Math 113 (Calculus II)
 Final Exam KEY

Short Answer. Fill in the blank with the appropriate answer.

1. (10 points)
a. Let $y=f(x)$ for $x \in[a, b]$. Give the formula for the length of the curve formed by the graph of this function. $\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$
b. Find the vertex of the graph of $y=x^{2}+4 x .(-2,-4)$
c. The equation $2 x^{2}+3 x+y^{2}-y=7$ is called a ellipse.
d. If $r=f(\theta), \theta \in[a, b]$ is an equation of a curve in polar coordinates, give the formula for the area enclosed by this curve. $\int_{a}^{b} \frac{1}{2} f^{2}(\theta) d \theta$
e. What does the ratio test predict with regard to the convergence of the series $\sum_{n=1}^{\infty} \frac{n^{2}}{n^{4}+1}$? The ratio test fails.
f. What is the radius of convergence of the series $\sum_{n=1}^{\infty} \frac{4^{n}}{n} x^{n} ? \frac{1}{4}$
g. The integral $\int_{0}^{\infty} \frac{d x}{1+x^{2}}$ equals $\frac{\pi}{2}$.
h. Here is an antiderivative: $\int \frac{\sqrt{9-x^{2}}}{x^{2}} d x$. Tell what substitution to use in order to find this antiderivative. $x=3 \sin \theta$
i. The integral $\int_{0}^{1} \frac{1}{x^{2 / 3}} d x$ equals 3
j. The antiderivative $\int x \sin (x) d x$ equals $(\sin x-x \cos x+C)$

Multiple Choice. In the grid below fill in the correct answer to each question.

2	A	B	C	D	E	F	G	H	I	J
3	A	B	C	D	E	F	G	H	I	J
4	A	B	C	D	E	F	G	H	I	J
5	A	B	C	D	E	F	G	H	I	J
6	A	B	C	D	E	F	G	H	I	J
7	A	B	C	D	E	F	G	H	I	J
8	A	B	C	D	E	F	G	H	I	J
9	A	B	C	D	E	F	G	H	I	J

2. Find the area enclosed by the polar curve $r=2+\sin \theta$ for $\theta \in[0,2 \pi]$.
a) $\frac{5}{2} \pi$
b) $\frac{11}{3} \pi$
c) 2π
d) 4π
e) $\frac{9}{2} \pi$
f) None of the above.
3. Identify the equation which goes with the polar graph,

a) $r=1+2 \cos \theta$
b) $r=1+\cos \theta$
c) $r=2+\sin \theta$
d) $r=2 \sin (2 \theta)$
e) $r=2 \cos (2 \theta)$
f) None of the above.
4. Which of the following series has as its interval of convergence $(-\infty, 1]$?
a) $\sum x^{2} / n$!
b) $\sum e^{-n} x^{2 n}$
c) $\sum \frac{(x-1)^{n}}{2^{n}}$
d) $\sum x^{n-1} / n^{2}$
e) $\sum(x+1)^{n+1} / n^{n}$
f) None of these
5. Determine whether the following series is convergent. If it is, find its sum.

$$
\sum_{n=1}^{\infty}\left(e^{1 / n}-e^{1 /(n+1)}\right)
$$

a) It is divergent.
b) e
c) $\frac{1}{e}$
d) $e-e^{1 / 2}$
e) $\ln (1)$
f) None of these.
6. If we differentiate the power series

$$
\frac{x^{3}}{3!}-\frac{x^{5}}{5!}+\frac{x^{7}}{7!}-\frac{x^{9}}{9!}+\ldots
$$

the resulting function is
a) e^{-x}
b) $\cos 2 x$
c) $\sin x$
d) only expressible as a series.
e) $-(\cos x-1)$
f) $\cosh x+1$
7. Find the area between $y=2 x$ and $y=x^{2}$ for $x \in[-1,3]$.
a) $\frac{8}{3}$
b) $\frac{4}{3}$
c) $-\frac{4}{3}$
d) 3
e) 4
f) None of the above
8. Let A denote the region between the graphs of $y=\cos (x)+1$ and the line $y=1$ for $x \in[0, \pi / 2]$. A solid is obtained by revolving A about the x axis. find the volume of the solid.
a) $\frac{\pi^{2}}{4}+2 \pi$
b) $\frac{\pi^{2}}{2}+2 \pi$
c) $\frac{\pi^{2}}{2}$
d) $\frac{\pi^{2}}{4}$
e) $\frac{\pi^{2}}{4}-1$
f) None of these
9. Which of the following integrals represents the surface area of the surface generated by revolving the curve $y=e^{2 x}$ for $x \in[0,1]$ about the line $y=-1$?
a) $\int_{0}^{1} 2 \pi\left(e^{2 x}-1\right) \sqrt{1+4 e^{4 x}} d x$
b) $\int_{0}^{1}\left(e^{2 x}+1\right) d x$
c) $\int_{0}^{1} 2 \pi\left(e^{2 x}+1\right)\left(1+2 e^{2 x}\right) d x$
d) $\int_{0}^{1} 2 \pi\left(e^{2 x}+1\right) \sqrt{1+e^{4 x}} d x$
e) $\int_{0}^{1}\left(e^{4 x}+1\right) d x$
f) None of the above.

Free Response. For problems 10-17, write your answers in the space provided. Use the back of the page if needed, indicating that fact. Neatly show all work.
10. (8 points) A ball of radius 5 has a hole of radius 3 drilled completely through it such that the axis of the hole is a diameter of the ball. What is the volume of what is left?

Solution:

$2 \pi \int_{3}^{5} 2 x \sqrt{25-x^{2}} d x=\frac{256}{3} \pi$
You could also do it by cross sections, (washers).
$2 \int_{0}^{4} \pi\left(\left(\sqrt{25-y^{2}}\right)^{2}-9\right) d y=\frac{256}{3} \pi$
11. (8 points) A spherical tank having radius 10 feet is filled with a fluid which weighs 100 pounds per cubic foot. This tank is half full. Find the work in foot pounds needed to pump the fluid out of a hole in the top of the tank.
Solution: $\int_{-10}^{0}(10-y) 100 \pi\left(100-y^{2}\right) d y=\frac{2750000}{3} \pi$
12. (6 points) Determine whether the following series converges and explain your answer.

$$
\sum_{n=1}^{\infty} \frac{1}{3 n^{2}+2}
$$

Solution: Notice that

$$
\lim _{n \rightarrow \infty} \frac{\frac{1}{3 n^{2}+2}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{3 n^{2}+2}=\frac{1}{3}
$$

Since

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

converges (p series, $p=2 i 1$), the original series converges by the limit comparison test. The integral test or comparison test could also be used.
13. (6 points) The economic trickle-down effect is based on the idea that injection of money into the economy reaches far beyond the initial receiver of funds. Say that one person receives a dollar and spends $4 / 5$ of it. The person who receives that portion spends $4 / 5$ of it in turn and so on and on "forever." The total cash flow from the first dollar is the sum of all these passed-on funds including the first dollar. What is that sum?

Solution: Add up $\sum_{n=0}^{\infty}(4 / 5)^{n}$ a geometric series. This equals 5 .
14. (6 points) Compute the first 4 nonzero terms of the MacLaurin series for the function $f(x)=$ $\ln \left(x^{2}+1\right)$.

Solution: One can use the formula

$$
\sum \frac{f^{n}(0)}{n!} x^{n}
$$

to get

$$
x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{3}-\frac{x^{8}}{4}
$$

Or, Since students know the series for

$$
\ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{n}
$$

they only need to replace x by x^{2} to get

$$
\ln \left(1+x^{2}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{2 n}
$$

15. (8 points) A cube with 2 foot long sides is sitting on the bottom of an aquarium in which the water is 5 feet deep. Find the hydrostatic force on one of the sides of the cube. Use 62.5 pounds per cubic foot as the weight density of water.

Solution:

$$
\int_{3}^{5} 62.5 h \cdot 2 d h=\left.62.5 h^{2}\right|_{3^{5}}=16 \cdot 62.5=990
$$

16. Find the following
(a) (6 points) $\int_{0}^{\pi / 2} \sin ^{3}(x) \cos ^{3}(x) d x$

Solution: $\int_{0}^{\pi / 2} \sin ^{3}(x) \cos ^{3}(x) d x=\frac{1}{12}$
(b) (6 points) $\int \frac{x+5}{x^{2}-1} d x$.

Solution: Using partial fractions, we see that

$$
\frac{x+5}{x^{2}-1}=\frac{A}{x-1}+\frac{B}{x+1},
$$

or

$$
x+5=A(x+1)+B(x-1) .
$$

By plugging in ± 1 for x, we see that $A=3$ and $B=-2$. Thus,

$$
\int \frac{x+5}{x^{2}-1} d x=\int\left(\frac{3}{x-1}-\frac{2}{x+1} d x=3 \ln |x-1|-2 \ln |x+1| .\right.
$$

(c) (6 points) $\int \frac{1}{x^{2} \sqrt{x^{2}+4}} d x$

Solution: Let $x=2 \tan \theta$. Then, $d x=2 \sec ^{2} \theta$. The integral becomes

$$
\int \frac{2 \sec ^{2} \theta}{\tan ^{2} \theta \cdot 2 \sec \theta} d \theta=\int \csc \theta \cot \theta d \theta=-\csc \theta+C
$$

17. (6 points) Here is a parameterized curve called a cycloid. find the equation of the tangent line when $\theta=\pi / 3$.

$$
\begin{gathered}
x(\theta)=\theta-\sin \theta \\
y(\theta)=1-\cos (\theta)
\end{gathered}
$$

Solution: You need the slope, $d y / d x$.

$$
d y / d x=\frac{\sin (\theta)}{1-\cos (\theta)}
$$

when $\theta=\pi / 3$ this is

$$
\frac{\sin (\pi / 3)}{1-\cos (\pi / 3)}=\sqrt{3}
$$

and so the equation of the line is

$$
y-\frac{1}{2}=\sqrt{3}\left(x-\left(\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right)\right)
$$

