Name \qquad
Student Number \qquad
Section Number \qquad
Instructor \qquad

Math 112 - Fall 2006
 Departmental Final Exam

Instructions:

- The time limit is 3 hours.
- Problem 1 consists of fill in the blank questions, each worth 1 point.
- Problems 2 through 8 are multiple choice questions, each worth 4 points.

Their answers MUST be entered on the grid on page 2

- Work on scratch paper will not be graded. Do not show your work for problem 1 through 8.
- Write solutions to problems 9 through 18 on the exam paper in the space provided.

Problem 9 is worth 10 points (2 points per part).
Problems 10-18 are worth 6 points each. You must show your work to receive full credit.

- Please write neatly, and simplify your answers.
- Notes, books, and calculators are not allowed.
- Expressions such as $\ln (1), e^{0}, \sin (\pi / 2)$, etc. must be simplified for full credit.

For administrative use only:

1	$/ 8$
M.C.	$/ 28$
9	$/ 10$
10	$/ 6$
11	$/ 6$
12	$/ 6$

13	$/ 6$
14	$/ 6$
15	$/ 6$
16	$/ 6$
17	$/ 6$
18	$/ 6$
Total	$/ 100$

Math 112 - Winter 2006

Departmental Final Exam
Part I: Fill in the blank

1. (8 points) Fill in the blanks with the correct answer. Include the constant of integration where appropriate.
(a) $f(x)=\frac{x}{\sin x}$ has a(n)__ discontinuity at $x=\pi$.
(b) The fact that a continuous function on $[a, b]$ must have a maximum and minimum is called the \qquad theorem.
(c) $\frac{d}{d x}\left(x^{4}-2 x^{2}+6 x-5\right)=$
(d) $\frac{d}{d x}\left(\tan ^{2} x\right)=$ \qquad
(e) $\int \frac{\sin x}{\cos x} d x=$
(f) $\int \frac{1}{1+x^{2}} d x=$
(g) $\int e^{5 x} d x=$
(h) If $g(x)$ is an odd function, then $\int_{-3}^{3} g(x) d x=$

Part II: Multiple Choice

Problems 2 through 8 are multiple choice. Each multiple choice problem is worth 4 points. In the grid below fill in the square corresponding to each correct answer.

2	A	B	C	D	E	F	G	H	I	J
3	A	B	C	D	E	F	G	H	I	J
4	A	B	C	D	E	F	G	H	I	J
5	A	B	C	D	E	F	G	H	I	J
6	A	B	C	D	E	F	G	H	I	J
7	A	B	C	D	E	F	G	H	I	J
8	A	B	C	D	E	F	G	H	I	J

2. If $f(x)=\frac{1}{x-1}, f^{-1}(3)=$
(a) 0
(b) Undefined
(c) $\frac{1}{3}$
(d) $\frac{4}{3}$
(e) $\frac{2}{9}$
(f) $\frac{8}{9}$
3. $\lim _{x \rightarrow 5} \frac{|x-5|}{x-5}=$
(a) 1
(b) 5
(c) ∞
(d) -1
(e) -5
(f) Does not exist
4. On which of the following intervals is the function $f(x)=x e^{-x}$ concave up?
(a) $(-\infty, 0)$
(b) $(0, \infty)$
(c) $(-\infty, 1)$
(d) $(1, \infty)$
(e) $(-\infty, 2)$
(f) $(2, \infty)$
5. Let $f(x)$ be a cubic polynomial with relative extreme points at $(1,2)$ and $(3,5)$. Then the value of $f(2)$ is
(a) 2
(b) 2.5
(c) 3
(d) 3.5
(e) 4
(f) 4.5
(g) 5
(h) 5.5
6. The function $f(x)=3 x^{4}+8 x^{3}-18 x^{2}+60$
a) has no local extreme points and no global extreme points.
b) has local minima at $x=-3$ and $x=1$, a local maximum at $x=0$, but no global extreme points.
c) has a local maximum at $x=0$, a local minimum at $x=-3$, a global minimum at $x=1$.
d) has a local maximum at $x=0$, a global minimum at $x=-3$, a local minimum at $x=1$.
e) has a local minimum at $x=0$, a local maximum at $x=-3$, a global minimum at $x=1$.
f) has a global maximum at $x=0$, a local minimum at $x=-3$, a local maximum at $x=1$.
7. Which of the following is a solution of $y^{\prime}=2 x y$?
(a) $y=x y^{2}$
(b) $y=x^{2} y$
(c) $y=x^{2}$
(d) $y=e^{x^{2}}$
(e) $y=\ln x^{2}$
(f) $y=x$
(g) $y=2 x$
8. The mean value theorem for integrals states that for a continuous function f defined over $[a, b]$, there is a point $z \in[a, b]$ such that
(a) $f^{\prime}(z)=\frac{f(b)-f(a)}{b-a}$
(b) $f(z)=\int_{a}^{b} f(x) d x$
(c) $f(z)=\frac{1}{b-a} \int_{a}^{b} f(x) d x$
(d) $f(z)=\int_{a}^{b} f^{\prime}(x) d x$
(e) $f^{\prime}(z)=\frac{1}{b-a} \int_{a}^{b} f(x) d x$
(f) $f(z)=\frac{1}{b-a} \int_{a}^{b} f^{\prime}(x) d x$
(g) None of these

Part III: Written Solutions

For problems 9-18, write your answers in the space provided. Neatly show your work for full credit.
9. Calculate the following limits. If the limit is not finite, state if it is ∞ or $-\infty$, or, if neither cases apply, write does not exist.
(a) $\lim _{x \rightarrow 0} \frac{\tan (3 x)}{2 x}$
(b) $\lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+4}{\sqrt{4 x^{4}-3 x^{3}}}$
(c) $\lim _{x \rightarrow 3} \frac{x^{2}-3 x}{x^{2}-9}$
(d) $\lim _{x \rightarrow 2} \frac{x-2}{\sqrt{x}-\sqrt{2}}$
(e) $\lim _{x \rightarrow 0^{+}} \frac{1}{x \ln x}$
10. Differentiate the following:
(a) $f(x)=x \sin (2 x)$
(b) $y=\frac{2 x-1}{x^{3}+3}$
(c) $g(x)=\sqrt{e^{2 x}-1}$
11. Given the limit

$$
\lim _{x \rightarrow 3}(3 x-2)=7
$$

and $\epsilon=\frac{1}{10}$, find an appropriate δ that satisfies the definition of the limit.
12. (a) Define the derivative of a function $f(x)$ as a limit.
(b) If $f(x)=2 x^{2}$, use the above definition to find $f^{\prime}(3)$.
13. Find the equation of the line tangent to the curve $x^{2}-2 y^{2}=3$ at the point $(2,1 / \sqrt{2})$.
14. Three competing species of antelope in the same grazing area have populations x, y, and z that satisfy the relationship

$$
3 x+5 y+30 z=10000 .
$$

If x is increasing at the rate of 20 per year, and y is decreasing at the rate of 15 per year, how is z changing?.
15. In a particular apartment complex of 80 units, it is found that all units remain occupied when the rent is $\$ 600$ per month. For each $\$ 20$ increase in the rent, one unit becomes vacant, on average. Occupied units require $\$ 80$ per month for maintenance, while vacant units require none. Fixed costs for the complex are $\$ 24,000$ per month. What rent should be charged for maximum profit?
16. (a) Express the integral $\int_{0}^{1} f(x) d x$ for a continuous function $f(x)$ as either a left-hand sum, right-hand sum or a Riemann sum over the subdivision $\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, 1\right\}$.
(b) Rewrite the following limit as a definite integral

$$
\lim _{n \rightarrow \infty}\left(\cos \frac{2 \pi}{n}+\cos \frac{4 \pi}{n}+\ldots+\cos \frac{2 n \pi}{n}\right) \frac{2 \pi}{n}
$$

17. (a) Let $\int_{a}^{b} p(x) d x=2, \int_{a}^{b} q(x) d x=3, \int_{a}^{b} r(x) d x=5$. Evaluate the integral

$$
\int_{a}^{b}(3 p(x)-4 q(x)+r(x)) d x+\int_{c}^{c} p(x) q(x) r(x) d x
$$

(b) Let $f(x)$ be a continuous function with $f(0)=2, f(1)=5$. Evaluate the following:

$$
\frac{d}{d x}\left(\int \sin \left(1+x^{2}\right) d x+\int_{0}^{1} \frac{\ln \left(1+x^{4}\right)}{1+x^{4}} d x\right)+\int_{0}^{1} \frac{d}{d x}(2+x f(x)) d x
$$

18. Evaluate the following integrals
(a) $\int\left(x \sqrt{x}+\left(3 x^{2}\right) e^{x^{3}+2}\right) d x$
(b) $\int \frac{\cos 2 x}{2+\sin 2 x} d x$
(c) $\int_{1}^{e} \frac{x^{3}+1}{x} d x$
