Name \qquad

Student Number \qquad

Section Number \qquad
Instructor \qquad

Math 113 - Fall 2005
 Departmental Final Exam

Instructions:

- The time limit is 3 hours.
- Problem 1 consists of 13 short answer questions.
- Problem 2 consists of 3 T/F questions.
- Problems 3 through 9 are multiple choice questions.
- For problems 10 through 18 give the best answer and justify it with suitable reasons and/or relevant work.
- Work on scratch paper will not be graded. Do not show your work for problem 1 through 9 .
- Please write neatly.
- Notes, books, and calculators are not allowed.
- Expressions such as $\ln (1), e^{0}, \sin (\pi / 2)$, etc. must be simplified for full credit.

For administrative use only:

1	$/ 13$
2	$/ 3$
M.C.	$/ 21$
10	$/ 7$
11	$/ 7$
12	$/ 7$
13	$/ 7$
14	$/ 7$
15	$/ 4$
16	$/ 10$
17	$/ 7$
18	$/ 7$
Total	$/ 100$

Math 113 - Fall 2005

Departmental Final Exam

Part I: Short Answer and Multiple Choice Questions

Do not show your work for problems in this part.

1. Fill in the blanks with the correct answer.
(a) The integral $\int \cos (x+2) d x$ equals
(b) The integral $\int \sec x \tan x d x$ equals
(c) The integral $\int_{0}^{1} \frac{d x}{1+x^{2}}$ equals
(d) The integral $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}$ equals
(e) The integral $\int \tan ^{2} x d x$ equals
(f) The integral $\int_{0}^{1} \frac{d x}{\sqrt{x}}$ equals
(g) The integral $\int_{0}^{\infty} \frac{d x}{x^{3}}$ equals
(h) The integral $\int \frac{x}{\sqrt{1+x^{2}}} d x$ equals
(i) Give the limit of the sequence $\left\{\left(1-\frac{1}{n}\right)^{n}\right\}$ as $n \rightarrow \infty$ if it is convergent, otherwise write DIVERGENT.
(j) State the integration by parts formula:
(k) Give a limit definition of the improper integral $\int_{0}^{1} \frac{\sin x}{\sqrt{x}} d x$
(l) Let State the $(2 n)$-th term of the MacLaurin series for $\frac{\sin x}{x}$
(m) The integral $\int \cot x d x$ equals
2. True/False: Write T if statement always holds, F otherwise.

Let $\sum a_{n}=\sum_{n=1}^{\infty} a_{n}$ be an arbitrary series.
(a) ___ If $\left\{a_{n}\right\}$ is a positive decreasing sequence then $\sum(-1)^{n} a_{n}$ converges
(b) If $\sum a_{n}$ converges then $a_{n} \rightarrow 0$
(c) If the partial sums of $\sum a_{n}$ are bounded, then $\sum a_{n}$ converges

Problems 3 through 9 are multiple choice. Each multiple choice problem is worth 3 points. In the grid below fill in the square corresponding to each correct answer.

3 A B C D E F G H I
(A B C D E F G H
5 A B C D E F G H I
6 A B C D E F G H
A B C D E F G H
8 A B C D E F G H I
(A B C D E F G H

3. The most appropriate first step to integrate $\int \frac{x^{2}-1}{3 x^{3}-x^{2}} d x$ would be
(a) Integration by parts
(d) Other (non trigonometric) substitution
(b) Partial fractions
(e) Differentiate the integrand
(c) Trigonometric Substitution
(f) None of these
4. The series $x^{2}+x^{4}+\frac{x^{6}}{2}+\frac{x^{8}}{6}+\cdots=\sum_{n=0}^{\infty} \frac{x^{(2 n+2)}}{n!}$ converges to the function
(a) $\frac{x^{2}}{1+x^{2}}$
(e) $x^{2}\left(\sin x^{2}+\cos x^{2}\right)$
(b) $x^{2} \tan ^{-1} x$
(f) $\sin x^{2}+\cos x^{2}$
(c) $e^{x^{2}+2}$
(g) None of these
(d) $x^{2} e^{x^{2}}$
5. The improper integral $\int_{0}^{\infty} x e^{-x} d x$ converges to
(a) 0
(e) 2
(b) $1 / e$
(f) e
(c) $1 / 2$
(g) None of these
(d) 1
(h) It doesn't converge
6. The length of the curve $y=\cosh x$ from $x=0$ to $x=1$ is
(a) $\sinh 1$
(e) ∞
(b) $\cosh 1$
(f) a real number in $(0,1)$
(c) $\cosh ^{2} 1-\cosh ^{2} 0$
(g) Imaginary
(d) 1
(h) None of these
7. The area enclosed by the polar curve $r=3+\sin \theta$ is
(a) 5π
(e) 4.5π
(b) 4π
(f) 19π
(c) 9π
(g) $9 \pi^{2}$
(d) $\pi / 4$
(h) None of these
8. The interval of convergence of the power series $\sum_{n=1}^{\infty} n^{2}(5 x-3)^{n}$ is
(a) $(-3 / 5,3 / 5)$
(e) $(2 / 5,4 / 5)$
(i) None of the above
(b) $(-5 / 3,5 / 3)$
(f) $(1 / 5,1)$
(c) $(0,1)$
(g) $(0, \infty)$
(d) $(-1,1)$
(h) $(-\infty, \infty)$
9. The coefficient of x^{3} in the series expansion of $(1+x)^{1 / 4}$ is
(a) $\frac{1}{4^{3}}=\frac{1}{64}$
(e) $\frac{20}{4^{3} 3!}=\frac{5}{96}$
(i) None of the above
(b) $\frac{1}{4^{3} 3!}=\frac{1}{384}$
(f) $\frac{21}{4^{3} 3!}=\frac{7}{128}$
(c) $\frac{6}{4^{3} 3!}=\frac{1}{64}$
(g) $\frac{25}{4^{3} 3!}=\frac{25}{384}$
(d) $\frac{15}{4^{3} 3!}=\frac{5}{128}$
(h) $\frac{35}{4^{3} 3!}=\frac{35}{384}$

The answers to the multiple choice MUST be entered on the grid on the previous page. Otherwise, you will not receive credit.

Part II: Written Solutions

For problems 10-18, write your answers in the space provided. Neatly show your work for full credit.
10. (a) Evaluate the integral $\int_{0}^{1} t^{2} e^{t} d t$.
(b) Expand in partial fraction form $\frac{x^{2}+3}{x^{2}-1}$.
(c) Evaluate the integral $\int \frac{x^{2}+3}{x^{2}-1} d x$.
11. Evaluate the integral $\int \frac{1}{4-3 \sin x} d x$.
12. The region bounded by $y=x$ and $y=2 x^{2}$ is revolved about the \mathbf{y}-axis ; find the volume of the solid generated.
13. Find the area of the surface of revolution generated by revolving the curve $y=\sqrt{x}, 0 \leq x \leq 4$, about the x-axis.
14. Find the centroid of the region bounded by the curves

$$
y=\sqrt{1+x^{2}}, x=1 \text { and } y=1+x
$$

Express you answer in terms of unevaluated integrals. (Note: You should simplify the integrands as much as possible.)
15. If a region in the first quadrant, with area 10π and centroid at the point $(1,12)$, is revolved around the line $x=-5$, find the resulting volume of revolution.
16. Determine whether each infinite series is absolutely convergent, conditionally convergent, or divergent. Give reasons for your conclusion.
(a) $\sum_{n=1}^{\infty} \frac{\ln n}{3 n+7}$
(b) $\sum_{n=1}^{\infty}\left(3^{-n}-5^{-n}\right)$
(c) $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n \ln n}$
(d) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{\ln (2 n)}$
17. (a) Determine the power series expansion of $\int \tan ^{-1} x d x$.
(b) Find first two nonzero terms of the Taylor series of $\ln \left(1+\sin ^{2} x\right)$ at $x=\pi$. What is the remainder after these terms?
18. Given the polar curve $r=\theta^{2}, 0 \leq \theta \leq 3 / 2$,
(a) sketch the curve;
(b) find the area swept out by the curve;
(c) find the arc length.

