

−
∫
CS ,|z|>1

FSg(z)FS{g(u) log |u|}(z)|z|d×z.

By (3.3), ∫
CS

FSg(z)FS{g(u) log |u|}(z)|z|d×z =
∫ ∞

0

|g(u)|2 log u du.

Thus,

−
∫
CS ,|z|>1

FSg(z)FS{g(u) log |u|}(z)|z|d×z

=

∫
CS ,|z|<1

FSg(z)FS{g(u) log |u|}(z)|z|d×z −
∫
CS

FSg(z)FS{g(u) log |u|}(z)|z|d×z

=

∫
CS ,|z|<1

FSg(z)FS{g(u) log |u|}(z)|z|d×z −
∫ ∞

0

|g(u)|2 log u du.

It follows from (5.16) that

traceES(Q
⊥
Λ )1(Tℓ) =

∫ 1

0

|FSg(z)|2 log z |z|d×z +
∫
CS ,|z|<1

FSg(z)FS{g(u) log |u|}(z)|z|d×z

−
∫
CS ,

1
µϵ

6|z|<1

FSg(z)|z|d×z
∫
AS ,

1
|z|<|u|<µϵ

g(u) log |uz|ΨS(−uz)du

=

∫ 1

0

|FSg(t)|2 log t dt+
∫ 1

0

FSg(t)FS{g(u) log |u|}(t)dt

−
∫

1
µϵ

6t<1

FSg(t)dt

∫
AS ,

1
t
<|u|<µϵ

g(u) log |ut|ΨS(−ut)du.

This completes the proof of Theorem 1.3. 2
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Proof of Theorem 1.4. Because g(u/z) = 0 when |z| > 1 and |u| 6 1, by (5.13)

traceES(Q
⊥
Λ )1(Tℓ) = −

∫ 1

0

d×z

∫
CS ,|x|<1

FSg(xz)|x|d×x
∫
AS ,|u|61

g(
u

z
)ΨS(−xu)du (5.17)

= −
∫ 1

0

d×z lim
ν→0+

∫
CS ,ν<|x|<1

|x|d×x
∫
AS

g(v)ΨS(−vxz)dv
∫
AS ,|u|61

g(
u

z
)ΨS(−xu)du.

By (3.1),∫
AS

g(v)ΨS(−vxz)dv = 2
∑

k,l∈NS

µ(k)

k

∫ µϵ

1

g(v) cos(2πvxz
l

k
)dv

= −
∑

k,l∈NS

µ(k)

πlxz

∫ µϵ

1

g′(v) sin(2πvxz
l

k
)du

and ∫
AS ,|u|61

g(
u

z
)ΨS(−xu)du = 2

∑
k,l∈NS

µ(k)

k

∫ 1

0

g(
u

z
) cos(2πux

l

k
)du

=
∑

k,l∈NS

µ(k)

πlx
{g(1

z
) sin(2πx

l

k
)− 1

z

∫ 1

0

g′(
u

z
) sin(2πux

l

k
)du}.

Because

|
∫
AS

g(v)ΨS(−vxz)dv| 6
∑

k,l∈NS

|µ(k)|
πl|xz|

∫ µϵ

1

|g′(v)|dv < c

|xz|
, (5.18)

|
∫
AS ,|u|61

g(
u

z
)ΨS(−xu)du| 6

∑
k,l∈NS

|µ(k)|
πl|x|

{max
u

|g(u)|+
∫ µϵ

1

|g′(u)|du} < c

|x|

for some constant c depending only on S, the double integral (or series)∫
AS

g(v)ΨS(−vxz)dv
∫
AS ,|u|61

g(
u

z
)ΨS(−xu)du

converges absolutely and uniformly with respect to x ∈ (ν, 1). So, we can change the order of
integration and summation to obtain that∫ 1

ν

dx

∫
AS

g(v)ΨS(−vxz)dv
∫
AS ,|u|61

g(
u

z
)ΨS(−xu)du (5.19)

=

∫
AS

g(v)dv

∫
AS ,|u|61

g(
u

z
)du

∫
CS ,ν<|x|<1

ΨS(−(u+ vz)x)|x|d×x.

By (5.17) and (5.19),

−traceES(Q
⊥
Λ )1(Tℓ)

=

∫ 1

0

d×z lim
ν→0

∫
AS

g(v)dv

∫
AS ,|u|61

g(
u

z
)du

∫
cS ,ν<|x|<1

ΨS(−(u+ vz)x)|x|d×x.
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According to [13, Lemma 4.1.2, p. 329] we can write∫
CS ,ν<|x|<1

ΨS(−(u+ vz)x)|x|d×x =
1

|u+ vz|

∫
CS ,ν<

|x|
|u+vz|<1

ΨS(−x)|x|d×x

=
2

|u+ vz|

∫ |u+vz|

ν|u+vz|
cos(2πx)dx =

sin(2π|u+ vz|)− sin(2πν|u+ vz|)
π|u+ vz|

.

As the measure difference between AS and JS is negligible for any finite set S, we have

− traceES(Q
⊥
Λ )1(Tℓ)

=

∫ 1

0

d×z lim
ν→0

∫
JS

g(v)dv

∫
AS ,|u|61

g(
u

z
)
sin(2π|u+ vz|)− sin(2πν|u+ vz|)

π|u+ vz|
du.

By changing variable u→ uv we derive

− traceES(Q
⊥
Λ )1(Tℓ)

=

∫ 1

0

d×z lim
ν→0

∫
JS

g(v)dv

∫
AS ,|uv|61

g(
uv

z
)
sin(2π|v||u+ z|)− sin(2πν|v||u+ z|)

π|u+ z|
du

=

∫ 1

0

d×z lim
ν→0

∫
JS

g(|v|)dv
∫
|uv|61

g(
|uv|
|z|

)
sin(2π|v||u+ z|)− sin(2πν|v||u+ z|)

π|u+ z|
du.

Since JS = ∪ξ∈O∗
S
ξIS by Lemma 4.1, we can write

− traceES(Q
⊥
Λ )1(Tℓ) =

∫ 1

0

d×z lim
ν→0

×
∑
ξ∈O∗

S

∫
IS ,1<|vξ|<µϵ

g(|vξ|)dv
∫
AS ,|uvξ|61

g(
|uvξ|
|z|

)
sin(2π|vξ||u+ z|)− sin(2πν|vξ||u+ z|)

π|u+ z|
du.

Since |ξ|S = 1 for all ξ ∈ O∗
S, we have∫

IS ,1<|vξ|<µϵ

g(|vξ|)dv
∫
|uvξ|61

g(
|uvξ|
|z|

)
sin(2π|vξ||u+ z|)− sin(2πν|vξ||u+ z|)

π|u+ z|
du (5.20)

=

∫
IS

g(|v|)dv
∫
AS ,|uv|61

g(
|uv|
|z|

)
sin(2π|v||u+ z|)− sin(2πν|v||u+ z|)

π|u+ z|
du

for all ξ ∈ O∗
S. So, the right side of (5.20) is independent of ξ. As O∗

S contains infinitely many
distinct elements ξ, (5.20) implies that∑

ξ∈O∗
S

∫
IS ,1<|vξ|<µϵ

g(|vξ|)dv
∫
AS ,|uvξ|61

g(
|uvξ|
|z|

)
sin(2π|vξ||u+ z|)− sin(2πν|vξ||u+ z|)

π|u+ z|
du

= 0, or ±∞.
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That is,∫
CS ,ν<|x|<1

|x|d×x
∫
AS

g(v)ΨS(−vxz)dv
∫
AS ,|u|61

g(
u

z
)ΨS(−xu)du = 0, or ±∞. (5.21)

By (5.18),∫
CS ,ν<|x|<1

|x|d×x|
∫
AS

g(v)ΨS(−vxz)dv
∫
|u|61

g(
u

z
)ΨS(−xu)du| <

c2

|z|

∫ 1

ν

dx

x2
<

c2

ν|z|
<∞.

(5.22)
From (5.21) and (5.22) we deduce that∫

CS ,ν<|x|<1

|x|d×x
∫
AS

g(v)ΨS(−vxz)dv
∫
AS ,|u|61

g(
u

z
)ΨS(−xu)du = 0. (5.23)

Combining (5.17) and (5.23) we get that

traceES(Q
⊥
Λ )1(Tℓ) = 0.

This completes the proof of Theorem 1.4. 2

6 Trace of Tℓ on ES(QΛ), its positivity, and proofs of The-

orems 1.5, 1.6

In this section, we compute the trace of Tℓ on the subspace ES(QΛ) of L2
1(CS) and prove its

positivity.

Lemma 6.1 VS(h) is a positive operator on L2(CS).

Proof. Let F be any element in L2(CS) with compact support. By definition,

VS(h)F (x) =

∫ ∞

0

F (λ)
√

|x/λ|d×λ
∫ ∞

0

g(|x/λ|y)g(y)dy.

By changing variables y → |λ|y we can write∫
CS

VS(h)F (x)F̄ (x)d
×x

=

∫
CS

F̄ (x)d×x

∫
CS

F (λ)
√

|x/λ|d×λ
∫ ∞

0

g(|x/λ|y)g(y)dy

=

∫
CS

F̄ (x)
√
|x|d×x

∫
CS

F (λ)
√

|λ|d×λ
∫ ∞

0

g(|x|y)g(|λ|y)dy.

Since the triple integral above is absolute integrable as F, g are compactly supported, we can
change order of integration to derive∫

CS

VS(h)F (x)F̄ (x)d
×x =

∫ ∞

0

(

∫
CS

F (x)g(|x|y)
√

|x|d×x)(
∫
CS

F (λ)g(|λ|y)
√
|λ|d×λ)dy ≥ 0
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where g is a real-valued function. Since compactly supported functions are dense in L2(CS)
and VS(h) is bounded, we have

⟨VS(h)F, F ⟩ ≥ 0

for all F ∈ L2(CS).
This completes the proof of the lemma. 2

Proof of Theorem 1.5. By Lemma 4.2, Tℓ is of trace class on L2
1(CS). By using (5.4), (5.10)

and similarly as in (5.1), (5.11) we derive both

traceES(QΛ)1(Tℓ) = traceL2
1(CS){ESFSE

−1
S T t

ℓESF
t
SE

−1
S (1− PΛ)}

and

ESFSE
−1
S T t

ℓESF
t
SE

−1
S (1− PΛ)F (x)

=

∫
CS

√
|xy|{

∫ ∞

0

FSg(
y

t
)
dt

t

∫
AS ,

1
Λ
<|z|

g(zt)ΨS(−xz)dz (6.1)

−
∫ ∞

0

g(yv)g(vx)dv PΛ(x)}(1− PΛ(y))F (y)d
×y

for F ∈ L2
1(CS). Let

k(x, x) = |x|{
∫ ∞

0

FSg(
x

t
)
dt

t

∫
AS ,

1
Λ
<|z|

g(zt)ΨS(−xz)dz

−
∫ ∞

0

g(xv)g(vx)dv PΛ(x)}(1− PΛ(x)).

Since PΛ(x)(1− PΛ(x) = 0 for all x, we have

k(x, x) = |x|(1− PΛ(x))

∫ ∞

0

FSg(
x

t
)
dt

t

∫
AS ,

1
Λ
<|z|

g(zt)ΨS(−xz)dz.

Hence

traceES(QΛ)1(Tℓ) =

∫
CS ,Λ<|x|

|x|d×x
∫ ∞

0

FSg(
x

t
)
dt

t

∫
AS ,

1
Λ
<|z|

g(zt)ΨS(−xz)dz.

By changing variables x→ Λx, t→ Λt and z → z/Λ we deduce that

traceES(QΛ)1(Tℓ) =

∫
CS ,1<|x|

|x|d×x
∫ ∞

0

FSg(
x

t
)
dt

t

∫
AS ,1<|z|

g(zt)ΨS(−xz)dz.

By changing variables x/t→ t, xz → z we obtain that

traceES(QΛ)1(Tℓ) =

∫
CS ,1<|x|

d×x

∫ ∞

0

FSg(t)
dt

t

∫
AS ,|x|<|z|

g(
z

t
)ΨS(−z)dz. (6.2)
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Since g(z/t) = 0 if |z/t| ̸∈ (1, µϵ), we can assume that |z| < µϵ|t|. Also, |x| < |z| implies that
|x| < µϵ|t|. That is, we can assume that |x|/µϵ < |t|. Hence, we can write

traceES(QΛ)1(Tℓ) =

∫
CS ,1<|x|

d×x

∫ ∞

|x|
µϵ

FSg(t)
dt

t

∫
AS ,|x|<|z|

g(
z

t
)ΨS(−z)dz. (6.3)

By (3.1), ∫
AS ,|x|<|z|

g(
z

t
)ΨS(−z)dz = 2

∑
k,l∈NS

µ(k)

k

∫
|x|<|z|

g(
z

t
) cos(2πz

l

k
)dz

=
∑

k,l∈NS

µ(k)

πl
{−g(x

t
) sin(2π|x| l

k
)− 1

t

∫
|x|<|z|

g′(
z

t
) sin(2πz

l

k
)dz} (6.4)

6
∑

k,l∈NS

|µ(k)|
πl

{max
u

|g(u)|+
∫ µϵ

1

|g′(u)|du} <∞.

This implies that the integral (or series)∫
AS ,|x|<|z|

g(
z

t
)ΨS(−z)dz

converges uniformly with respect to x and t. Note that |FSg(t)| ≪S |t|−1 for large |t| if choosing
c = 1 in (3.1). This implies that the front double integral in both (6.2) and (6.3) are absolute
integrable. Then the Fubini Theorem implies that we can change the order of integration for
the two front double integrals and write

traceES(QΛ)1(Tℓ) =

∫ ∞

0

FSg(t)
dt

t

∫ ∞

1

d×x

∫
AS ,|x|<|z|

g(
z

t
)ΨS(−z)dz

=

∫ ∞

0

FSg(t)
dt

t

∫
AS ,1<|z|

g(
z

t
)ΨS(−z)dz

∫ |z|

1

d×x

=

∫ ∞

0

FSg(t)
dt

t

∫
AS ,1<|z|

g(
z

t
) log |z|ΨS(−z)dz

where the change of order of the inner double integral after the 1st equality is permissible by
(6.4) because as g vanishes outside the interval (1, µϵ) we can write∫ ∞

1

d×x

∫
AS ,|x|<|z|

g(
z

t
)ΨS(−z)dz =

∫ µϵt

1

d×x

∫
AS ,|x|<|z|<µϵt

g(
z

t
)ΨS(−z)dz.

By changing z → zt we derive that

traceES(QΛ)1(Tℓ) =

∫ ∞

0

FSg(t)dt

∫
AS ,

1
t
<|z|

g(z) log |zt|ΨS(−zt)dz.
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Since g(z) = 0 for |z| ̸∈ (1, µϵ), we can write

traceES(QΛ)1(Tℓ) =

∫ ∞

1

FSg(t)dt

∫
AS

g(z) log |zt|ΨS(−zt)dz

+

∫ 1

0

FSg(t)dt

∫
AS ,

1
t
6|z|

g(z) log |zt|ΨS(−zt)dz

=

∫ ∞

1

|FSg(t)|2 log t dt+
∫ ∞

1

FSg(t)FS{g(z) log |z|}(t)dt

+

∫ 1

1
µϵ

FSg(t)dt

∫
AS ,

1
t
6|z|<µϵ

g(z) log |zt|ΨS(−zt)dz.

This completes the proof of Theorem 1.5. 2

Proof of Theorem 1.6. Let Fi, i = 1, 2, · · · be an orthnormal base of ES(QΛ)1. By Lemmas 4.6
and 4.7,

traceES(QΛ)1(Tℓ) =
∞∑
i=1

⟨VS(h)
(
SΛ − ESF

t
SPΛFSE

−1
S

)
Fi, Fi⟩.

Since Fi ∈ ES(QΛ)1, we have FSE
−1
S Fi(x) = 0 for |x| < Λ. This implies that

PΛFSE
−1
S Fi(x) = 0

for all x, and hence

traceES(QΛ)1(Tℓ) =
∞∑
i=1

⟨VS(h)SΛFi, Fi⟩. (6.5)

Since Tℓ is of trace class, so is (1 − SΛ)Tℓ by Lemma 4.4 as 1 − SΛ is a bounded linear
operator on L2(CS). It follows from Lemma 4.6 that the series

∞∑
i=1

⟨(1− SΛ)VS(h)
(
SΛ − ESF

t
SPΛFSE

−1
S

)
Fi, Fi⟩ =

∞∑
i=1

⟨VS(h)SΛFi, (1− SΛ)Fi⟩

is absolutely convergent. As the right side of (6.5) is also absolutely convergent by Lemma 4.6
we can write

traceES(QΛ)1(Tℓ) =
∞∑
i=1

⟨VS(h)SΛFi, SΛFi⟩+
∞∑
i=1

⟨VS(h)SΛFi, (1− SΛ)Fi⟩

=
∞∑
i=1

⟨VS(h)SΛFi, SΛFi⟩+
∞∑
i=1

⟨(1− SΛ)TℓFi, Fi⟩ (6.6)

=
∞∑
i=1

⟨VS(h)SΛFi, SΛFi⟩+ traceES(QΛ)1{(1− SΛ)Tℓ}

> traceES(QΛ)1{(1− SΛ)Tℓ}
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by Lemma 6.1.
By using (5.4), (5.10) and similarly as in (5.1), (5.11) we derive both

traceES(QΛ)1{(1− SΛ)Tℓ} = traceL2
1(CS){ESFSE

−1
S T t

ℓ (1− SΛ)ESF
t
SE

−1
S (1− PΛ)}

and
ESFSE

−1
S T t

ℓ (1− SΛ)ESF
t
SE

−1
S (1− PΛ)F (x)

=

∫
CS

√
|xy|{

∫ ∞

0

dt

∫
|u|6 1

Λ

g(ut)ΨS(−uy)du
∫

1
Λ
<|z|

g(zt)ΨS(−zx)dz

−
∫ ∞

0

d×v

∫
|u|6 1

Λ

FSg(
u

v
)ΨS(−uy)duPΛ(x)g(vx)}(1− PΛ(y))F (y)d

×y.

Hence,
traceES(QΛ)1{(1− SΛ)Tℓ}

=

∫
CS

{
∫ ∞

0

dt

∫
AS ,|u|6 1

Λ

g(ut)ΨS(−ux)du
∫
AS ,

1
Λ
<|z|

g(zt)ΨS(−zx)dz

−
∫ ∞

0

d×v

∫
AS ,|u|6 1

Λ

FSg(
u

v
)ΨS(−ux)duPΛ(x)g(vx)}(1− PΛ(x))|x|d×x.

Since PΛ(x)(1− PΛ(x)) = 0 for all x,

traceES(QΛ)1{(1− SΛ)Tℓ}

=

∫
CS ,Λ<|x|

|x|d×x
∫ ∞

0

dt

∫
AS ,|u|6 1

Λ

g(ut)ΨS(−ux)du
∫
AS ,

1
Λ
<|z|

g(zt)ΨS(−zx)dz.

By changing variables x→ Λx, t→ Λt, u→ u/Λ and z → z/Λ we get

traceES(QΛ)1{(1− SΛ)Tℓ}

=

∫
CS ,1<|x|

|x|d×x
∫ ∞

0

dt

∫
AS ,|u|61

g(ut)ΨS(−ux)du
∫
AS ,1<|z|

g(zt)ΨS(−zx)dz.

Since we can assume that 1 < |ut| < µϵ and 1 < |zt| < µϵ (because g(ut)g(zt) = 0 when
u, z, t don’t satisfy both inequalities simultaneously), we have

max(
1

|u|
,
1

|z|
) < |t| < min(

µϵ

|u|
,
µϵ

|z|
).

As |u| 6 1 and 1 < |z|, we get
1

|u|
< |t| < µϵ

|z|
.

In particular, we can assume that
1 < t < µϵ. (6.7)

Note that g vanishes outside the interval (1, µϵ). Considering g(ut) with |u| 6 1 and g(zt) with
1 < |z|, by (6.7) we can assume that

|z| < µϵ and µ
−1
ϵ < |u|. (6.8)
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From (6.7) and (6.8) we can write

traceES(QΛ)1{(1− SΛ)Tℓ} =

∫
CS ,|x|>1

|x|d×x
∫ µϵ

1

dt (6.9)

×
∫
AS ,

1
µϵ

<|u|<1

g(ut)ΨS(−ux)du
∫
AS ,16|z|<µϵ

g(zt)ΨS(−zx)dz.

By (3.1),

|
∫
AS ,

1
µϵ

<|u|<1

g(ut)ΨS(−ux)du
∫
AS ,16|z|<µϵ

g(zt)ΨS(−zx)dz| =
1

(πx)2

× |
∑

k1,k2;l1,l2∈NS

µ(k1)µ(k2)

l1l2
{g(t) sin(2πx l1

k1
)− t

∫
1
µϵ

<|u|<1

g′(ut) cos(2πux
l1
k1

)du} (6.10)

× {g(t) sin(2πx l1
k1

) + t

∫
16|z|<µϵ

g′(zt) cos(2πzx
l2
k2

)}dz|

≤ 1

(πx)2

(
max

u
|g(u)|+

∫ µϵ

1

|g′(u)|du
)2 ∑

k1,k2;l1,l2∈NS

|µ(k1)µ(k2)|
l1l2

<∞

for |x| > 1 as g(t/µϵ) = 0 and g(µϵt) = 0 for 1 < |t| < µϵ. That is, the double integral∫
AS ,

1
µϵ

<|u|<1

g(ut)ΨS(−ux)du
∫
AS ,16|z|<µϵ

g(zt)ΨS(−zx)dz

converges uniformly with respect to both t and 1 < |x|. Thus, we can change the order of
integration and write (6.9) as

traceES(QΛ)1{(1− SΛ)Tℓ}

=

∫ µϵ

1

dt lim
Y→∞

∫
AS ,

1
µϵ

<|u|<1

g(ut)du

∫
AS ,16|z|<µϵ

g(zt)dz

∫
CS ,16|x|<Y

ΨS(−(u+ z)x)|x|d×x

=

∫ µϵ

1

dt lim
Y→∞

∫
AS ,

1
µϵ

<|u|<1

g(ut)du

∫
AS ,16|z|<µϵ

g(zt)

|u+ z|
dz

∫
CS ,16 |x|

|u+z|<Y

ΨS(−x)|x|d×x.

By computations,∫
x∈CS ,16 |x|

|u+z|<Y

ΨS(−x)|x|d×x = 2

∫ Y |u+z|

|u+z|
cos(2πx)dx =

sin(2πY |u+ z|)− sin(2π|u+ z|)
π

.

Hence,

traceES(QΛ)1{(1− SΛ)Tℓ}

=

∫ µϵ

1

dt lim
Y→∞

∫
AS ,

1
µϵ

<|u|<1

g(ut)du

∫
AS ,16|z|<µϵ

g(zt)
sin(2πY |u+ z|)− sin(2π|u+ z|)

π|u+ z|
dz,
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where in the right side after the 1st equality |u+ z| ̸= 0 because |u| < 1 and |z| ≥ 1.
By changing variable z → uz we can write

traceES(QΛ)1{(1− SΛ)Tℓ} =

∫ µϵ

1

dt lim
Y→∞

∫
AS ,

1
µϵ

<|u|<1

g(|ut|)δY (t, |u|)du, (6.11)

where

δY (t, |u|) =
∫
AS ,16|uz|<µϵ

g(|uz|t)sin(2πY |u||1 + z|)− sin(2π|u||1 + z|)
π|1 + z|

dz.

Note that δY (t, |ξu|) = δY (t, |u|) for all ξ ∈ O∗
S.

As JS = ∪ξ∈O∗
S
ξIS by Lemma 4.1 and the measure difference between AS and JS is

negligible for any finite set S, we have∫
AS ,

1
µϵ

<|u|<1

g(|ut|)δY (t, |u|)du =

∫
JS ,

1
µϵ

<|u|<1

g(|u|t)δY (t, |u|)du

=
∑
ξ∈O∗

S

∫
u∈IS , 1

µϵ
<|ξu|<1

g(|ξu|t)δY (t, |ξu|)du (6.12)

=
∑
ξ∈O∗

S

∫
u∈IS , 1

µϵ
<|u|<1

g(|u|t)δY (t, |u|)du = 0 or ±∞

because O∗
S contains infinitely many elements and the integral∫

u∈IS , 1
µϵ

<|u|<1

g(|u|t)δY (t, |u|)du

is independent of ξ.
By (6.10) we have

|
∫
AS ,

1
µϵ

<|u|<1

g(ut)ΨS(−ux)du
∫
AS ,16|z|<µϵ

g(zt)ΨS(−zx)dz| 6
c

(πx)2

for a constant c depending only on S. It follows that

|
∫
1≤|x|<Y

|x|d×x
∫
AS ,

1
µϵ

<|u|<1

g(ut)ΨS(−ux)du
∫
AS ,16|z|<µϵ

g(zt)ΨS(−zx)dz| (6.13)

6 c

π2

∫
1≤|x|<Y

d×x

|x|
<

c

π2
<∞.

Combining (6.12) and (6.13) we obtain that∫
AS ,

1
µϵ

<|u|<1

g(|ut|)δY (t, |u|)du = 0.

It follows from (6.11) that
traceES(QΛ)1{(1− SΛ)Tℓ} = 0. (6.14)

By (6.6) and (6.14),
traceES(QΛ)1(Tℓ) > 0.

This completes the proof of Theorem 1.6. 2
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7 Proof of Theorem 1.7

Proof of Theorem 1.7. By Theorems 1.3 and 1.5 we have

traceES(Q
⊥
Λ )1(Tℓ) + traceES(QΛ)1(Tℓ)

=

∫ 1

0

|FSg(t)|2 log t dt+
∫ 1

0

FSg(t)FS{g(u) log |u|}(t)dt

−
∫

1
µϵ

6t<1

FSg(t)dt

∫
AS ,

1
t
6|u|<µϵ

g(u) log |ut|ΨS(−ut)du

+

∫ ∞

1

|FSg(t)|2 log t dt+
∫ ∞

1

FSg(t)FS{g(u) log |u|}(t)dt

+

∫ 1

1
µϵ

FSg(t)dt

∫
AS ,

1
t
6|z|<µϵ

g(z) log |zt|ΨS(−zt)dz

=

∫ ∞

0

|FSg(t)|2 log t dt+
∫ ∞

0

FSg(t)FS{g(u) log |u|}(t)dt

=

∫ ∞

0

|FSg(t)|2 log t dt+
∫ ∞

0

|g(u)|2 log |u|du = ∆(h)

by using (3.3), the fact that FS{g(u) log |u|} and g are real-valued, and Theorem 1.2. Also, by
Theorems 1.4 and 1.6 we have

∆(h) = traceES(Q
⊥
Λ )1(Tℓ) + traceES(QΛ)1(Tℓ) > 0.

Because h(x) = x−1h(x−1), we can write

h(x) =

∫ ∞

0

Jgϵ(
t

x
)Jgϵ(t)

dt

x
=

∫ ∞

0

gϵ(
x

t
)gϵ(

1

t
)
dt

t2
= hn,ϵ(x).

Hence,
∆(hn,ϵ) > 0.

By Theorem 1.1 we have
λn > 0

for n = 1, 2, · · · .
Finally, the Riemann hypothesis for the Riemann zeta-function follows from Li’s crite-

rion, which states that all nontrivial zeros of ζ(s) lie on the vertical line ℜ1 = 1/2 if, and only
if λn > 0 for n = 1, 2, 3, · · · .

This completes the proof of Theorem 1.7. 2
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