Math 553: Foundations of Topology 1

From MathWiki
Revision as of 15:57, 23 March 2011 by Ls5 (Talk | contribs) (Prerequisite)

Jump to: navigation, search

Catalog Information

Title

Foundations of Topology 1.

(Credit Hours:Lecture Hours:Lab Hours)

(3:3:0)

Offered

F

Prerequisite

Description

Naive set theory, topological spaces, product spaces, subspaces, continuous functions, connectedness, compactness, countability, separation axioms, metrization, and complete metric spaces.

Desired Learning Outcomes

Students should gain a familiarity with the general topology that is used throughout mathematics.

Minimal learning outcomes

  1. Set Theory
    • Finite, countable, and uncountable sets
    • Well-ordered sets
  2. Topological Spaces
    • Basis for a topology
    • Product topology
    • Metric topology
  3. Continuous Functions
  4. Connectedness
  5. Compactness
    • Tychonoff Theorem
  6. Countability and Separation Axioms
    • Countable basis
    • Countable dense subsets
    • Normal spaces
    • Urysohn Lemma
    • Tietze Extension Theorem
  7. Metrization
    • Urysohn Metrization Theorem
  8. Complete Metric Spaces

Textbooks

Possible textbooks for this course include (but are not limited to):

Additional topics

Paracompactness, the Nagata-Smirnov Metrization Theorem, Ascoli's Theorem, Baire Spaces and dimension theory as time allows.

Courses for which this course is prerequisite

Math 554