Math 119
 Pretest Review - Answers

Linear Equations

Find the slope of the line passing through the given points:

1. $(2,-5) ;(0,2)$

Answer: -7/2
2. $(3,-4) ;(3,0)$

Answer: Undefined
3. $(-1,-2)$; $(1,4)$

Answer: 3
4. Find the equation of the line with slope 2 that passes through $(-2,-3)$. Write your answer in slopeintercept form.

Answer: $y=2 x+1$
5. Find the general form of the equation of the line that passes through $(-1,6)$ and is parallel to the graph of $2 x+3 y-4=0$.

Answer: $2 x+3 y-16=0$
6 . Find the general form of the equation of the line that passes through $(4,-2)$ and is parallel to the graph of $x-y-3=0$.

Answer: $x-y-6=0$

Quadratic Equations

Rewrite the following equations in general quadratic form:
7. $\frac{1}{x+1}-\frac{3}{x-2}=5$

Answer: $5 x^{2}-3 x-5=0$
8. $\frac{3 x-2}{5}=x^{2}+1$

Answer: $5 x^{2}-3 x+7=0$
9. $x+1=\frac{x}{x+2}$

Answer: $x^{2}+2 x+2=0$

Complete the square for the following functions:
10. $2 x^{2}-8 x+5$

Answer: $2(x-2)^{2}-3$
11. $-x^{2}-4 x-7$

Answer: $-(x+2)^{2}-3$
12. $2 x^{2}-4 x$

Answer: $2(x-1)^{2}-2$

Factoring

Factor:
13. $4 x^{3} y-16 x^{2} y-28 y$

Answer: $4 y\left(x^{3}-4 x^{2}-7\right)$
14. $x^{3}+2 x^{2}-7 x-14$

Answer: $(x+2)\left(x^{2}-7\right)$
15. $5 x y^{2}+5 y^{2}+3 a x+3 a$ (Group in pairs)

Answer: $(x+1)\left(5 y^{2}+3 a\right)$
16. $(x+3)^{3}-1$

Answer: $(x+2)\left(x^{2}+7 x+13\right)$
17. $a^{3}-64$

Answer: $(a-4)\left(a^{2}+4 a+16\right)$
18. $9 y^{2}-64$

Answer: $(3 y+8)(3 y-8)$

Finding Zeros/Roots

19. Use Descarte's Rule of Signs to determine the possible number of positive and negative zeros:

$$
f(x)=x^{3}+1
$$

Answer: 0 positive, 1 negative
20. Given $f(x)=x^{4}-3 x^{3}+x^{2}-6 x-5$, determine the possible number of negative zeros.

Answer: Exactly One
21. List the possible rational zeros of the function:

$$
\begin{aligned}
f(x)= & 3 x^{5}+2 x^{2}-3 x+2 \\
& \text { Answer: } \pm 2, \pm 1, \pm \frac{2}{3}, \pm \frac{1}{3}
\end{aligned}
$$

22. List the possible rational zeros of the function:

$$
f(x)=4 x^{3}+3 x^{2}-5 x+6
$$

$$
\text { Answer: } \pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{1}{4}, \pm \frac{3}{4}
$$

23. Use the fact that i is a zero of f to find the remaining zeros:

$$
f(x)=x^{4}-5 x^{3}+7 x^{2}-5 x+6
$$

Answer: 2, 3, $\pm i$
24. Find all of the zeros of the function: $f(x)=x^{4}+25 x^{2}+144$

Answer: $\pm 3 i, \pm 4 i$
25. Find all the real zeros of the polynomial function: $g(t)=t^{3}+3 t^{2}-16 t-48$

Answer: -4, -3, 4
26. Use the Intermediate Value Theorem to estimate the real zero in the interval [1,2]:

$$
-3 x^{4}+2 x^{3}-x^{2}+x+2
$$

Answer: Between 1.1 and 1.2
27. Use the Intermediate Value Theorem to estimate the real zero in the interval $[3,4]$:

$$
2 x^{3}-5 x^{2}-7 x+11
$$

Answer: Between 3.0 and 3.1
28. Use the Intermediate Value Theorem to estimate the real zero in the interval $[0,1]$:

$$
3 x^{3}+7 x-9
$$

Answer: Between 0.9 and 1.0

Long and Synthetic Division

29. Find all of the real roots:
$2 x^{3}+5 x^{2}-x-6=0$

$$
\text { Answer: } \mathrm{x}=-2,-\frac{3}{2}, 1
$$

30. Find all of the real zeros of the function:
$f(x)=2 x^{3}-7 x^{2}+7 x-2$

$$
\text { Answer: } \mathrm{x}=\frac{1}{2}, 1,2
$$

31. Write as a product of linear factors:

$$
f(x)=x^{4}-6 x^{3}-4 x^{2}+40 x+32
$$

Answer:
$(x-4)(x+2)(x-2+2 \sqrt{2})(x-2-2 \sqrt{2})$
32. Simplify the rational expression:

$$
\frac{2 x^{4}-x^{3}-4 x^{2}+x-3}{2 x+3}
$$

Answer: $x^{3}-2 x^{2}+x-1$
33. Simplify the rational function:
$f(x)=\frac{x^{3}+4 x^{2}-3 x+10}{x+5}$
Answer: $x^{2}-x+2$
34. Simplify: $\frac{x^{4}+3 x^{3}-3 x^{2}-12 x-4}{x^{2}+3 x+1}$

Answer: $x^{2}-4$

Absolute Value

Solve the following equations for x :
35. $|x-3|=2$

Answer: $x=\{1,5\}$
36. $|x|=5$

Answer: $x=\{-5,5\}$
37. $|x+5|=-1$

Answer: No Solution

Simplify the following expressions involving absolute values:
38. $\frac{\left|x^{2}-4 x+4\right|}{x-2}$

Correction: $x-2$
39. $\left|\frac{x^{2}-x-6}{x-3}\right|$

Answer: $|x+2|$
40. $\frac{\left|x^{2}+2 x-3\right| \cdot|x-1|}{|x+3|}$

Answer: $(x-1)^{2}$

Pythagorean Theorem

For questions 19-20, consider a right triangle with sides of length a, b, and c :

41. If the lengths of sides a and b are six and eight inches respectively, how long is side c ?

Answer: 10 in.
42. What is the length of side b in terms of the sides a and c ?

Answer: $\sqrt{c^{2}-a^{2}}$

Distance Formula

Find the distance between the given points:
43. $(2,5)$; $(-1,9)$

Answer: 5
44. $(-1,3) ;(5,1)$

Answer: $\sqrt{40}$
45. $(10,-3) ;(3,0)$

Answer: $\sqrt{58}$

Simplifying Expressions

Simplify:
46. $\sqrt[4]{\frac{16 x^{4}}{7 y}}$ (Assume all variables represent positive real numbers)

Answer: $\frac{2 x \cdot \sqrt[4]{343 y^{3}}}{7 y}$
47. $(\sqrt{x+2}+2)^{2}$

Answer: $x+6+4 \sqrt{x+2}$
48. $\frac{x+1}{x-1}-\frac{3}{x+2}$

Answer: $\frac{x^{2}+5}{x^{2}+x-2}$
49. $\frac{27 x^{3} y(x-2)}{3 x y^{2}\left(x^{2}-4\right)}$

Answer: $\frac{9 x^{2}}{y(x+2)}$
50. $\sqrt{x^{3}-3 x+2}$

Answer: $(x-1) \sqrt{x+2}$
51. $\frac{6 \sqrt{x^{3}-3 x+2}}{\sqrt{3 x^{2}+3 x-6}}$

Answer: $2 \sqrt{3(x-1)}$

Rationalize the denominator and simplify:
52. $\frac{1}{\sqrt{50}}$

Answer: $\frac{\sqrt{2}}{10}$
53. $\frac{2}{\sqrt{2}}$

Answer: $\sqrt{2}$
54. $\frac{12}{\sqrt{6}}$

Answer: $2 \sqrt{6}$

Solving Equations

Solve for x or y :
55. $\left(x^{2}-2 x+5\right)^{2 / 3}=4$

Answer: $\mathrm{x}=\{-1,3\}$
56. $\frac{1}{x}-\frac{1}{x+1}=1$

Answer: $x=\frac{-1 \pm \sqrt{5}}{2}$
57. $\frac{x}{x^{2}-9}+\frac{2}{x+3}=3$

Answer: $x=\frac{1 \pm \sqrt{29}}{2}$
58. $\sqrt{2 x+9}=x+5$

Answer: $x=-4$
59. $3+\sqrt{x-1}=x$

Answer: $\mathrm{x}=5$
60. $x-1=\sqrt{1-5 x}$

Answer: No solution
61. $\frac{y}{y-3}+3=\frac{3}{y-3}$

Answer: No Solution
62. $\frac{y}{y-3}+3=\frac{-1}{y-3}$

Answer: 2
63. $\frac{y}{y-3}+1=\frac{-1}{y-3}$

Answer: 1
64. $x-2=\sqrt{x}$

Answer: 4
65. $2 \sqrt{x}=x$

Answer: $\mathrm{x}=\{0,4\}$
66. $2 \sqrt{x+3}=x+3$

Answer: $\mathrm{x}=\{-3,1\}$

Inequalities

Solve each inequality:
Know both forms of the answer!
67. $x>3 x-2$

Answer: $x<1$
or $x \in(-\infty, 1)$
68. $3 x<4 x+1$

Answer: $x>-1$
or $x \in(-1, \infty)$
69. $x-1 \leq 3 x+2$

Answer: $x \geq-3 / 2$

$$
\text { or } x \in[-3 / 2, \infty)
$$

70. $\frac{1-x}{x^{2}-x-6}>0$

Answer: $x<-2,1<x<3$
or $x \in(-\infty,-2) \cup(1,3)$
71. $\frac{x+1}{x-3} \leq 0$

Answer: $-1 \leq x<3$

$$
\text { or } x \in[-1,3)
$$

72. $\frac{x^{2}-1}{x} \geq 0$

$$
\text { Answer: }-1 \leq x<0, \quad x \geq 1
$$

$$
\text { or } x \in[-1,0) \cup[1, \infty)
$$

73. $x^{2}+1>x+3$

Answer: $x<-1, x>2$

$$
\text { or } x \in(-\infty,-1) \cup(2, \infty)
$$

74. $x^{3}-2 x^{2}+6 x+3 \leq x^{2}+10 x+3$

Answer: $x \leq-1,0 \leq x \leq 4$
or $x \in(-\infty,-1] \cup[0,4]$
75. $x^{2}-4 x+4<x^{3}-6 x^{2}+11 x-5$

Answer: $1<x<3, x>3$

$$
\text { or } x \in(1,3) \cup(3, \infty)
$$

Solve each absolute value inequality:
Know both forms of the answer!
76. $|x-3|<2$

Answer: $1<x<5$
or $x \in(1,5)$
77. $|x+5| \leq 0$

Answer: $x=-5$
78. $|x+2| \geq 3$

Answer: $x \leq-5, x \geq 1$

$$
\text { or } x \in(-\infty,-5] \cup[1, \infty)
$$

Logarithmic, Exponential and Logistic Functions

79. Write as the logarithm of a single quantity:

$$
\frac{1}{2}[\ln (x+1)+2 \ln (x-1)]+\frac{1}{3} \ln x
$$

Answer: $\ln \left(x^{1 / 3}\right)(x+1)^{1 / 2}(x-1)$
80. Write as the logarithm of a single quantity:

$$
2 \ln |3 x|+\ln |x+1|-3 \ln |y|
$$

Answer: $\ln \left|\frac{9 x^{2}(x+1)}{y^{3}}\right|$
Simplify:
81. $e^{2 \ln (x+1)}$

Answer: $(x+1)^{2}$
82. $\ln \left|5 e^{3}\right|$

Answer: $3+\ln 5$
83. $\log _{3} 81$

Answer: 4
84. $\log _{6} 108$

Answer: $2+\log _{6} 3$
85. The spread of a flu virus through a certain population is modeled by $y=\frac{1000}{1+990 e^{-0.7 t}}$
where y is the total number infected after t days. In how many days will 820 people be infected with the virus?

Answer: 12 days
86. The amount remaining of a decaying sample is described by the function $m(t)=m_{0} 2^{-t / h}$ where m_{0} is the initial amount, t is the number of hours, and h is the sample's half-life. Given an isotope of sodium with a half-life of 15 hours, find the amount remaining from a 2 g . sample after 20 hours.

Answer: 0.79 g
87. The number of bacteria in a culture is given by the formula $n(t)=1200 e^{-0.35 t}$

What is the half-life for this type of bacteria?
Answer: $\mathrm{t}=1.98$

Conic Sections

88. Find the standard equation of the parabola with vertex at $(0,0)$ and directrix $x=7$

Answer: $y^{2}=-28 x$
89. Find the standard equation of the ellipse with center at $(0,0)$ a focus at $(2 \sqrt{35}, 0)$ and minor axis of length 4.

$$
\text { Answer: } \frac{x^{2}}{144}+\frac{y^{2}}{4}=1
$$

90. Find the foci of the hyperbola:

$$
2 y^{2}-9 x^{2}-18=0
$$

Answer: $(0, \pm \sqrt{11})$

Graphing and Translations

91. Determine the correct function for the given graph.

(a) $f(x)=2 x^{3}-3 x^{2}$
(b) $f(x)=3 x^{4}-2 x^{3}$
(c) $f(x)=2 x^{3}+3 x^{2}$
(d) $f(x)=3 x^{2}-2 x^{3}$
(e)None of these

Answer: (d)
92. Sketch the graph of the following
function: $f(x)= \begin{cases}2 x+1, & x \leq 1 \\ x^{2}, & x>1\end{cases}$
Answer:

93. Graph the following function:

$$
f(x)=4 x^{2}-8 x+4
$$

Answer:

94. Use the graph of $y=x^{4}$ to find a formula for the function $y=f(x)$.

$y=x^{4}$
$y=f(x)$
Answer: $y=(x-1)^{4}+2$
95. Given the graph of $y=-\sqrt{x}$, graph $y=2-\sqrt{x+3}$.

Answer:

96. What sequence of transformations will yield the graph of $g(x)=(x+1)^{2}+10$ from the graph of $f(x)=x^{2}$?

Answer: Horizontal shift 1 unit to the left, vertical shift 10 units up

Domain

Determine the domain of the function:
97. $f(x)=\frac{3}{x-4}$.

Answer: $(-\infty, 4) \cup(4, \infty)$
98. $f(x)=\sqrt{6-x}$.

Answer: $(-\infty, 6]$
99. $f(x)= \begin{cases}\sqrt{x} & \text { if } \mathrm{x}>1 \\ |x| & \text { if } \mathrm{x}<-1\end{cases}$

Answer: $(-\infty,-1] \cup(1, \infty)$

Asymptotes

100. Graph the following function: $f(x)=\frac{3+x}{x-1}$

Answer:

101. Graph the following rational function:
$f(x)=\frac{x^{2}}{x+2}$
Answer:

102. Match the graph with the correct function.

(a) $f(x)=\frac{x-5}{x+3}$
(b) $f(x)=\frac{5-x}{x+3}$
(c) $f(x)=\frac{-(x+5)}{x+3}$
(d) $f(x)=\frac{x+5}{x+3}$
(e) None of these

Answer: (c)

End Behavior

Describe the end behavior of the following functions:
103. $f(x)=\frac{x^{2}-4 x-5}{x-3}$

Answer: The end behavior of $f(x)$ is that it follows the line $y=x-1 . f(x) \rightarrow \infty$ as
$x \rightarrow \infty$ and $f(x) \rightarrow-\infty$ as $x \rightarrow-\infty$.
104. $g(x)=\frac{x^{3}-2 x^{2}+3}{x-2}$

Answer: The end behavior of $g(x)$ is that it follows the parabola $y=x^{2} ; g(x) \rightarrow \infty$ as $x \rightarrow \pm \infty$
105. $h(x)=\frac{x^{2}-2 x+3}{x^{2}+4 x-5}$

Answer: The end behavior of $h(x)$ is that it approaches the line $y=1 ; h(x) \rightarrow 1$ as $x \rightarrow \pm \infty$

Vertical and Horizontal Line Tests

106. Use the vertical line test to determine in which case y is a function of x.
(a)

(b)

(c)

(d)

(e) None of these

Answer: (d)
107. Which of the following graphs represent y as a function of x ?
(a)

(b)

(c)

(d)

(e) None of these

Answer: (a)

One-to-One Functions

Determine whether each function is one-to-one. If it is, find its inverse.
108. $f(x)=\frac{7}{x+2}$

Answer: yes, it is; $f^{-1}(x)=\frac{7-2 x}{x}$
109. $y=\sqrt[3]{x^{2}+1}$

Answer: Not one-to-one

Inverse functions

Find the inverse of the following functions. State the domain and range of $f^{-1}(x)$.
110. $f(x)=-x^{2}+3$, for $x \geq 0$

Answer: $f^{-1}(x)=\sqrt{3-x}$;
Domain: $(-\infty, 3]$; Range: $[0, \infty)$
111. $f(x)=\sqrt{2 x}$, for $x \geq 0$

Answer: $f^{-1}(x)=\frac{x^{2}}{2}$; Domain: $[0, \infty)$; Range: $[0, \infty)$
112. $f(x)=\sqrt{25-x^{2}}$, for $0 \leq x \leq 5$

Answer: $f^{-1}(x)=\sqrt{25-x^{2}}$;
Domain:[0,5]; Range:[0,5]

Composition of Functions

113. Evaluate $(f \circ g)(2)$ where
$f(x)=4 x$ and $g(x)=-2 x+1$.
Answer: -12
114. Evaluate $(f \circ g)(3)$ where

$$
f(x)=-3 x+7 \text { and } g(x)=x^{2}+4
$$

Answer: -32
115. Evaluate $(f \circ g)(3)$ where

$$
\begin{gathered}
f(x)=\sqrt{x^{2}+7} \text { and } g(x)=x^{2}+1 \\
\text { Answer: } \sqrt{107}
\end{gathered}
$$

Partial Fraction Decomposition

Find the partial fraction decomposition for the following expressions:
116. $\frac{7}{3 x^{2}+5 x-2}$

$$
\text { Answer: } \frac{3}{3 x-1}-\frac{1}{x+2}
$$

117. $\frac{5 x+3}{x^{2}-3 x-10}$

Answer: $\frac{4}{x-5}+\frac{1}{x+2}$
118. $\frac{-5 x-3}{x^{2}-9}$

Answer: $\frac{-3}{x-3}-\frac{2}{x+3}$

Sequences and Series

119. Write the first five terms of the geometric sequence with $a_{1}=-3$ and $r=\frac{2}{3}$.

Answer: $-3,-2,-\frac{4}{3},-\frac{8}{9},-\frac{16}{27}$
120. Find the eighth term of the arithmetic sequence with $a_{1}=5$ and $d=8$. (Assume that n begins with 1.)

Answer: 61
121. Determine whether the following is a geometric series, if so, find $\mathrm{r}:-2,4,-8,16,-32 \ldots$

Answer: Yes, $r=-2$

Probability

122. The flags of seven different countries are to be displayed in a row. In how many different orders can they be flown?

Answer: 5040
123. Nine candidates are participating in an election. In how many different orders can they finish?

Answer: 362,880
124. There are eight football teams in the Mountain West Conference. In how many different orders can these eight teams finish in the final rankings?

Answer: 40320
125. Six friends are driving to a basketball game. In how many different orders can they arrive?

Answer: 720
126. A box holds 12 white, 5 red, and 6 black marbles. If 2 marbles are picked at random, without replacement, what is the probability that they will both be black?

$$
\text { Answer: } \frac{15}{253}
$$

Complex Numbers

Simplify the following complex numbers:
127. $i^{2}+3 i+2$

Answer: $1+3 i$
128. $i^{3}-2 i^{2}+4 i-3$

Answer: $-1+3 i$
129. $i^{4}+4 i^{3}-12 i^{2}-13 i+1$

Answer: $14-17 i$
Find the conjugate of the following complex numbers:
130. $4-\sqrt{-3}$

Answer: $4+\sqrt{3} i$
131. $\frac{3+4 i}{16}$

Answer: $\frac{3}{16}-\frac{1}{4} i$
132. $3-\sqrt{-1}$

Answer: $3+i$

