Student Number_____

Section Number_____

Instructor

Math 113 – Winter 2005

Departmental Final Exam

Instructions:

- The time limit is 3 hours.
- Problem 1 consists of 13 short answer questions.
- Problems 2 through 9 are multiple choice questions.
- For problems 10 through 18 give the best answer and justify it with suitable reasons and/or relevant work.
- Work on scratch paper will not be graded.
- Do not show your work for problem 1.
- Please write neatly.
- Notes, books, and calculators are not allowed.
- Expressions such as $\ln(1)$, e^0 , $\sin(\pi/2)$, etc. must be simplified for full credit.

For administrative use only:

1	/13
M.C.	/24
10	/7
11	/7
12	/7
13	/7
14	/7
15	/7
16	/7
17	/7
18	/7
Total	/100

Math 113 – Winter 2005

Departmental Final Exam

PART I: SHORT ANSWER AND MULTIPLE CHOICE QUESTIONS Do not show your work for problem 1.

1. Fill in the blanks with the correct answer.

 $c\pi/2$

(a) The integral
$$\int_{0}^{\pi/2} \cos(2x) dx$$
 equals _______
(b) The integral $\int \sin x \cos^2 x \, dx$ equals _______
(c) The integral $\int_{0}^{\infty} \frac{dx}{1+x^2}$ equals _______
(d) The radius of convergence of $\sum_{n=0}^{\infty} 2^n x^n$ is ______
(e) The first three lowest order terms of the power series of $(1+x)^{1/2}$ may be written as
(f) For what values of p does the following improper integral converge?
 $\int_{1}^{\infty} \frac{dx}{x^p}$ ______
(g) Indicate which convergence test one could use to determine the convergence/ divergence of
i. $\sum_{n=2}^{\infty} \frac{1}{n-\sqrt{n}}$ ______
ii. $\sum_{n=1}^{\infty} \frac{n}{n^3+1}$ ______
(h) State the *n*th term of the MacLaurin series for
i. e^x ______
ii. $\frac{1}{1-x}$ ______

(i) Express in terms of a quotient of integrals the y coordinate of the centroid of the region below y = f(x) with f(x) > 0 for all x over [-2, 2].

(j) A focus of the hyperbola
$$\frac{(x-2)^2}{1} - \frac{(y-1)^2}{3} = 1$$
 is ______

Problems 2 through 9 are multiple choice. Each multiple choice problem is worth 3 points. In the grid below fill in the square corresponding to each correct answer.

2	Α	В	С	D	Е	F	G	Η	Ι
3	Α	В	С	D	Е	F	G	Н	Ι
4	Α	В	С	D	Е	F	G	Н	Ι
5	Α	В	С	D	Е	F	G	Η	Ι
6	Α	В	С	D	Е	F	G	Η	Ι
7	Α	В	С	D	Е	F	G	Η	Ι
8	Α	В	С	D	Е	F	G	Η	Ι
9	Α	В	С	D	Е	F	G	Н	Ι

2. Find
$$\int_{1}^{2} \frac{6+x^{2}+x}{(2+x)(4+x^{2})} dx$$

(a) $2\ln 2 + \arctan 3 - \ln 3 + \frac{1}{2}\arctan 7 - \frac{1}{2}\pi$ (e) $2\ln 2 + \frac{1}{8}\pi - \ln 3 - \frac{1}{2}\arctan \frac{1}{2}$
(b) $\ln 2 + \frac{1}{8}\pi - \frac{1}{2}\arctan \frac{1}{2}$ (f) 0
(c) $3\ln 2 + \frac{1}{8}\pi - \ln 3 - \frac{1}{2}\arctan \frac{1}{2}$ (g) π
(d) $2\ln 2 + \arctan 2 - \ln 3 - \frac{1}{4}\pi$ (h) None of the above
3. The base of a solid is an elliptical region on the *xy*-plane enclosed by $\frac{1}{9}x^{2} + \frac{1}{4}y^{2} = 1$, and cross sections perpendicular to the *y* axis are squares. Find the volume of the solid.

- (a) 20 (e) 30
- (i) None of the above

- (b) 64 (f) 48
- (c) 12 (g) 18
- (d) 96 (h) 72

4.	Find	the length of the graph of	y = x	$x^{1/2} -$	$\frac{x^{3/2}}{3}$	for $x \in [1, 6]$.
	(a)	$\sqrt{7} + 2\sqrt{6} - \frac{1}{3}$			(e)	$3\sqrt{6} - \frac{4}{3}$
	(b)	$\sqrt{6} + \tfrac{7}{3}\sqrt{7} - \tfrac{2}{3}$			(f)	$\sqrt{7} + \frac{16}{3}\sqrt{2} - \frac{4}{3}$
	(c)	$\sqrt{6} + \frac{7}{3}\sqrt{7} - \frac{5}{3}$			(g)	$\sqrt{6} + \frac{85}{3}$
	(d)	$\sqrt{6} + \frac{7}{3}\sqrt{7} - \frac{4}{3}$			(h)	None of the above
5.	Find U int	$\lim_{x \to 0} \frac{2 - x^2 - 2\cos x}{x^4}$	ridor	ucing		acerica to do thia
	nint:	$-\frac{1}{2}$	sider	$\frac{1}{-\frac{1}{2}}$	owei	(i) None of the above
	(a)	14	(e)	$\overline{4}$		
	(b)	$-\frac{1}{6}$	(f)	$-\frac{1}{12}$		
	(c)	$-\frac{1}{3}$	(g)	$\frac{1}{14}$		
	(d)	$\frac{1}{6}$	(h)	$-\frac{1}{10}$		
6.	$\int_3^\infty e^-$	$t^{-t}\sin\left(4t\right)dt$				
	(a)	$\frac{1}{17}e^{-3}\left(4\cos 12 + \sin 12\right)$			(e)	$\frac{1}{16}e^{-3}\left(4\cos 12 + \sin 12\right)$
	(b)	$\frac{1}{17}e^{-3}\left(4\cos 12 - 1 + \sin 1\right)$	2)		(f)	$\frac{1}{17}e^{-3}\left(4\cos 12 + \sin 12\right)$
	(c)	$\frac{1}{17}e^{-3}\left(4\cos 12 - 3 + \sin 1\right)$	2)		(g)	The integral does not converge.
	(d)	$\frac{1}{17}e^{-3}\left(4\cos 12 - 2 + \sin 1\right)$	2)		(h)	None of the above
7.	Find	the power series expansion	n for t	the fun	ction	$\sin^{-1} x$ or $\arcsin x$ expanded about 0.
	Hint	: You might want to writ	e the	functi	on in	the form \int_0^x something dt .
	(a)	$\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1}$			(e)	$\sum_{k=0}^{\infty} \frac{(-1)^k}{(k+1)!} x^{k+1} $ (i) None of the above
	(b)	$\sum_{k=0}^{\infty} \begin{pmatrix} -1/2 \\ k \end{pmatrix} \frac{(-1)^k}{2k+1} x^{2k}$	+1		(f)	$\sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}$

(c)
$$\sum_{k=0}^{\infty} (-1)^k \frac{x^{k+1}}{k+1}$$
 (g) $\sum_{k=0}^{\infty} (-1)^k \frac{x^k}{k!}$
(d) $\sum_{k=0}^{\infty} (\frac{1/2}{k}) (-1)^k \frac{x^{2k+1}}{k!}$ (h) $\sum_{k=0}^{\infty} (-1)^k \frac{x^k}{k!}$

(d)
$$\sum_{k=0}^{\infty} {\binom{1/2}{k}} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$
 (h) $\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$

8. Identify the equation that best goes with the following graph in rectangular coordinates.

- (a) $\int_0^1 2\pi (e^{2x} 2)\sqrt{1 + 4e^{4x}} dx$ (f) $\int_0^1 2\pi (e^{2x} 2) dx$ (b) $\int_0^1 2\pi (e^{2x} + 2)\sqrt{1 + 4e^{4x}} dx$ (g) $\int_0^1 2\pi (e^{2x} + 2) dx$
- (c) $\int_0^1 2\pi (e^{2x})\sqrt{1+4e^{4x}} \, dx$ (h) $\int_0^1 2\pi (e^{2x}) \, dx$
- (d) $\int_0^1 2\pi (e^{2x})\sqrt{1+e^{4x}} dx$ (i) None of the above
- (e) $\int_0^1 2\pi (e^{2x} 2)\sqrt{1 + e^{4x}} \, dx$

The answers to the multiple choice MUST be entered on the grid on the previous page. Otherwise, you will not receive credit. For problems 10 - 18, write your answers in the space provided. Neatly show your work for full credit.

10. Find a formula for $\int \sqrt{b^2 - a^2 x^2} \, dx$. Here a, b are positive constants.

11. Find the area of the region bounded by the curve $x = y - y^2$ and the line y = -x.

12. Find the volume of the solid generated by revolving the region enclosed by y = 4 and $y = 3(x-3)^2 + 1$ about the y-axis.

13. Determine the values of p for which the integral $\int_{2}^{\infty} \frac{1}{x(\ln x)^{p}} dx$ converges. Justify your answer.

14. (a) Find a Maclaurin series which represents the function $\frac{\sin\sqrt{x}}{\sqrt{x}}$ when x > 0.

(b) Hence calculate
$$\lim_{x \to 0+} \frac{\sin \sqrt{x}}{\sqrt{x}}$$
.

(c) Find the interval of convergence of this power series.

15. Find the Taylor polynomial of degree 3 for $f(x) = 4x^3 + 3x^2 + 2x + 1$ which is centered at 1.

16. Compute $I_1 = \int x \ln x \, dx$ and determine a reduction formula for

$$I_n = \int x(\ln x)^n \, dx, \quad n > 1.$$

17. Sketch the closed curve $r = 7 \cos\left(\theta - \frac{\pi}{4}\right)$ and determine the area enclosed by the curve.

18. (a) For which values of x does $\sum_{k=1}^{\infty} \frac{1}{k} (1 - e^x)^k$ converge?

(b) What is the sum of this series?