Name	
------	--

Student Number_____

Section Number_____

Instructor

Math 113 – Fall 2006

Departmental Final Exam

Instructions:

- The time limit is 3 hours.
- Problem 1 consists of 9 short answer questions.
- Problems 2 through 8 are multiple choice questions.
- \bullet For problems 9 through 18 give the best answer and *justify* it with suitable reasons and/or relevant work.
- Work on scratch paper will not be graded. Do not show your work for problem 1 through 9.
- Please write neatly.
- Notes, books, and calculators are not allowed.
- Expressions such as $\ln(1)$, e^0 , $\sin(\pi/2)$, etc. must be simplified for full credit.

For administrative use only:

1	/9
M.C.	/21
9	/7
10	/7
11	/7
12	/7
13	/7
14	/7
15	/7
16	/7
17	/7
18	/7
Total	/100

Math 113 – Fall 2006

Departmental Final Exam

PART I: SHORT ANSWER AND MULTIPLE CHOICE QUESTIONS Do not show your work for problem 1.

1. Fill in the blanks with the correct answer.

(a) Does the improper integral $\int_0^\infty \frac{dx}{e^x + 1}$ converge (yes or no) _____

(b) The integral
$$\int \frac{\cos x}{\sin^3 x} dx$$
 equals _____

(c) The integral
$$\int_{1}^{e^2} \frac{dx}{2x}$$
 equals _____

(d)
$$\frac{x^2}{4} - \frac{y^2}{25} = 1$$
 is the equation of a/an _____

(e) The radius of convergence of
$$\sum_{n=0}^{\infty} 3^n x^n$$
 is _____

(f) If
$$n > 1$$
, the integral $\int_{1}^{\infty} \frac{dx}{x^{n}}$ equals _____

(g) The series $x^2 - \frac{x^4}{3!} + \frac{x^6}{5!} - \frac{x^8}{7!} + \dots$ is the MacLaurin series for the function _____

(h) The integral $\int x \sin x \, dx$ equals _____

(i) The series
$$2 - \frac{2}{3} + \frac{2}{9} - \frac{2}{27} + \dots$$
 converges to _____

Problems 2 through 8 are multiple choice. Each multiple choice problem is worth 3 points. In the grid below fill in the square corresponding to each correct answer.

2	Α	В	С	D	Е	F	G	Н	Ι
3	Α	В	С	D	Е	F	G	Н	Ι
4	Α	В	С	D	Е	F	G	Н	Ι
5	Α	В	С	D	Е	F	G	Н	Ι
6	Α	В	С	D	Е	F	G	Н	Ι
7	Α	В	С	D	Е	F	G	Н	Ι
8	A	В	С	D	Е	F	G	Н	Ι

2. Which of the following integrals represents the surface area of the surface generated by revolving the curve $y = \tan x$, $0 \le x \le \pi/4$, about the line y = -2?

(a)
$$\int_0^{\pi/4} \pi(\tan x + 2)\sqrt{1 + \sec^2 x} \, dx$$
 (f) $\int_0^{\pi/4} 2\pi(\tan x - 2)\sqrt{1 + \sec^2 x} \, dx$

(b)
$$\int_0^{\pi/4} 2\pi (\tan x + 2)\sqrt{1 + \sec^2 x} \, dx$$
 (g) $\int_0^{\pi/4} \pi (\tan x - 2)\sqrt{1 + \sec^2 x} \, dx$

(c)
$$\int_0^{\pi/4} \pi(\tan x + 2)\sqrt{1 + \sec^4 x} \, dx$$
 (h) $\int_0^{\pi/4} 2\pi(\tan x - 2)\sqrt{1 + \sec^4 x} \, dx$

(d)
$$\int_0^{\pi/4} 2\pi (\tan x + 2)\sqrt{1 + \sec^4 x} \, dx$$

- (e) $\int_0^{\pi/4} \pi (\tan x 2) \sqrt{1 + \sec^4 x} \, dx$
- 3. Which of the following substitutions will best simplify the integral $\int \sqrt{3 + 2x x^2} \, dx$?
 - (a) $x = 1 2 \sec u$ (e) $x = \sqrt{3} \sin u$
 - (b) $x = \sqrt{3} + 2\cosh u$ (f) $x = 1 + 2\sin u$
 - (c) $x = \sqrt{3}\cos u$ (g) $x = 2\sin u$
 - (d) $x = \sqrt{3} 2\cosh u$

- 4. Consider the region R that is the portion of the circle $x^2 + y^2 = 1$ that lies in the first quadrant. What is the volume of the solid generated by revolving R about the line x + y = 2?
 - (a) $\frac{\pi}{2\sqrt{2}}$ (d) $\frac{\pi^2}{2}$ (g) $\frac{\pi^2\sqrt{2}}{3}$ (b) $\frac{\pi}{2}$ (e) $\frac{\pi^2}{3\sqrt{2}}$ (h) $\frac{\pi^2}{2\sqrt{2}}$
 - (c) $\frac{\pi\sqrt{2}}{3}$ (f) $\frac{\pi^2}{4}$ (i) None of the above
- 5. The series $\sum_{n=2}^{\infty} \frac{3^n}{n!}$ converges to (a) $\ln 3$ (d) $\frac{3^{n+1}}{n+1}$ (g) $\cos 3$ (b) $\ln 2$ (e) ∞ (h) $e^3 - 4$
 - (c) $\ln(3) 1$ (f) e^3 (i) 3^e
- 6. The interval of convergence of the power series $\sum_{n=1}^{\infty} n^2 (7x-3)^n$ is
 - (a) $\left(-\frac{3}{7}, \frac{3}{7}\right)$ (d) (0, 1) (g) $(0, \infty)$ (b) $\left(-\frac{7}{3}, \frac{7}{3}\right)$ (e) $\left(\frac{1}{7}, 1\right)$ (h) $(-\infty, \infty)$ (c) (-1, 1) (f) $\left(\frac{2}{7}, \frac{4}{7}\right)$ (i) None of these

7. The integral $\int_{2}^{e+1} (x-1) \ln(x-1) dx$ is equal to (a) $\frac{e^2 - 1}{2}$ (d) $\frac{e^2 + 1}{4}$ (b) $e^2 + 1$ (e) $\frac{e^2 - 1}{4}$

(c) $\frac{e^2 + 1}{2}$ (f) $e^2 - 1$

- 8. The graph of the polar equation $r = 2\cos(n\theta)$ has how many petals?
 - (a) n petals if n is even, 2n petals if n is odd (e) n petals
 - (b) n/2 petals if n is odd, n petals if n is even (f) n/2 petals
 - (c) n petals if n is odd, 2n petals if n is even (g) None of these
 - (d) 2n petals

The answers to the multiple choice MUST be entered on the grid on page 2. Otherwise, you will not receive credit.

PART II: WRITTEN SOLUTIONS

For problems 9-18, write your answers in the space provided. Neatly show your work for full credit.

9. Evaluate each integral

(a)
$$\int \frac{dx}{2+x-x^2}$$

(b)
$$\int \sec^3(2x) dx$$

10. Find the general solution, in the form y = f(x), to the differential equation

$$\frac{dy}{dx} = (4+y^2)(4+x^2).$$

11. Find the length of the graph of $y = \frac{1}{4}x^2 - \frac{1}{2}\ln x$, on the interval $1 \le x \le 2$.

12. Find the centroid of the region that lies within the first quadrant and is bounded above by $y = 1 - x^2$.

13. Find the area enclosed by the polar curves $r = 2 - \cos \theta$ and r = 1.

14. Use the first three non-zero terms of the MacLaurin series for e^{-x^2} to estimate the definite integral $\int_0^2 e^{-x^2} dx$. Write your answer as a fraction, if possible.

15. Find the mass of the circular region $x^2 + y^2 \le 1$, whose density at each point is twice the distance from the point to the origin.

16. Find the sum of the power series $\sum_{n=1}^{\infty} nx^{n-1}$ (as a rational function of x).

17. Determine whether each of the following infinite series converges. State any convergence/divergence test you used.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$

(b)
$$\sum_{n=1}^{\infty} \frac{e^n}{n^{30} + 2^n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$$

18. Find the definite integral $\int_0^1 x^3 \sqrt{1-x^2} \, dx$.