Name \qquad

Student Number \qquad
Section Number \qquad
Instructor \qquad

Math 113 - Fall 2006
 Departmental Final Exam

Instructions:

- The time limit is 3 hours.
- Problem 1 consists of 9 short answer questions.
- Problems 2 through 8 are multiple choice questions.
- For problems 9 through 18 give the best answer and justify it with suitable reasons and/or relevant work.
- Work on scratch paper will not be graded. Do not show your work for problem 1 through 9 .
- Please write neatly.
- Notes, books, and calculators are not allowed.
- Expressions such as $\ln (1), e^{0}, \sin (\pi / 2)$, etc. must be simplified for full credit.

For administrative use only:

1	$/ 9$
M.C.	$/ 21$
9	$/ 7$
10	$/ 7$
11	$/ 7$
12	$/ 7$
13	$/ 7$
14	$/ 7$
15	$/ 7$
16	$/ 7$
17	$/ 7$
18	$/ 7$
Total	$/ 100$

Math 113 - Fall 2006

Departmental Final Exam

Part I: Short Answer and Multiple Choice Questions
 Do not show your work for problem 1.

1. Fill in the blanks with the correct answer.
(a) Does the improper integral $\int_{0}^{\infty} \frac{d x}{e^{x}+1}$ converge (yes or no)
(b) The integral $\int \frac{\cos x}{\sin ^{3} x} d x$ equals
(c) The integral $\int_{1}^{e^{2}} \frac{d x}{2 x}$ equals
(d) $\frac{x^{2}}{4}-\frac{y^{2}}{25}=1$ is the equation of a/an
(e) The radius of convergence of $\sum_{n=0}^{\infty} 3^{n} x^{n}$ is \qquad
(f) If $n>1$, the integral $\int_{1}^{\infty} \frac{d x}{x^{n}}$ equals
(g) The series $x^{2}-\frac{x^{4}}{3!}+\frac{x^{6}}{5!}-\frac{x^{8}}{7!}+\ldots$ is the MacLaurin series for the function \qquad
(h) The integral $\int x \sin x d x$ equals
(i) The series $2-\frac{2}{3}+\frac{2}{9}-\frac{2}{27}+\ldots$ converges to \qquad

Problems 2 through 8 are multiple choice. Each multiple choice problem is worth 3 points. In the grid below fill in the square corresponding to each correct answer.

2	A	B	C	D	E	F	G	H	I
3	A	B	C	D	E	F	G	H	I
4	A	B	C	D	E	F	G	H	I
5	A	B	C	D	E	F	G	H	I
6	A	B	C	D	E	F	G	H	I
7	A	B	C	D	E	F	G	H	I
8	A	B	C	D	E	F	G	H	I

2. Which of the following integrals represents the surface area of the surface generated by revolving the curve $y=\tan x, 0 \leq x \leq \pi / 4$, about the line $y=-2$?
(a) $\int_{0}^{\pi / 4} \pi(\tan x+2) \sqrt{1+\sec ^{2} x} d x$
(f) $\quad \int_{0}^{\pi / 4} 2 \pi(\tan x-2) \sqrt{1+\sec ^{2} x} d x$
(b) $\int_{0}^{\pi / 4} 2 \pi(\tan x+2) \sqrt{1+\sec ^{2} x} d x$
(g) $\int_{0}^{\pi / 4} \pi(\tan x-2) \sqrt{1+\sec ^{2} x} d x$
(c) $\int_{0}^{\pi / 4} \pi(\tan x+2) \sqrt{1+\sec ^{4} x} d x$
(h) $\int_{0}^{\pi / 4} 2 \pi(\tan x-2) \sqrt{1+\sec ^{4} x} d x$
(d) $\int_{0}^{\pi / 4} 2 \pi(\tan x+2) \sqrt{1+\sec ^{4} x} d x$
(i) None of the above
(e) $\int_{0}^{\pi / 4} \pi(\tan x-2) \sqrt{1+\sec ^{4} x} d x$
3. Which of the following substitutions will best simplify the integral $\int \sqrt{3+2 x-x^{2}} d x$?
(a) $x=1-2 \sec u$
(e) $x=\sqrt{3} \sin u$
(b) $x=\sqrt{3}+2 \cosh u$
(f) $x=1+2 \sin u$
(c) $x=\sqrt{3} \cos u$
(g) $x=2 \sin u$
(d) $x=\sqrt{3}-2 \cosh u$
4. Consider the region R that is the portion of the circle $x^{2}+y^{2}=1$ that lies in the first quadrant. What is the volume of the solid generated by revolving R about the line $x+y=2$?
(a) $\frac{\pi}{2 \sqrt{2}}$
(d) $\frac{\pi^{2}}{2}$
(g) $\frac{\pi^{2} \sqrt{2}}{3}$
(b) $\frac{\pi}{2}$
(e) $\frac{\pi^{2}}{3 \sqrt{2}}$
(h) $\frac{\pi^{2}}{2 \sqrt{2}}$
(c) $\frac{\pi \sqrt{2}}{3}$
(f) $\frac{\pi^{2}}{4}$
(i) None of the above
5. The series $\sum_{n=2}^{\infty} \frac{3^{n}}{n!}$ converges to
(a) $\ln 3$
(d) $\frac{3^{n+1}}{n+1}$
(g) $\quad \cos 3$
(b) $\ln 2$
(e) ∞
(h) $\quad e^{3}-4$
(c) $\ln (3)-1$
(f) e^{3}
(i) 3^{e}
6. The interval of convergence of the power series $\sum_{n=1}^{\infty} n^{2}(7 x-3)^{n}$ is
(a) $\left(-\frac{3}{7}, \frac{3}{7}\right)$
(d) $(0,1)$
(g) $(0, \infty)$
(b) $\left(-\frac{7}{3}, \frac{7}{3}\right)$
(e) $\left(\frac{1}{7}, 1\right)$
(h) $(-\infty, \infty)$
(c) $(-1,1)$
(f) $\left(\frac{2}{7}, \frac{4}{7}\right)$
(i) None of these
7. The integral $\int_{2}^{e+1}(x-1) \ln (x-1) d x$ is equal to
(a) $\frac{e^{2}-1}{2}$
(d) $\frac{e^{2}+1}{4}$
(b) $e^{2}+1$
(e) $\frac{e^{2}-1}{4}$
(c) $\frac{e^{2}+1}{2}$
(f) $e^{2}-1$
8. The graph of the polar equation $r=2 \cos (n \theta)$ has how many petals?
(a) n petals if n is even, $2 n$ petals if n is odd
(e) n petals
(b) $n / 2$ petals if n is odd, n petals if n is even
(f) $n / 2$ petals
(c) n petals if n is odd, $2 n$ petals if n is even
(g) None of these
(d) $2 n$ petals

The answers to the multiple choice MUST be entered on the grid on page 2. Otherwise, you will not receive credit.

Part II: Written Solutions

For problems 9-18, write your answers in the space provided. Neatly show your work for full credit.
9. Evaluate each integral
(a) $\int \frac{d x}{2+x-x^{2}}$
(b) $\int \sec ^{3}(2 x) d x$
10. Find the general solution, in the form $y=f(x)$, to the differential equation

$$
\frac{d y}{d x}=\left(4+y^{2}\right)\left(4+x^{2}\right)
$$

11. Find the length of the graph of $y=\frac{1}{4} x^{2}-\frac{1}{2} \ln x$, on the interval $1 \leq x \leq 2$.
12. Find the centroid of the region that lies within the first quadrant and is bounded above by $y=1-x^{2}$.
13. Find the area enclosed by the polar curves $r=2-\cos \theta$ and $r=1$.
14. Use the first three non-zero terms of the MacLaurin series for $e^{-x^{2}}$ to estimate the definite integral $\int_{0}^{2} e^{-x^{2}} d x$. Write your answer as a fraction, if possible.
15. Find the mass of the circular region $x^{2}+y^{2} \leq 1$, whose density at each point is twice the distance from the point to the origin.
16. Find the sum of the power series $\sum_{n=1}^{\infty} n x^{n-1}$ (as a rational function of x).
17. Determine whether each of the following infinite series converges. State any convergence/divergence test you used.
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$
(b) $\sum_{n=1}^{\infty} \frac{e^{n}}{n^{30}+2^{n}}$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n+1}}$
18. Find the definite integral $\int_{0}^{1} x^{3} \sqrt{1-x^{2}} d x$.
