Math 113 - Fall 2006 - Key
 Departmental Final Exam

Part I: Short Answer and Multiple Choice Questions
 Do not show your work for problem 1.

1. Fill in the blanks with the correct answer.
(a) Does the improper integral $\int_{0}^{\infty} \frac{d x}{e^{x}+1}$ converge (yes or no) yes
(b) The integral $\int \frac{\cos x}{\sin ^{3} x} d x$ equals $-\frac{1}{2 \sin ^{2} x}+C$
(c) The integral $\int_{1}^{e^{2}} \frac{d x}{2 x}$ equals $\underline{1}$
(d) $\frac{x^{2}}{4}-\frac{y^{2}}{25}=1$ is the equation of a/an hyperbola
(e) The radius of convergence of $\sum_{n=0}^{\infty} 3^{n} x^{n}$ is $\frac{1}{3}$
(f) If $n>1$, the integral $\int_{1}^{\infty} \frac{d x}{x^{n}}$ equals $\frac{1}{\underline{n-1}}$
(g) The series $x^{2}-\frac{x^{4}}{3!}+\frac{x^{6}}{5!}-\frac{x^{8}}{7!}+\ldots$ is the MacLaurin series for the function $\underline{x \sin x}$
(h) The integral $\int x \sin x d x$ equals $-x \cos x+\sin x+C$
(i) The series $2-\frac{2}{3}+\frac{2}{9}-\frac{2}{27}+\ldots$ converges to $\frac{3}{2}$

Problems 2 through 8 are multiple choice. Each multiple choice problem is worth 3 points. In the grid below fill in the square corresponding to each correct answer.
2. Which of the following integrals represents the surface area of the surface generated by revolving the curve $y=\tan x, 0 \leq x \leq \pi / 4$, about the line $y=-2$?
(a) $\int_{0}^{\pi / 4} \pi(\tan x+2) \sqrt{1+\sec ^{2} x} d x$
(f) $\int_{0}^{\pi / 4} 2 \pi(\tan x-2) \sqrt{1+\sec ^{2} x} d x$
(b) $\int_{0}^{\pi / 4} 2 \pi(\tan x+2) \sqrt{1+\sec ^{2} x} d x$
(g) $\int_{0}^{\pi / 4} \pi(\tan x-2) \sqrt{1+\sec ^{2} x} d x$
(c) $\quad \int_{0}^{\pi / 4} \pi(\tan x+2) \sqrt{1+\sec ^{4} x} d x$
(h) $\int_{0}^{\pi / 4} 2 \pi(\tan x-2) \sqrt{1+\sec ^{4} x} d x$
(d) $\int_{0}^{\pi / 4} 2 \pi(\tan x+2) \sqrt{1+\sec ^{4} x} d x$
(i) None of the above
(e) $\quad \int_{0}^{\pi / 4} \pi(\tan x-2) \sqrt{1+\sec ^{4} x} d x$
3. Which of the following substitutions will best simplify the integral $\int \sqrt{3+2 x-x^{2}} d x$?
(a) $x=1-2 \sec u$
(e) $\quad x=\sqrt{3} \sin u$
(b) $x=\sqrt{3}+2 \cosh u$
(f) $x=1+2 \sin u$
(c) $x=\sqrt{3} \cos u$
(g) $x=2 \sin u$
(d) $x=\sqrt{3}-2 \cosh u$
4. Consider the region R that is the portion of the circle $x^{2}+y^{2}=1$ that lies in the first quadrant. What is the volume of the solid generated by revolving R about the line $x+y=2$?
(a) $\frac{\pi}{2 \sqrt{2}}$
(d) $\frac{\pi^{2}}{2}$
(g) $\frac{\pi^{2} \sqrt{2}}{3}$
(b) $\frac{\pi}{2}$
(e) $\frac{\pi^{2}}{3 \sqrt{2}}$
(h) $\frac{\pi^{2}}{2 \sqrt{2}}$
(c) $\frac{\pi \sqrt{2}}{3}$
(f) $\frac{\pi^{2}}{4}$
(i) None of the above
5. The series $\sum_{n=2}^{\infty} \frac{3^{n}}{n!}$ converges to
(a) $\ln 3$
(d) $\frac{3^{n+1}}{n+1}$
(g) $\quad \cos 3$
(b) $\ln 2$
(e) ∞
(h) $\quad e^{3}-4$
(c) $\ln (3)-1$
(f) e^{3}
(i) 3^{e}
6. The interval of convergence of the power series $\sum_{n=1}^{\infty} n^{2}(7 x-3)^{n}$ is
(a) $\left(-\frac{3}{7}, \frac{3}{7}\right)$
(d) $(0,1)$
(g) $(0, \infty)$
(b) $\left(-\frac{7}{3}, \frac{7}{3}\right)$
(e) $\left(\frac{1}{7}, 1\right)$
(h) $(-\infty, \infty)$
(c) $(-1,1)$
(f) $\left(\frac{2}{7}, \frac{4}{7}\right)$
(i) None of these
7. The integral $\int_{2}^{e+1}(x-1) \ln (x-1) d x$ is equal to
(a) $\frac{e^{2}-1}{2}$
(d) $\frac{e^{2}+1}{4}$
(b) $e^{2}+1$
(e) $\frac{e^{2}-1}{4}$
(c) $\frac{e^{2}+1}{2}$
(f) $e^{2}-1$
8. The graph of the polar equation $r=2 \cos (n \theta)$ has how many petals?
(a) $\quad n$ petals if n is even, $2 n$ petals if n is odd
(e) n petals
(b) $\quad n / 2$ petals if n is odd, n petals if n is even
(f) $n / 2$ petals
(c) n petals if n is odd, $2 n$ petals if n is even
(g) None of these
(d) $2 n$ petals

Part II: Written Solutions

For problems 9-18, write your answers in the space provided. Neatly show your work for full credit.
9. Evaluate each integral
(a) $\int \frac{d x}{2+x-x^{2}}$

$$
\begin{aligned}
\int \frac{d x}{2+x-x^{2}} & =\int \frac{1}{3} \ln (x+1)-\frac{1}{3} \ln (x-2) d x \\
& =\frac{1}{3} \ln \left|\frac{x+1}{x-2}\right|+C
\end{aligned}
$$

(b) $\int \sec ^{3}(2 x) d x$

Integration by partial fraction with $u=\sec 2 x, d v=\sec ^{2} x d x$

$$
\begin{gathered}
\int \sec ^{3}(2 x) d x=\frac{1}{2} \sec 2 x \tan 2 x-\int \sec 2 x \tan ^{2} 2 x d x \\
\int \sec 2 x \tan ^{2} 2 x d x=\int \sec 2 x\left(\sec ^{2} 2 x-1\right) d x=\int \sec ^{3} 2 x d x-\int \sec 2 x d x
\end{gathered}
$$

Moving $\int \sec ^{3} 2 x$ to LHS,

$$
\int \sec ^{3}(2 x) d x=\frac{1}{4} \tan (2 x) \sec (2 x)+\frac{1}{4} \ln (\sec (2 x)+\tan (2 x))+C
$$

10. Find the general solution, in the form $y=f(x)$, to the differential equation

$$
\frac{d y}{d x}=\left(4+y^{2}\right)\left(4+x^{2}\right)
$$

Separating variables and integrating

$$
\begin{gathered}
\frac{d y}{4+y^{2}}=\int\left(4+x^{2}\right) d x \\
y=2 \tan \left(8 x+\frac{2}{3} x^{3}+C\right)
\end{gathered}
$$

11. Find the length of the graph of $y=\frac{1}{4} x^{2}-\frac{1}{2} \ln x$, on the interval $1 \leq x \leq 2$.

Length of graph is given by the arc length formula $\int_{1}^{2} \sqrt{1+\left(y^{\prime}\right)^{2}} d x$
Now, as $y^{\prime}=\frac{1}{2}\left(x-\frac{1}{x}\right)$, so the length of graph is

$$
\int_{1}^{2} \sqrt{1+\frac{1}{4}\left(x^{2}-2+\frac{1}{x^{2}}\right)} d x=\int_{1}^{2} \frac{1}{2}\left(x+\frac{1}{x}\right) d x=\frac{3}{4}+\frac{1}{2} \ln 2
$$

12. Find the centroid of the region that lies within the first quadrant and is bounded above by $y=1-x^{2}$.

$$
\begin{gathered}
A=\int_{0}^{1}\left(1-x^{2}\right) d x=\frac{2}{3} \\
m_{y}=\int_{0}^{1} x\left(1-x^{2}\right) d x=\frac{1}{4} \\
m_{x}=\frac{1}{2} \int_{0}^{1}\left(1-x^{2}\right)^{2} d x=\frac{4}{15} \\
\bar{x}=\frac{m_{y}}{A}=\frac{3}{8} \\
\bar{y}=\frac{m_{x}}{A}=\frac{2}{5}
\end{gathered}
$$

13. Find the area enclosed by the polar curves $r=2-\cos \theta$ and $r=1$.

Unit circle lies entirely inside the first curve,
Area is

$$
\int_{0}^{2 \pi} \frac{1}{2} r^{2}(\theta) d \theta-\pi(1)^{2}=\int_{0}^{2 \pi} \frac{1}{2}(2-\cos \theta)^{2} d \theta-\pi=\frac{7}{2} \pi
$$

14. Use the first three non-zero terms of the MacLaurin series for $e^{-x^{2}}$ to estimate the definite integral $\int_{0}^{2} e^{-x^{2}} d x$. Write your answer as a fraction, if possible.

$$
\begin{aligned}
e^{-x^{2}} & =1-x^{2}+\frac{1}{2!} x^{4}-\frac{1}{3!} x^{6}+\ldots \\
\int_{0}^{2} e^{-x^{2}} d x & =\int_{0}^{2}\left(1-x^{2}+\frac{1}{2!} x^{4}-\frac{1}{3!} x^{6}+\ldots\right) d x \\
& \approx \int_{0}^{2} 1-x^{2}+\frac{1}{2!} x^{4} d x \\
& =x-\frac{x^{3}}{3}+\left.\frac{x^{5}}{10}\right|_{0} ^{2}=\frac{38}{15}
\end{aligned}
$$

15. Find the mass of the circular region $x^{2}+y^{2} \leq 1$, whose density at each point is twice the distance from the point to the origin.

Mass is given by

$$
\int_{0}^{1} 2 r \cdot 2 \pi r d r=\left.\frac{4 \pi r^{3}}{3}\right|_{0} ^{1}=\frac{4 \pi}{3}
$$

16. Find the sum of the power series $\sum_{n=1}^{\infty} n x^{n-1}$ (as a rational function of x).

The power series $\sum_{n=1}^{\infty} n x^{n-1}$ is obtained by differentiating $f(x)=\sum_{n=1}^{\infty} x^{n}=\frac{1}{1-x}$, so

$$
\sum_{n=1}^{\infty} n x^{n-1}=\frac{d}{d x}\left(\frac{1}{1-x}\right)=\frac{1}{(1-x)^{2}}
$$

17. Determine whether each of the following infinite series converges. State any convergence/divergence test you used.
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$

Converges by comparison with $1 / n^{2}$.
(b) $\sum_{n=1}^{\infty} \frac{e^{n}}{n^{30}+2^{n}}$

Diverges by divergence test (terms not approaching 0)
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n+1}}$

Converges by alternate series test
18. Find the definite integral $\int_{0}^{1} x^{3} \sqrt{1-x^{2}} d x$.

Let $y^{2}=1-x^{2}$, then

$$
\int_{0}^{1} x^{3} \sqrt{1-x^{2}} d x=\int_{0}^{1}\left(1-y^{2}\right) y^{2} d y=\frac{2}{15}
$$

