
Primitive lattice points in planar domains

Roger C. Baker

§1 Introduction.

Let D be a compact convex set in R2, containing 0 as an interior point,
having a smooth boundary curve C with nowhere vanishing curvature. How
many primitive lattice points (m,n) (m ∈ Z, n ∈ Z, m, n coprime) are in√
xD for large x? If we write AD(x) for the number of such primitive points,

the answer is certainly of the form

AD(x) =
6

π2
m(D)x+O(xθ+ε)

for every ε > 0, for some θ (independent of D) satisfying 1
4
≤ θ ≤ 1

2
. (Implied

constants may depend onD and ε unless otherwise specified.) Here, of course,
m(D) is the area of D.

Moroz [13], Hensley [7], Huxley and Nowak [10], Müller [14] and Zhai [21]
have treated this question assuming the Riemann hypothesis (R.H.), with
improving values of θ culminating in

θZ =
33349

84040
= 0.3968 . . .

(Zhai [21]). The smoothness assumptions on C vary in these papers. Indeed,
Zhai’s curves C are only piecewise smooth, and D is not necessarily con-
vex; but Zhai imposes Diophantine approximation conditions on the tangent
slopes on either side of the ‘corners’ of C (if any).

In the present paper, I improve Zhai’s constant θZ . For simplicity I
assume that the tangent slopes on either side of the ‘corners’ of C are rational.
I shall make the following hypotheses about D, somewhat similar to those in
Nowak [15].

1



(H1) D is a compact set whose boundary curve C = ∂D can be written in
polar coordinates as

r = ρ(θ), 0 ≤ θ ≤ 2π,

where ρ is positive and continuous.

(H2) There is a partition

θ0 < θ1 < · · · < θJ = 2π + θ0

such that ρ(4) is continuous on [θj−1, θj] and the curvature of

Cj : r = ρ(θ), θ ∈ [θj−1, θj]

is never zero. No tangent to Cj passes through 0. No Cj has both a horizontal
and a vertical tangent.

(H3) The reciprocal curves R(Cj) (j = 1, . . . J) can be written in the form

r = ρj(θ) (λj−1 ≤ θ ≤ λj)

with ρ
(4)
j continuous on [λj−1, λj].

(H4) The tangents to Cj at θ = θj−1, θ = θj have rational slopes.
For more details about reciprocal curves, see Huxley [8], Lemma 4, and

for a brief summary, §2 below.
In particular, suppose that D is convex, (H1) holds with ρ(4) continuous

(as a function of period 2π), and C has nowhere zero curvature. Suppose also
that R(C) is given by

r = ρ1(θ),

ρ
(4)
1 continuous as a function of period 2π. Then (H2)–(H4) are automati-

cally satisfied. The main point here is that because the tangent to C varies
continuously in slope, we can choose partition points θ0, . . . , θJ−1 so that the
tangent slope is rational at the corresponding points on C.

Theorem 1 Assume R. H., and let D be a compact set with the properties
(H1)–(H4). The number of primitive lattice points in

√
xD is

AD(x) =
6

π2
m(D)x+O(x5/13+ε).
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For comparison with θZ , we note that 5/13 = 0.3846 . . .. When D is the
unit disc, we have the stronger exponent 221/608+ ε = 0.3634 . . . (Wu, [20]).

For D as in Theorem 1, let

(1.1) Q(D; u) = Q(u) = inf{τ 2 : u/τ ∈ D},

whenever u ∈ R2. The Hlawka zeta function of D is the meromorphic
function ZD(s) obtained by extending

ZD(s) =
∑

m∈Z2, m 6=0

Q(m)−s (Re s > 1).

It is well-known (and will be shown during calculations in §3) that ZD(s) is
analytic in Re s > 1/3 except for a simple pole with residue m(D) at s = 1.
With more effort, the domain can be enlarged, but we shall not need this.
For results such as Theorem 1, we need to find σ as small as possible such
that the bound

(1.2)

∫ 2T

T

|ZD(σ + it)|2dt� T 1+ε (T ≥ 2)

holds. The successive conditions on σ published so far that suffice for (1.2)
are

σ ≥ 0.75 (Huxley and Nowak [10]),

σ ≥ 48/73 = 0.6575 . . . (Müller [14]),

σ ≥ 749/1168 = 0.6412 . . . (Zhai [21]).

Dr. Müller kindly sent me a sketch of an argument (based on a lecture
of Huxley) that gives the value σ = 0.625. Even though I could not substan-
tiate all the details, this sketch helped me understand the difficulties of this
problem.

Theorem 2 Let D be a compact set with the properties (H1)–(H4). Then
(1.2) holds for σ ≥ 3/5.

The following estimate is an important tool for the proof of Theorem 2.
It is of some interest that condition (H4) can be omitted in Theorems 3 and
4.
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Theorem 3 Let D be a compact set with the properties (H1)–(H3). Let
X > 0, ∆ > 0. The number of solutions ND(X,∆) of

(1.3) Q(m) ∼ X , 0 ≤ Q(n)−Q(m) < ∆X

satisfies
ND(X,∆)� 1 +X6/5+ε + ∆X2.

The notation ‘Γ ∼ X’ means X < Γ ≤ 2X.
It seems that the best previous result is

ND(X,∆)� 1 +X547/416+ε + ∆X2,

which can be deduced from the work of Huxley [9] by treating m trivially in
(1.3).

I conjecture that 6/5 could be replaced by 1 in Theorem 3. A proof of
this would give a new approach to the work of Robert and Sargos [16] on the
number of solutions N of

|nβ1 + nβ2 − n
β
3 − n

β
4 | < ∆Nβ , nj ∼ N.

Here β is real, β 6= 0, 1. It is perhaps not surprising that this special case
has a stronger result attached to it, namely

N � N2+ε + ∆N4+ε.

The following result is a step towards Theorem 2, and is almost a corollary
of Theorem 3.

Theorem 4 Make the hypotheses of Theorem 3. Let

SX(s) =
∑

m 6=0, Q(m)≤X

Q(m)−s.

Then for 3/5 ≤ σ ≤ 3/4, X ≥ 1, T ≥ 2,

X2−2σ ≤ T,

we have ∫ 2T

T

|SX(σ + it)|2dt� T 1+ε.
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Theorem 3 will be proved in §2, and Theorem 4 is deduced from it there.
This enables us to prove Theorem 2 in §3. In §4, we recall a standard
decomposition.

AD(x)− 6

π2
m(D)x = E1(x) + E2(x),

and prove that E2(x) = O(x5/13+ε) via Perron’s formula and Theorem 2.
This is where R. H. is needed; the strategy follows Huxley and Nowak [10].
We then show that E1(x) = O(x5/13+ε) via a refinement of exponential sum
estimates of Zhai [21]. Theorem 3 is used again in treating E1(x).

An idea of Montgomery and Vaughan [12] underpins [10, 14, 21] and the
present work, although the details of [12] are totally different. The present
paper uses some techniques from my paper [3], and I quote one lemma from
[3].

I would like to acknowledge the friendly hospitality of the Mathematics
Department of the University of Florida, where part of the work was done.

§2 Proof of Theorem 3 and the deduction of

Theorem 4.

I begin with an elementary lemma that I have not been able to find in the
literature. Let

ψ(x) = x− [x]− 1/2,

ψ0(x) =

{
ψ(x) (x 6∈ Z)

0 (x ∈ Z),

ψ∗(x) =

{
ψ(x) (x 6∈ Z)

1/2 (x ∈ Z).

Thus 2(ψ0 − ψ) is the indicator function of Z. For α 6= 0, β real, let

Ψ(α,β)(M) =
∑

1≤n≤αM

ψ0

(
βn

α

)
.
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Lemma 1 Let α > 0, β > 0, M > max(α−1, β−1). Then

Ψ(α,β)(M) + Ψ(β,α)(M) =
β

2α
ψ2(αM) +

α

2β
ψ2(βM)

− ψ(αM)ψ(βM)− α

8β
− β

8α
+

1

4
.

It is asserted by Nowak [15] that

(2.1) Ψ(α,β)(M) = Ψ(β,α)(M) +O(1)

with implied constants depending on α, β. Lemma 1 corrects this to

(2.2) Ψ(α,β)(M) = −Ψ(β,α)(M) +O(1).

Proof of Lemma 1. The number of lattice points in the rectangle [1, αM ] ×
[1, βM ] is

[αM ] [βM ] = αβM2 − αMψ(βM)− βMψ(αM)(2.3)

− (α + β)
M

2
+
ψ(αM)

2
+
ψ(βM)

2

+ ψ(αM)ψ(βM) + 1/4.

We count these points in another way. The number of them in the triangle
1 ≤ x ≤ αM , 1 ≤ y ≤ βx/α, with weight 1

2
attached to those on the upper

edge, is∑
1≤n≤αM

{[
βn

α

]
− (ψ0 − ψ)

(
βn

α

)}
=

∑
1≤n≤αM

(
βn

2
− 1

2

)
−Ψ(α,β)(M)

=
β

2α
(αM − ψ(αM)− 1/2)(αM − ψ(αM) + 1/2)

−1

2
(αM − ψ(αM)− 1/2)−Ψ(α,β)(M)

=
αβM2

2
− βMψ(αM) +

β

2α
ψ2(αM)− β

8α
− αM

2

+
ψ(αM)

2
+

1

4
−Ψ(α,β)(M).
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Adding this to the corresponding expression with (α, β) interchanged, we
find that the right-hand side of (2.3) is equal to

αβM2 − αMψ(βM)− βMψ(αM) +
α

2β
ψ2(βM) +

β

2α
ψ2(αM)

− α

8β
− β

8α
− (α + β)

M

2
+
ψ(αM)

2
+
ψ(βM)

2
+

1

2

−Ψ(α,β)(M)−Ψ(β,α)(M).

The lemma follows at once.
For f : I = [a, b]→ R with continuous nowhere vanishing second deriva-

tive, we write g = f if f ′′ < 0, g = −f if f ′′ < 0. Let φ be the inverse
function of g′ and write

G(u, v) = G(f ;u, v) = vg
(
φ
(
−u
v

))
+ uφ

(
−u
v

)
for (u, v) ∈ E(f), where

E(f) = {(u, v) : v > 0, −vg′(a) ≤ u ≤ −vg′(b)}.

We also write, for M ≥ 1,

S(f,M) =
∑

nM−1∈I

ψ
(
Mf

( n
M

))
,

S∗(f,M) =
∑

nM−1∈I

ψ∗
(
Mf

( n
M

))
,

and for integer h,

Sh(f,M) =
∑

nM−1∈I

e
(
hMf

( n
M

))
.

As usual, e(θ) denotes e2πiθ.
For a compact set D satisfying (H1)–(H3), we write

ND(x) =
∑

(m,n)∈x1/2D

1,

N∗D(x) =
∑

(m,n)∈x1/2(D\C)

1.
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For x > 1, let

PD(x) = ND(x)−m(D)x, P ∗D(x) = N∗D(x)−m(D)x.

Lemma 2 Let D be a compact set satisfying (H1)–(H3). We may write
PD(x), P ∗D(x) in the form

PD(x) =
J∑
j=1

ejS(fj,
√
x) +O(1),

P ∗D(x) =
J∑
j=1

ejS
∗(fj,

√
x) +O(1),

where J = O(1), ej ∈ {−1, 1} and fj : Ij = [aj, bj] → R, bj > aj ≥ 0

has f ′′j nowhere vanishing and f
(4)
j continuous. For each j, one of C(1)

j =

{(x, fj(x)) : x ∈ Ij} or C(2)
j = {(fj(y), y) : y ∈ Ij} is Cj.

Proof. This is given by Nowak [15], proof of Corollary 1. The formula (2.1)
is used there to interchange the role of the variables in counting lattice points
of D within a sector

x > 0, y > 0,
β1

α1

<
y

x
<
β2

α2

.

The reader may verify that in this part of the argument, (2.1) should be
replaced by (2.2).

Lemma 3 (Reciprocation). Let C0 be an arc in R2 given in polar coordinates
by

r = ρ(θ), a ≤ θ ≤ b, [a, b] ⊂ [0, 2π],

where ρ is positive and ρ(4) is continuous. Suppose that the curvature of C0

is nowhere 0, and no tangent to C0 passes through 0. Let (α(θ), β(θ)) be the
point such that the tangent to C0 at the point P (θ) with polar coordinates θ,
ρ(θ) has equation

α(θ)x+ β(θ)y = 1.

We write
R(P (θ)) = (α(θ), β(θ)).
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Then R(C0) = {(α(θ), β(θ)) : a ≤ θ ≤ b} is a curve of nowhere zero
curvature which can be written in polar coordinates (R, φ) as

(2.4) R = ρ1(φ) (c ≤ φ ≤ d).

No tangent to R(C0) passes through the origin.

Proof. This is a variant of Lemma 4 of Huxley [8], where a = 0, b = 2π.
Most of the proof needs no change. We have

(2.5) α(θ) =
sin(θ + λ)

ρ(θ) sinλ
, β(θ) = −cos(θ + λ)

ρ(θ) sinλ
,

where λ is the angle between the radius vector from 0 to P (θ) and the tangent
at θ; by hypothesis, λ 6= 0. The radii of curvature σ1(θ) of C0 and σ2(θ) of
R(C0) are related by

σ1(θ)σ2(θ) sin3 λ(θ) = 1,

and this shows that the curvature of R(C0) is nowhere 0. The ‘self-reciprocal’
property is that the tangent to R(C0) at (α(θ), β(θ)) has equation

Ax+By = 1,

where (A,B) = P (θ). This tangent does not pass through 0.
The representation (2.4) simply requires that a half-line with initial point

at 0 never intersects R(C0) more than once. If there is such a double inter-
section, it is an easy exercise in the intermediate value theorem to show that
another such half-line is tangent to R(C0), which is absurd.

Lemma 4 Define G(u, v) = G(f ;u, v) as above and let

C0 = {(x, g(x)) : a ≤ x ≤ b}.

Suppose that C0 satisfies the hypotheses of Lemma 3. Then G(u, v) is homo-
geneous of order 1 on E(f) with constant sign, say e∗. There are positive
constants c1, c2 such that

(2.6) c1

√
u2 + v2 ≤ |G(u, v)| ≤ c2

√
u2 + v2 on E(f).

The set of (u, v) in E(f) satisfying

|G(u, v)| = 1

is the curve e∗R(C0).
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Proof. This is a variant of material in Nowak [15]. It is clear that G is
homogeneous of degree 1 on E(f). For (u, v) ∈ E(f), there is a unique ζ
with

a ≤ ζ ≤ b, g′(ζ) = −u
v
,

so that
φ
(
−u
v

)
= ζ.

Conversely each ζ in I corresponds to a half-line of (u, v) in E(f) with g′(ζ) =
−u/v. The equation of the tangent to C0 at (ζ, g(ζ)) is

y − g′(ζ)x = g(ζ)− g′(ζ)ζ

= g
(
φ
(
−u
v

))
+
u

v
φ
(
−u
v

)
,

that is

(2.7) ux+ vy = G(u, v).

Since this tangent does not pass through 0, we obtain (2.6) for u2 + v2 = 1
by continuity of G, and the general case by homogeneity. By continuity, G
takes only one sign e∗ on E(f).

Suppose first that e∗ = 1. Let ζ ∈ [a, b]. The point (u, v) in E(f) with
−u/v = g′(ζ) and

(2.8) G(u, v) = 1

is clearly R(ζ, g(ζ)), and as ζ varies over I, R(ζ, g(ζ)) varies over the curve

G(u, v) = 1, v > 0, −vg′(a) ≤ u ≤ −vg′(b)

as claimed.
Now suppose that e∗ = −1. The above argument goes through with slight

changes; we have
|G(u, v)| = 1

at the point −R(ζ, g(ζ)).
The relevance of G(f ;u, v) to Theorem 2 will be seen below when the van

der Corput B-process is applied to exponential sums arising from Lemma 2.

Lemma 5 Let C0 be as in Lemma 4. There is a compact set D satisfying
(H1)–(H4) such that C0 is one of the arcs C1, . . . , CJ of C = ∂D.
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Proof. We can extend g to an interval [a− η, b+ η], with η > 0, so that g(4)

is continuous and g′′ 6= 0 on [a− η, b+ η], and no tangent to the curve

Q0 = {(x, g(x)) : x ∈ [a− η, b+ η]}

passes through 0. We can arrange that g′(a − η), g′(b + η) are rational by
reducing η.

We can now readily construct four circular arcs Q1, . . . , Q4 such that

(i) Q0, Q1, . . . , Q4 are nonoverlapping and together form a simple closed
curve C that encloses 0;

(ii) the tangents at the endpoints of Q1, . . . , Q4 have rational slope.

The compact set D whose boundary is C has the required properties.

Lemma 6 Let E1, E2 be finite sets in Z2 and Fj : Ej → R. Let

Sj(α) =
∑

(h,`)∈Ej

e(Fj(h, `)α).

Let δ > 0. The number of solutions N = N (F1, F2, δ) of

(2.9) |F1(h1, `1)− F2(h2, `2)| < δ, (hj, `j) ∈ Ej

satisfies

N � δ

∫ 1/2δ

−1/2δ

|S1(α)S2(α)|dα.

If E1 = E2, F1 = F2, then

N � δ

∫ 1/2δ

−1/2δ

|S1(α)|2dα.

The implied constants are absolute.

Proof. This is a variant of Lemma 2.1 of Watt [19]. Let

sinc a =
sin πa

πa
(a ∈ R, a 6= 0), sinc 0 = 1,

Λ(a) = max(0, 1− |a|).

11



Then

sinc2a =

∫ ∞
−∞

Λ(b)e(ab)db, Λ(b) =

∫ ∞
−∞

sinc2b e(ab)db.

Now sinc2a ≥ 0 and, for |a| ≤ 1/2, sinc2a ≥ 4/π2. Hence

N ≤
∑

(h1,`1)∈E1

∑
(h2,`2)∈E2

π2

4
sinc2

(
1

2δ
(F1(h1, `1)− F2(h2, `2))

)

=
π2

2
δ

∫ ∞
−∞

Λ(2δα)S1(α)S2(α) dα

(after an interchange of summation and integration, and a change of vari-
able). Clearly

N ≤ π2

2
δ

∫ 1/2δ

−1/2δ

|S1(α)S2(α)|dα.

Suppose now that E1 = E2, F1 = F2. Then

N ≥
∑

(h1,`1)∈E1

∑
(h2,`2)∈E2

Λ

(
1

δ
(F1(h1, `1)− F1(h2, `2))

)

= δ

∫ ∞
−∞

sinc2(δα) |S1(α)|2dα

≥ 4

π2
δ

∫ 1/2δ

−1/2δ

|S1(α)|2dα.

Lemma 7 In the notation of Lemma 6, for any K > 0,

N (F1, cF2, δ)�K N (F1, F1, δ)
1/2N

(
F2, F2,

δ

|c|

)1/2

if K−1 ≤ |c| ≤ K.
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Proof. By Lemma 6 and the Cauchy-Schwarz inequality,

N (F1, cF2, δ)� δ

∫ 1/2δ

−1/2δ

|S1(α)S2(c α)|dα

�K

(
δ

∫ 1/2δ

−1/2δ

|S1(α)|2dα

)1/2(
δ

∫ |c|/2δ
−|c|/2δ

|S2(α)|2dα

)1/2

�K N (F1, F1, δ)
1/2N

(
F2, F2,

|δ|
c

)1/2

.

Lemma 8 Let τ ≥ 1 and suppose that the number of solutions ND(X,∆) of
(1.3) satisfies

(2.10) ND(X,∆)�τ 1 +Xτ + ∆X2

whenever D is a compact set satisfying (H1)–(H4). Then the number of
solutions of

(2.11) Q(m) �D X, 0 ≤ Q(n)−Q(m) < ∆X

is
�D,τ 1 +Xτ + ∆X2

whenever X > 0, ∆ > 0 and D is a compact set satisfying (H1)–(H3).

In the following proof, implied constants may have the same dependencies
as those in the conclusion of the lemma. We use this convention in subsequent
proofs also.

Proof. Let D be given satisfying (H1)–(H3). Choose f1, . . . , fJ as in Lemma
2 and fix j. As a consequence of Lemma 5, there is a compact setD∗ satisfying
(H1)–(H4) such that Cj is a arc of C∗ = ∂D∗. Let L1, L2 be line segments
joining 0 to the endpoints of Cj and let Ej be the part of D bounded by L1,
L2, Cj. Since Ej ⊂ D∗, the number of solutions of (1.3) with

m ∈ X1/22p/2Ej, n ∈ X1/22p/2Ej,
X2p−1 < Q(m) ≤ X2p,

X2p−1 < Q(n) ≤ X2pis

� 1 +Xτ + ∆X2 � 1 +Xτ + ∆X2
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for any integer p� 1. By Lemma 7, the number of solutions Nj,k,p,q of (1.3)
with

m ∈ X1/22p/2Ej, X2p−1 < Q(m) ≤ X2p,

n ∈ X1/22q/2Ek, X2q−1 < Q(n) ≤ X2q

is also

� 1 +Xτ + ∆X2.

when p� 1, q � 1.
We may evidently suppose that ∆ < 1. The number of solutions of (2.11)

is

≤
∑
p

∑
q

J∑
j=1

J∑
k=1

Nj,k,p,q

with summation extending over a bounded set of (p, q). Lemma 8 follows at
once.

Lemma 9 Let K > 0. Let τ ≥ 1 and suppose that the number of solutions
of (1.3) is

�D,τ 1 +Xτ + ∆X2

whenever X > 0, ∆ > 0, and D is a compact set satisfying (H1)–(H4). Let
D be given satisfying (H1)–(H3) and let f1, . . . , fJ be as in Lemma 2. Let
H ≥ 1. Then the number of solutions of

|G(fj; `1, h1) + cG(fk, `2, h2)| < ∆H

with

(`1, h1) ∈ E(fj) ∩ Z2, h1 �fj
H

(`2, h2) ∈ E(fk) ∩ Z2, h2 �fk
H

is
�D,τ,K H2τ + ∆H4.

provided that K−1 ≤ |c| ≤ K.

14



Proof. By Lemma 7, we need only prove this in the case j = k, |c| = 1. To
avoid trivialities we need only bound the number of solutions of

(2.12) | |G(fj; `1, h1)| − |G(fj; `2, h2)| | < ∆H, h1 � H, h2 � H.

By Lemma 7 again, we can restrict (`1, h1) and (`2, h2) in (2.12) to a section
S in such a way that the curve CS given by

(2.13) |G(fj;u, v)| = 1, (u, v) ∈ S

can be written {(x, h(x)) : c ≤ x ≤ d} or {(h(x), x) : c ≤ x ≤ d}. Now
Lemma 5 (in conjunction with Lemmas 3, 4) provides a compact set D∗
satisfying (H1)–(H4) such that CS is an arc of ∂D∗.

For (u, v) ∈ S, we have

|G(f ;u, v)| = Q(D∗; (u, v))1/2.

To see this, define τ > 0 by 1
τ

(u, v) ∈ CS, so that

Q(D∗; (u, v)) = τ 2,
∣∣∣G(f ;

u

τ
,
v

τ

)∣∣∣ = 1.

Then
|G(f ;u, v)| = τ

∣∣∣G(f ;
u

τ
,
v

τ

)∣∣∣ = τ = Q(D∗; (u, v))1/2.

Now (2.12) implies

Q(D∗; `1, h1)) � H2,

Q(D∗; (`2, h2))−Q(D∗; (`1, h1))� H(∆H) = ∆H2.

There are
� 1 + (H2)τ + ∆(H2)2 � H2τ + ∆H4

such quadruples `1, h1, `2, h2.

Lemma 10 Let L ≥ 1. There are trigonometric polynomials

P (y) =
∑

0<|h|≤L

ahe(hy) , ah � |h|−1
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and

Q(y) =
∑
|h|≤L

bhe(hy) , bh � L−1

such that

|ψ(y)− P (y)| ≤ Q(y)(2.14)

and

|ψ∗(y)− P (y)| ≤ Q(y).(2.15)

Proof. See Vaaler [18] (also the appendix to Graham and Kolesnik [5]) for
(2.14); the inequality (2.15) follows by a limit argument.

Lemma 10 reduces the study of S(f,M), S∗(f,M) to that of Sh(f,M).
We quote the result of applying the B-process to Sh(f,M) from Kühleitner
and Nowak [11].

Lemma 11 Suppose that h > 0, f (4) : I → R, f (4) is continuous on I and
f (2) is never 0. In the notation introduced above,

Sh(g,M) =
M1/2

h1/2

∑′′

−hg′(b)≤m≤−hg′(a)

1√
g′′
(
φ
(
−m

h

)) e(MG(f ;m,h))(2.16)

+O(rh(a) + rh(b) + log 2M)

for M ≥ 1. Here
∑′′ indicates that values m = −hg′(b), m = −hg′(a)

correspond to terms with weight 1
2
;

rh(c) =

{
0 if hg′(c) ∈ Z
min

(
1

‖hg′(c)‖ ,
M1/2

h1/2

)
otherwise.

In particular, the error term in (2.16) is O(log 2M) when f ′(a) and f ′(b)
are rational.

The theory of the Riemann-Stieltjes integral used in the following lemma
(and subsequently) is the version expounded in Apostol [1, Chapter 9]. In
particular, the integral

I1 =

∫ w

v

g(u)dh(u)

16



exists if h : [v, w] → C is the sum of a continuous function and a step
function continuous from the right, while g : [v, w] → C is a function of
bounded variation continuous from the left. When I1 exists for given bounded
functions g, h on [v, w], so too does

I2 =

∫ w

v

h(u)dg(u),

and
I1 + I2 = h(u)g(u)

∣∣w
v
.

Lemma 12 Let D be as in Theorem 3. Let X ≥ 1. Let g, k be left-
continuous functions of bounded variation on [X, 2X]. Then

(i)

∫ 2X

X

g(w)dPD(w)� ‖g‖∞X.

(ii) If |g(w)| ≤ k(w), then∫ 2X

X

g(w)dPD(w)�
∫ 2X

X

k(w)dw +

∣∣∣∣∫ 2X

X

k(w)dPD(w)

∣∣∣∣ .
(iii) If g is continuously differentiable, then∫ 2X

X

g(w)dPD(w)� ‖g‖∞X1/3 +

∣∣∣∣∫ 2X

X

g′(w)PD(w)dw

∣∣∣∣ .
The sup norm is taken over [X, 2X].

Proof. (i) This follows at once from

(2.17)

∫ 2X

X

g(w)dPD(w) = −m(D)

∫ 2X

X

g(w)dw +

∫ 2X

X

g(w)dND(w),

since ∣∣∣∣∫ 2X

X

g(w)dND(w)

∣∣∣∣ ≤ ‖g‖∞(ND(2X)−ND(X)).

17



(ii) From (2.17),∣∣∣∣∫ 2X

X

g(w)dPD(w)

∣∣∣∣ ≤ m(D)

∫ 2X

X

k(w)dw +

∫ 2X

X

k(w)dND(w)

= 2m(D)

∫ 2X

X

k(w)dw +

∫ 2X

X

k(w)dPD(w).

(iii) The estimate ‖PD‖∞ � X1/3 is due to van der Corput [4]. (Note that
this implies ‖P ∗D‖∞ � X1/3.) We shall not need later refinements (the most
recent is in Huxley [9]).

Now ∫ 2X

X

g(w)dPD(w) = g(w)PD(w)
∣∣∣2X
X
−
∫ 2X

X

g′(w)PD(w)dw

� ‖g‖∞X1/3 +

∣∣∣∣∫ 2X

X

g′(w)PD(w)dw

∣∣∣∣ .
The following lemma can be found in Titchmarsh [17] and Graham and

Kolesnik [5].

Lemma 13 Let F be a real differentiable function on [a, b] and G(w) a real
continuous function on [a, b]. Suppose that F ′(w)/G(w) is monotonic and

F ′(w)/G(w) ≥ m > 0

or
F ′(w)/G(w) ≤ −m < 0

on [a, b]. Then ∣∣∣∣∫ b

a

G(w)e(F (w))dw

∣∣∣∣ ≤ 4

m
.

We now state a proposition that can be used twice to obtain Theorem 3.

Proposition Suppose that

ND(X,∆)�D,τ 1 +Xτ + ∆X2

for some τ ≥ 6/5 + ε and all compact sets D with the properties (H1)–(H3).
Then for 0 < η ≤ 1/11, τ − η ≥ 6/5 + ε, we have

(2.18) ND(X,∆)�D,τ,ε 1 +Xτ−η + ∆X2

18



for all compact sets D with the properties (H1)–(H3).

To deduce Theorem 3, we observe that the hypothesis of the proposition
holds for τ = 4/3, since for fixed m, the number of solutions of (1.3) is

≤ ND(Q(m) + ∆X)−ND(Q(m)−∆X)

�D X1/3 + ∆X

by the result of [4]. We apply the proposition to show that the hypothesis
of the proposition holds for τ = 4/3− 1/11. Applying the proposition again
with η = 4/3− 1/11− (6/5 + ε), we obtain

ND(X,∆)�D,ε 1 +X6/5+ε + ∆X2

whenever D is a compact set with the properties (H1)–(H3).

Proof of the Proposition. In view of Lemma 8, we need only prove (2.18)
for a compact set D with the properties (H1)–(H4). Write Q(m) = Q(D; m).
The number of solutions of (1.3) can be written in the form∑

X<Q(m)≤2X

{N ∗D(Q(m) + ∆X)−N∗D(Q(m))}

=

∫ 2X

X

{N∗D(ω + ∆X)−N∗D(ω)}dND(ω)

=

∫ 2X

X

m(D)∆XdND(ω) +

∫ 2X

X

(P ∗D(ω + ∆X)− P ∗D(ω))dND(ω).

Thus is suffices to show that

(2.19)

∫ 2X

X

(P ∗D(ω + ∆X)− P ∗D(ω))dω � ∆X2

and

(2.20)

∫ 2X

X

P ∗D(ω1)dPD(ω)� Xτ−η + ∆X2.

where ω1 = ω + γ, γ ∈ {0,∆X}.
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The bound (2.19) gives no trouble. We have∫ 2X

X

(P ∗D(ω + ∆X)− P ∗D(ω))dω

=

∫ 2X+∆X

X+∆X

P ∗D(ω)dω −
∫ 2X

X

P ∗D(ω)dω

=

(∫ 2X+∆X

2X

−
∫ X+∆X

X

)
P ∗D(ω)dω � X1/3∆X.

Turning to (2.20), we rewrite the result of Lemma 2 as

P ∗D(ω) =
J∑
j=1

ejS
∗(fj,

√
ω) + F (ω),

where F (ω) is a left-continuous function of bounded variation on [X, 2X],
and

F (ω) = O(1).

Since ∫ 2X

X

F (ω)dPD(ω)� X

from Lemma 12 (i), we need only prove that

(2.21)

∫ 2X

X

S∗(f,
√
ω1)dPD(ω)� Xτ−η +X2∆

whenever f = fD : [a, b] → R with f (4) continuous, f (2) is nowhere 0, and
f ′(a), f ′(b) are rational.

We apply Lemma 10 with

L = X3/2−τ+η.

Writing

g1(ω) = S∗(f,
√
ω1), g2(ω) =

∑
0<|h|≤L

ahSh(f,
√
ω1)

and
k(ω) =

∑
|h|≤L

bhSh(f,
√
ω1),
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so that
|g1(ω)− g2(ω)| ≤ k(ω),

Lemma 7 (ii) gives∫ 2X

X

g1(ω)dPD(ω)−
∫ 2X

X

g2(ω)dPD(ω)(2.22)

�
∫ 2X

X

k(ω)dω +

∣∣∣∣∫ 2X

X

k(ω)dPD(ω)

∣∣∣∣ .
The contribution to the right-hand side of (2.22) from b0S0(f,

√
ω1) is

� X3/2L−1 � Xτ−η

from Lemma 12 (i).
We now apply Lemma 11. We see that it suffices to show that∫ 2X

X

E(ω)dΓ(ω)� Xτ−η + ∆X2,

where dΓ(ω) denotes either of dω, dPD(ω) and

E(ω) = ω
1/4
1

∑
0<h≤L

h−3/2
∑

−hg′(a)≤`≤−hg′(b)

κ(h, `)e(±ω1/2
1 G(`, h))

+O((logX)2).

Here G(`, h) = G(f ; `, h) and |κ(h, `)| � 1.
The integrals arising from the O((logX)2) term in the expression for E(ω)

are
O(X(logX)2)

by Lemma 12 (i), which is satisfactory. By a splitting-up argument, we need
only show that, for either choice of dΓ(ω),

H−3/2
∑

(h,`)∈E

∣∣∣∣∫ 2X

X

ω
1/4
1 e(ω

1/2
1 G(`, h))dΓ(ω)

∣∣∣∣(2.23)

� Xτ−η−ε +X2−ε∆.
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Here we may suppose that ε is sufficiently small, and we have

(2.24)
1

2
≤ H ≤ X3/2−τ+η;

we define E = E(f,H) by

(2.25) E = {(h, `) ∈ Z2 : h ∼ H, −hg′(a) ≤ ` ≤ −hg′(b)}.

The case dΓ(ω) = dω of (2.23) is immediate from Lemma 13. The left-
hand side of (2.23) is

� H1/2X1/4(X−1/2H)−1 � X3/4.

For dΓ(ω) = dPD(ω), we appeal to Lemma 12 (iii):∫ 2X

X

ω
1/4
1 e(ω

1/2
1 G(`, h))dPD(ω)(2.26)

� X1/4+1/3 +

∣∣∣∣∫ 2X

X

ω
−3/4
1 e(ω

1/2
1 G(`, h))PD(ω)dω

∣∣∣∣
+

∣∣∣∣∫ 2X

X

ω
−1/4
1 G(`, h)e(ω

1/2
1 G(`, h))PD(ω)dω

∣∣∣∣ .
The second term on the right-hand side of (2.26) is also O(X1/4+1/3), so that
together with the first term the corresponding contribution to the left-hand
side of (2.23) is

O(H1/2X7/12) = O(X3/4+7/12−τ/2+η/2)

= O(Xτ−η−ε)

since τ − η > 6
5
> 2

3

(
3
4

+ 7
12

)
. Thus we must show that

H−1/2
∑

(h,`)∈E

∣∣∣∣∫ 2X

X

ω
−1/4
1 e(ω

1/2
1 G(`, h))PD(ω)dω

∣∣∣∣� Xτ−η−ε +X2−ε∆.

We apply Lemma 2 again, noting that

H−1/2
∑

(h,`)∈E

∣∣∣∣∫ 2X

X

ω
−1/4
1 e(ω

1/2
1 G(`, h))O(1)dω

∣∣∣∣
� H3/2X3/4 � X3−3τ/2+3η/2

� Xτ−η−ε,
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since
5τ

2
− 5η

2
≥ 3 + ε.

Thus we must show that, with f1 : [a1, b1]→ R a function (depending on D)
having the properties ascribed to f ,

H−1/2
∑

(h,`)∈E

∣∣∣∣∫ 2X

X

ω
−1/4
1 e(ω

1/2
1 G(h, `))S(f1,

√
ω)dω

∣∣∣∣(2.27)

� Xτ−η−ε +X2−ε∆.

We apply Lemma 10 again, with

L1 = H3/2X5/4−τ+η+ε

in place of L. We obtain∣∣∣∣∫ 2X

X

ω
−1/4
1 e(ω

1/2
1 G(`, h))S(f1,

√
ω)dω

∣∣∣∣(2.28)

≤

∣∣∣∣∣∣
∫ 2X

X

ω
−1/4
1 e(ω

1/2
1 G(`, h))

∑
0<|h′|≤L1

ah′Sh′(f1,
√
ω)dω

∣∣∣∣∣∣
+

∫ 2X

X

ω
−1/4
1

∑
|h′|≤L1

bh′Sh′(f1,
√
ω)dω.

The contribution to the right-hand side of (2.28) from b0 is O(X5/4L−1
1 ).

In bounding the left-hand side of (2.27), this gives rise to a contribution

� H3/2X5/4L−1
1 = Xτ−η−ε.

After a further splitting-up argument, it suffices to show that

H−1/2
∑

(h,`)∈E

∣∣∣∣∣
∫ 2X

X

ω
−1/4
1 e(βω

1/2
1 G(`, h))

∑
h′�K

ch′Sh′(f1,
√
ω)dω

∣∣∣∣∣(2.29)

� Xτ−η−2ε +X2−2ε∆

whenever K ∈
[

1
2
, L
]
, ch′ � K−1 and β ∈ {0, 1}.
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We apply Lemma 11 once more. The error O(log 2M) yields a contribu-
tion to the left-hand side of (2.29) that is

� H3/2

∫ 2X

X

ω
−1/4
1

∑
h′�K

K−1 log xdω

� H3/2X3/4 logX � Xτ−η−2ε

since
5τ

2
− 5η

2
≥ 3 +

5ε

2
.

It remains to show that

H−1/2K−3/2
∑

(h,`)∈E

∑
(h′,`′)∈E ′

∣∣∣∣∫ 2X

X

ω
−1/4
1 ω1/4e(βω

1/2
1 G(`, h) + ω1/2G1(`′, h′))dω

∣∣∣∣
(2.30)

� Xτ−η−2ε +X2−2ε∆

for β ∈ {0, 1,−1}. Here, with g1 = ±f1 having g′′1 < 0,

E ′ = {(h′, `′) ∈ Z2 : h′ ∼ K,−h′g′1(a1) ≤ `′ ≤ −h′g′(b1)},

and G1(u, v) = G(f1;u, v), while

1

2
≤ K ≤ L1.

Now in (2.30),

d

dω

(
βω

1/2
1 G(`, h) + ω1/2G1(`′, h′)

)
� X−1/2K

unless

(2.31) β = ±1, H � K.

If (2.31) does not hold, the left-hand side of (2.30) is

� H3/2K1/2(X−1/2K)−1 � H3/2X1/2,

which we have already seen is acceptable.
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Suppose now that β = ±1 and H � K. The contribution to the left-hand
side of (2.30) from quadruples with

(2.32) G(`, h)−G1(`′, h′)� ∆H

is estimated via Lemma 9, using a trivial bound for the integral, as

H−1/2K−3/2X(H2τ +H4∆)(2.33)

� H2τ−2X +H2X∆

� X(3/2−τ+η)(2τ−2)+1 +X4−2τ+2η∆.

Now
4− 2τ + 2η ≤ 4− 12/5 < 2− 2ε.

Moreover (
3

2
− τ + η

)
(2τ − 2) + 1 = 5τ − 2τ 2 + η(2τ − 2)− 2

≤ τ − η − 2ε,

since τ > 6/5 + η,

4τ − 2τ 2 − 2 < 4

(
6

5
+ η

)
− 2

(
6

5
+ η

)2

− 2(2.34)

< −4η

5
− 2

25
≤ −5η

3
− 3ε ≤ −η(2τ − 1)− 2ε.

This shows that the bound in (2.33) is satisfactory.
If α = ±1, H � K and (2.32) does not hold, say |G(`, h) − G1(`′, h′)| >

C∆H, C = C(D) > 0, then∣∣∣∣∣ ddω (G(`, h)ω
1/2
1 −G1(h′, `′)ω1/2

) ∣∣∣∣∣
=

∣∣∣∣12 (G(h, `)−G1(h′, `′))ω−1/2

∣∣∣∣+O(∆HX−1/2)

� |G(h, `)−G1(h′, `′)|X−1/2.
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Consider the contribution to the left-hand side of (2.30) from quadruples
with

δH < |G(h, `)−G1(h′, `′)| ≤ 2δH,

where δ = C∆2k−1, k = 1, 2, . . ., δ � 1. This contribution is

� H−2(H2τ +H4δ) min(X, (δHX−1/2)−1)

� H2τ−2X +HX1/2.

Summing over O(logX) values of ∆, the quadruples for which (2.32) fails
contribute

� H2τ−2X logX +HX1/2 logX.

The second term was shown earlier to be satisfactory, and the calculation
leading to (2.34) gives the same outcome for the first term. This completes
the proof of the proposition.

Proof of Theorem 4. By a splitting-up argument and Minkowski’s in-
equality, it suffices to show that

(2.35)

∫ 2T

T

∣∣∣∣∣ ∑
Q(m)∼X

Q(m)−σ−it

∣∣∣∣∣
2

dt� T 1+ε/2.

The left-hand side of (2.35) is

∑
m

Q(m)∼X

∑
n

Q(n)∼X

(Q(n)Q(m))−σ
∫ 2T

T

(Q(m)/Q(n))itdt(2.36)

≤ 4X−2σ
∑
m

Q(m)∼X

∑
n

Q(m)≤Q(n)≤X

min

(
T,

1

log Q(n)
Q(m)

)
.

Those m, n with (
log

Q(n)

Q(m)

)−1

< 4

contribute

� X−2σ

{ ∑
n

Q(n)≤2X

1

}2

� X2−2σ � T
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to the left-hand side of (2.36).
For 4 ≤ U ≤ T , let

M(U) = |{(m,n) : X < Q(m) ≤ Q(n) ≤ 2X,

(logQ(n)/Q(m))−1 ≥ U}|,

where | . . . | denotes cardinality and we agree that (log 1)−1 ≥ U . If (m,n)
is counted in M(U),

U

2
≤ Q(m)

Q(n)−Q(m)
≤ 2X

Q(n)−Q(m)
,

0 ≤ Q(n)−Q(m) ≤ 4X

U
.

By Theorem 3,
M(U)� X6/5+ε/3 + U−1X2.

A splitting-up argument now yields the following bound for the left-hand
side of (2.36):

� T +
∑

U=2−`T≥4

X−2σUM(U)

� T + (X6/5+ε/3−2σT +X2−2σ) log T

since ` = 0, 1, 2, . . . runs over O(log T ) values. The last upper bound is

� T 1+ε,

since X2−2σ ≤ T and X6/5+ε/3−2σ ≤ Xε/3 � T 2ε/3. This completes the proof
of Theorem 4.

§3 Proof of Theorem 2.

The following simple result is Lemma 5 of [3].

Lemma 14 Let A > 0, A < B ≤ 2A, C ≥ 2, C < D ≤ 2C. Let f be a
bounded measurable function on [A,B]. Then∫ D

C

∣∣∣∣∫ B

A

f(x)xitdx

∣∣∣∣2 dt� A logC

∫ B

A

|f(x)|2dx.

27



Lemma 15 Let F : [c, d]→ R. Suppose F is continuously differentiable and
|F ′(u)| ≥ k|u| (c ≤ u ≤ d) for some k > 0. Then for γ > 0,

E = {u ∈ [c, d] : |F (u)| ≤ γ}

is the union of at most 2 intervals of length Ok(γ
1/2).

Proof. Suppose first that c ≥ 0. After changing the sign of F if necessary,

F ′(u) ≥ ku > 0 on (c, d].

Clearly {u ∈ [c, d] : −γ ≤ F (u) ≤ γ} is empty or is a single interval with
endpoints C, D say. Moreover,

2γ ≥ F (D)− F (C) =

∫ D

C

F ′(u)du ≥ k

∫ D

C

u du

=
k

2
(D2 − C2) ≥ k

2
(D − C)2,

D − C ≤ 2γ1/2k−1/2.

If c < 0, we treat the interval [c,min(d, 0)] in the same way by replacing
F (u) by F (−u). This completes the proof.

Lemma 16 Let Y > 1, L ≥ Y 3. Let f : [a, b] → R and suppose that f ′′ is
continuous and never 0. Let

SL(ω) =
1

2πi

∑
nω−1/2∈[a,b]

∑
0<|h|≤L

h−1e
(
hω1/2f

( n

ω1/2

))
.

Then

(3.1)

∫ 2Y

Y

|S(f,
√
ω)− SL(ω)|2dω �f Y.

Proof. The left-hand side of (3.1) is at most

2

∫ 2Y

Y

∣∣∣∣∣∣ψ(ω1/2f(0))−
∑

0<|h|≤L

e(hω1/2f(0))

2πih

∣∣∣∣∣∣
2

dω(3.2)

+ 2

∫ 2Y

Y

∣∣∣∣∣ ∑
n∈[aY 1/2,b(2Y )1/2]

n>0

Gn(ω)gn(ω)

∣∣∣∣∣
2

dω
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(where the first summand may be omitted if a > 0). Here

Gn(ω) =
∑
|h|>L

e
(
hω1/2f

(
n

ω1/2

))
2πih

,

gn(ω) =

{
1 if nω−1/2 ∈ [a, b]

0 otherwise.

The first summand in (3.2) is O(Y ) by the bounded convergence of the
Fourier series of ψ. Applying Minkowski’s inequality, it suffices to show that,
writing I(n) = {ω ∈ [Y, 2Y ] : n

ω1/2 ∈ [a, b]},

(3.3)
∑

n∈(aY 1/2,b(2Y )1/2]

∫
I(n)

|Gn(ω)|2dω � Y 1/2.

We begin the proof of (3.3) by noting that

(3.4)

∫ Z2

Z1

∣∣∣∣∣ ∑
|h|>L

e(hz)

h

∣∣∣∣∣
2

dz � Z2 − Z1 + 1

L
(Z2 > Z1),

by Parseval’s equality on any interval of length 1. We now fix n ∈ (aY 1/2, b(2Y )1/2]
and write I = I(n). Let I1 be the set of ω in I for which

(3.5)

∣∣∣∣ ddω (ω1/2f
( n

ω1/2

))∣∣∣∣ ≥ βω−1/2;

the positive number β will be chosen below. We shall see that I1 is the
union of at most three intervals, on each of which the derivative in (3.5) has
constant sign. It follows from (3.4) that∫

I1

|Gn(ω)|2
∣∣∣∣ ddω (ω1/2f

( n

ω1/2

))∣∣∣∣ dω � Y 1/2

L

so that ∫
I1

|Gn(ω)|2dω � Y 1/2

L(βY −1/2)
=

Y

Lβ
.

Now

d

dω

(
ω1/2f

( n

ω1/2

))
=

1

2
ω−1/2

{
f
( n

ω1/2

)
− n

ω1/2
f ′
( n

ω1/2

)}
.
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We observe that∣∣∣∣ ddu {f(u)− uf ′(u)}
∣∣∣∣ = | − uf ′′(u)| ≥ |u| on [a, b],

where k = k(f) > 0. By Lemma 15, I\I1 may be written

I\I1 =
{
ω ∈ I :

n

ω1/2
∈ E

}
,

where E is the union of at most two intervals of length O(β1/2) with endpoints
between n

(2Y )1/2 and n
Y 1/2 . It may readily be verified that I\I1 is the union of at

most two intervals of length O
(
Y 3/2β1/2

|n|

)
. Again using bounded convergence,∫

I\I1
|Gn(ω)|2dω � Y 3/2β1/2

|n|
.

Choosing β = Y −1/3L−2/3|n|2/3, we see that∫
I

|Gn(ω)|2dω � Y 4/3

L1/3|n|2/3
.

Thus the left-hand side of (3.3) is

�
∑

1≤|n|≤b(2Y )1/2

Y 4/3

L1/3|n|2/3
� Y 3/2

L1/3
� Y 1/2.

This completes the proof of the lemma.

Proof of Theorem 2. Let σ > 1. We have, for X > 0,

ZD(s) =
∑

Q(m)≤X

Q(m)−s +

∫ ∞
X

dND(ω)

ωs
(3.6)

=
∑

Q(m)≤X

Q(m)−s +m(D)

∫ ∞
X

ω−sdω +

∫ ∞
X

dPD(ω)

ωs

=
∑

Q(m)≤X

Q(m)−s +
m(D)X1−s

s− 1
− PD(X)

Xs
+ s

∫ ∞
X

PD(ω)dω

ωs+1
.
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Using PD(ω)� ω1/3, this formula provides the analytic continuation of ZD(s)
to the half-plane σ > 1/3; we note the simple pole at 1 with residue m(D).

Let T ≥ 2. In proving Theorem 2, we may suppose that 3/5 ≤ σ ≤ 3/4.
Define X by

Xσ+1/4 = T.

Note that X2−2σ ≤ Xσ+1/4 = T . From the last expression in (3.6),∫ 2T

T

|ZD(σ + it)|2dt� T +

∫ 2T

T

∣∣∣∣∣ ∑
Q(m)≤X

Q(m)−σ−it

∣∣∣∣∣
2

dt

+ T 2

∫ 2T

T

∣∣∣∣∫ ∞
X

PD(ω)

ωσ+it+1
dω

∣∣∣∣2 dt.
In view of Theorem 4, we need only show that

(3.7)

∫ 2T

T

∣∣∣∣∫ ∞
X

PD(ω)

ωσ+it
dω

∣∣∣∣2 dt� T−1+ε.

Let

Fj(t) =

∫ X2j

X2j−1

PD(ω)

ωσ+it+1
dω (j ≥ 1).

It suffices to show that

(3.8)

∫ 2T

T

|Fj(t)|2dt� T−1+εj−4 (j ≥ 1).

For then (3.7) follows from Cauchy’s inequality:∫ 2T

T

∣∣∣∣∣
∞∑
j=1

Fj(t)

∣∣∣∣∣
2

dt ≤
∫ 2T

T

(
∞∑
j=1

j−2

)(
∞∑
j=1

j2|Fj(t)|2
)
dt

≤
∑
j

∫ 2T

T

j2|Fj(t)|2dt� T−1+ε.

Arguments of the following kind will be used implicitly. Suppose that

Fj =
K∑
k=1

Fj,k , K = O((log T )C)
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for an absolute constant C. Then∫ 2T

T

|Fj(t)|2dt ≤ K

∫ 2T

T

K∑
k=1

|Fj,k(t)|2dt.

Thus to prove (3.8) it suffices to show that∫ 2T

T

|Fj,k(t)|2dt� T−1+ε/2j−4 (1 ≤ k ≤ K).

(It is harmless to split Fj into O((log T )C) parts.)
We begin by noting that if G(ω) is a bounded measurable function on

J(j) = [X2j−1, X2j],

then

(3.9)

∫ 2T

T

∣∣∣∣∫
J(j)

G(ω)

ωσ+it+1
dω

∣∣∣∣2 dt� log T (X2j)−2σ‖G‖2
∞

from Lemma 14. In particular, if G(ω) = O(T ε/6), the last quantity is

� T−1+ε/2j−4.

Recalling Lemma 2, we need only show that

(3.10)

∫ 2T

T

∣∣∣∣∫
J(j)

S(f,
√
ω)

ωσ+it+1
dω

∣∣∣∣2 dt� T−1+εj−4

where fD = f : I = [a, b] → R, f (4) is continuous, f (2) is never 0, and f ′(a),
f ′(b) are rational.

In the notation of Lemma 16, with L = (X2j)1/3, we have∫ 2T

T

∣∣∣∣∫
J(j)

S(f,
√
ω)

ωσ+it+1
dω

∣∣∣∣2 dt
≤ 2

∫ 2T

T

∣∣∣∣∫
J(j)

S(f,
√
ω)− SL(ω)

ωσ+it+1
dω

∣∣∣∣2 dt
+ 2

∫ 2T

T

∣∣∣∣∫
J(j)

SL(ω)

ωσ+it+1
dω

∣∣∣∣2 dt.
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The first summand on the right is

� (X2j)−2σ log T � T−1+ε2−2jσ,

by Lemma 14 in tandem with Lemma 16. It remains to show that∫ 2T

T

∣∣∣∣∫
J(j)

SL(ω)

ωσ+it+1
dω

∣∣∣∣2 dt� T−1+εj−4.

We apply a splitting-up argument to the variable h in SL(ω), followed by
Lemma 11. The integral corresponding to the term∑

|h|∼H

O(|h|−1 log T ) = O((log T )2)

that arises from (2.16) can be bounded satisfactorily via the estimate (3.9).
Thus it remains to show that

H−3

∫ 2T

T

∣∣∣∣∣
∫
J(j)

ω−σ−αit−3/4
∑

(h,`)∈E

b(h, `)e(G(`, h)ω1/2)dω

∣∣∣∣∣
2

dt(3.11)

� T−1+ε/2j−4

with E as in (2.25), |b(h, `)| ≤ 1, and α ∈ {−1, 1}. Here 1 ≤ H ≤ (X2j)3.
Now ∣∣∣∣∣ ddω

(
− αt logω

2π
+G(`, h)ω1/2

)∣∣∣∣∣
=

∣∣∣∣− αt

2πω
+

1

2
G(`, h)ω−1/2

∣∣∣∣� H(X2j)−1/2

unless α = e∗ (the sign of G) and

T (X2j)−1 � H(X2j)−1/2,

that is,

(3.12) H � T (X2j)−1/2.
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Suppose for a moment that either α 6= e∗ or that (3.12) does not hold.
Lemma 13 yields ∫

J(j)

ω−σ−αit−3/4e(G(`, h)ω1/2)dω

� (X2j)−1/4−σH−1.

Since |E|2 � H4, the left-hand side of (3.11) is

� H−1T (X2j)−1/2−2σ

� T−1j−4

from the definition of X.
Now suppose that α = e∗ and that (3.12) holds. The left-hand side of

(3.11) is estimated via Lemma 14 as

� H−3X2j log T

∫
J(j)

ω−2σ−3/2

∣∣∣∣∣ ∑
(h,`)∈E

e(G(`, h)ω1/2)

∣∣∣∣∣
2

dω

(3.13)

� H−3X2j log T
∑

(h1,`1)∈E

∑
(h2,`2)∈E

∫
J(j)

ω−2σ−3/2e(ω1/2(G(h1, `1)−G(h2, `2)))dω.

Consider first the contribution to the right-hand side of (3.13) from
quadruples h1, `1, h2, `2 with

|G(`1, h1)−G(`2, h2)| < H−3/5.

There are O(H12/5+ε/4) such quadruples, by Theorem 3 and Lemma 9. Esti-
mating the integral trivially, these quadruples contribute

� H−3/5+ε/4X2j log T (X2j)−2σ−1/2

� (X2j)−2σ+1/2H−3/5T ε/2

� (X2j)−2σ+4/5T−3/5+ε/2 � T−1+ε/2j−4

since
(X2j)2σ−4/5 ≥ (X2j)2/5(σ+1/4) � T 2/5j4.
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Now consider the contribution to the right-hand side of (3.11) from quadru-
ples with

δH ≤ |G(`1, h1)−G(`2, h2)| < 2δH,

where δ = H−8/52k−1, k = 1, 2, . . ., δ � 1. There are O(δH4) such quadru-
ples, again by Theorem 3 and Lemma 9. Estimating the integral via Lemma
13, these quadruples contribute

� δH X2j log T (X2j)−2σ−3/2(δH)−1(X2j)1/2

� (X2j)−2σ log T � T−1j−4.

Thus quadruples with

|G(`1, h1)−G(`2, h2)| ≥ H−8/5

contribute O(T−1+ε/2j−4) to the right-hand side of (3.13). This completes
the proof of Theorem 2.

§4 Proof of Theorem 1.

For the convenience of the reader, we repeat some arguments from Huxley
and Nowak [10] without much change. Let y = y(x) be a large positive
number, y(x) < x1/2, to be chosen below. We have

AD(x) =
∑

0<Q(m1,m2)≤x
gcd (m1,m2)=1

1(4.1)

=
∑

0<Q(m1,m2)≤x

∑
d |m1,d|m2

µ(d)

=
∑
d≥1

µ(d)ND

(√
x

d

)

=
∑
d≤y

µ(d)PD

(√
x

d

)
+
∑
d>y

µ(d)PD

(√
x

d

)
+m(D)x

∞∑
d=1

µ(d)

d2

= E1(x) + E2(x) +
6

π2
m(D)x,

35



say.
We now quote a formula of Perron type from [10]:

(4.2)
∑
d>y

µ(d)ND

( x
d2

)
=

1

2πi

∫ 3+ix5

3−ix5

ZD(s)fy(2s)
xs

s
ds+O(x1/3+ε).

Here

fy(s) =
1

ζ(s)
−
∑
m≤y

µ(m)

ms
.

Since we assume R. H., we have

(4.3) fy(σ + it) =
∑
n>y

µ(n)

nσ+it
� y1/2−σ+ε(|t|ε + 1)

for σ ≥ 1/2 + ε. This is obtained by a slight variant of the proof of [17,
Theorem 14.25(A)].

By a slight adaptation of the application of the residue theorem in §4 of
[10], we find that

1

2πi

∫ 3+ix8

3−ix5

ZD(s)fy(2s)
xs

s
ds(4.4)

=
1

2πi

∫ 3
5

+ix5

3
5
−ix5

ZD(s)fy(2s)
xs

s
+m(D)xfy(2) +O(1).

We may combine (4.2) and (4.4) to obtain

E2(x) =
∑
d>y

µ(d)ND

( x
d2

)
−m(D)xfy(2)

=
1

2πi

∫ 3
5

+ix5

3
5
−ix5

ZD(s)fy(2s)
xs

s
ds+O(x1/3+ε).

After a splitting-up argument and an application of (4.3),

E2(x)� y1/2−6/5x3/5+ε/2

(
T−1

∫ 2T

T

|ZD(σ + it)| dt+ 1

)
+ x1/3+ε

36



for some T , 2 ≤ T ≤ x5. By Theorem 2 and Cauchy’s inequality,

E2(x)� y−7/10x3/5+ε + x1/3+ε.

We choose y so that y−7/10x3/5 = x5/13, that is,

y = x4/13.

It remains to show that
E1(x)� x5/13+ε.

With the notation of Lemma 2, we have an expression of the form

E1(x) =
∑
d≤y

µ(d)
J∑
j=1

ejS

(
fj,

x1/2

d

)
+O(y).

Accordingly, it suffices to show that, for D ∈ [1/2, y],

(4.5)
∑
d∼D

µ(d)S

(
f,
x1/2

d

)
� x5/13+ε/2

whenever fD = f : I = [a, b] → R, f (4) is continuous, f (2) is never 0, and
f ′(a), f ′(b) are rational.

We apply Lemma 10, with L = x1/2−5/13 = x3/26:∑
d∼D

µ(d)S

(
f,
x1/2

d

)
=
∑
d∼D

∑
0<|h|≤L

µ(d)ahSh

(
f,
x1/2

d

)
(4.6)

+O

(∑
d∼D

∑
|h|≤L

bhSh

(
f,
x1/2

d

))
.

By the choice of L, the contribution to the right-hand side of (4.6) from
b0 is O(x5/13). I now show that

(4.7)
∑
d∼D

∑
0<|h|≤L

µ(d)ahSh

(
f,
x1/2

d

)
� x5/13+ε/2.

It will be clear from the discussion that the proof of∑
d∼D

∑
0<|h|≤L

bhSh

(
f,
x1/2

d

)
� x5/13+ε/2
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is simpler. So once we prove (4.7), the proof of Theorem 1 will be complete.
By a splitting-up argument, it suffices to show that

(4.8)
∑
h∼H

ah
∑
d∼D

µ(d)Sh

(
f,
x1/2

d

)
� x5/13+ε/3

whenever

(4.9) ah � H−1,
1

2
≤ H ≤ x3/26,

1

2
≤ D ≤ x4/13.

We apply the B-process (Lemma 11). The contribution from the term
O(log 2M) to the left-hand side of (4.8) is

�
∑
h∼H

h−1
∑
d∼D

log x� x4/13 log x.

We have thus reduced the proof to showing that

(4.10) H−3/2
∑

(h,`)∈E

c(h, `)
∑
d∼D

( x
d2

)1/4

µ(d)e

(
G(`, h)x1/2

d

)
� x5/13+ε/3,

with E as in (2.25) and |c(h, `)| ≤ 1.
We first treat the case

(4.11) H > D5/3x−35/78

of (4.10) by a method similar to that of Zhai [21]. Let

S =
∑

(h,`)∈E

c(h, `)
∑
d∼D

fd e

(
G(`, h)x1/2

d

)
,

where fd = µ(d)D1/2

d1/2 � 1. LetQ be a natural number, we partition [−CH,CH]
(C > 0, C = C(D)) into subintervals I1, . . . , IQ of equal length. Thus

|S| ≤
Q∑
q=1

∑
d∼D

∣∣∣∣∣ ∑
G(`,h)∈Iq

c(h, `)e

(
G(`, h)x1/2

d

) ∣∣∣∣∣.
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(Summation conditions (h, `) ∈ E are implicit here and below.) Cauchy’s
inequality gives

|S|2 ≤ QD

Q∑
q=1

∑
G(`,h)∈Iq
G(`′,h′)∈Iq

∣∣∣∣∣∑
d∼D

e

(
(G(`, h)−G(`′, h′))

d
x1/2

) ∣∣∣∣∣(4.12)

≤ QD
∑

|G(`,h)−G(`′,h′)|≤ 2CH
Q

∣∣∣∣∣∑
d∼D

e

(
(G(`, h)−G(`′, h′))

d
x1/2

) ∣∣∣∣∣.
For quadruples with

|G(`, h)−G(`′, h′)| < H−3/5,

we estimate

S(h, `, h′, `′) =
∑
d∼D

e

(
G(`, h)−G(`′, h′)

d
x12

)
trivially. There are O(H12/5+ε) such quadruples by Theorem 3 and Lemma
9, giving

(4.13)
∑

h,`,h′,`′

S(h, `, h′, `′)� H12/5+εD

for these quadruples.
Now consider quadruples with

(4.14) δH ≤ |G(`, h)−G(`′, h′)| < 2δH,

where δ = H−8/52k−1, k = 0, 1, . . ., δ ≤ 2C/Q. For these quadruples, the
exponent pair

(
1
2
, 1

2

)
gives the estimate

S(h, `, h′, `′)�
(
δHx1/2

D

)1/2

+ (δHx1/2D−2)−1.

(See [5] for the theory of exponent pairs.) Again by Theorem 3 and Lemma
9, there are O(δH4) quadruples satisfying (4.14). For these quadruples,∑

h,`,h′,`′

S(h, `, h′, `′)� δH4

(
δHx1/2

D

)1/2

+ δH4(δHx1/2D−2)−1(4.15)

� Q−3/2H9/2x1/4D−1/2 +H3x−1/2D2.
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Note that
H3x−1/2D2 � H12/5D,

since
HD � x3/26+4/13 < x1/2.

Hence we can combine (4.12), (4.13) and (4.15) (summed over O(log x) values
of δ) to obtain

|S|2 � QD(H12/5+εD +Q−3/2H9/2x1/4D−1/2 log x),

S � xε/3(Q1/2DH6/5 +Q−1/4H9/4x1/8D1/4).

Minimizing this expression over Q ∈ [1,∞) in the usual way, we obtain

S � DH6/5xε/3 + (DH6/5)1/3(H9/4x1/8D1/4)2/3xε/3

� xε/3(DH6/5 +D1/2H19/10x1/12).

Accordingly, the left-hand side of (4.10) is

� H−3/2D−1/2x1/4+ε/3(DH6/5 +D1/2H19/10x1/12).

By the lower bound (4.11) imposed on H,

H−3/10D1/2x1/4+ε/3 � x5/13+ε/3.

Moreover,
H2/5x1/3+ε/3 � x148/390+ε/3 � x5/13

from (4.9). This gives the desired bound in the case (4.11).
For the smaller values of H we need a lemma.

Lemma 17 Let H ≥ 1, N ≥ 1/2, ∆ > 0. The number of solutions of

(4.16)

∣∣∣∣G(`, h)

n
− G(`′, h′)

n′

∣∣∣∣ < ∆H

N

with (h, `) ∈ E, (h′, `′) ∈ E, n ∼ N , n′ ∼ N is

O(H16/5+εN log 2N + ∆H2N4).
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Proof. Let 1 ≤ d ≤ N . We estimate the number of solutions of (4.16)
with (n, n′) = d, say N (d). Fix such a pair n, n′. We apply Theorem 3 in
conjunction with Lemma 9, with c = − n

n′
. The number of quadruples h, `,

h′, `′ satisfying (4.16) is
� H12/5+ε + ∆H4.

Summing over n,n′,

(4.17) N (d)�
(
N

d

)2

(H12/5+ε + ∆H4).

On the other hand, we may fix h, `, h′, `′ and observe that (4.16) implies

(4.18)

∣∣∣∣ G(`, h)

G(`′, h′)
− n

n′

∣∣∣∣� ∆.

Since the n/n′ are spaced apart at least (N/d)−2, the number of solutions of
(4.18) is

� ∆

(N/d)2
+ 1.

Summing over h, `, h′, `′,

N (d)� H4 + ∆H4N2d−2.

This can be combined with (4.17) to obtain

N (d)� H16/5+εNd−1 + ∆H4N2d−2.

Summing over d gives the bound claimed in the lemma.

Completion of the proof of Theorem 1. To prove (4.10) when

(4.19) H ≤ D5/3x−35/78,

we use a standard decomposition of sums∑
d∼D

µ(d)F (d)

(where F is any complex function on [D, 2D]); see [12] or [2]. The sum can
be decomposed into O(Dε/6) sums of the forms

(I)
∑

m∼M,n∼N
mn∼D

amF (mn),
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with
N � D2/3 , |am| ≤ 1;

and

(II)
∑

m∼M,n∼N
mn∼D

ambnF (mn),

with
D1/3 � N � D1/2 , |am| ≤ 1 , |bn| ≤ 1.

In (4.10), we have

F (d) = d−1/2
∑

(h,`)∈E

c(h, `)e

(
G(`, h)x1/2

d

)
,

so that sums of type I take the form

SI = M−1/2
∑

(h,`)∈E

c(h, `)
∑
m∼M

am
∑
n∼N
mn∼D

n−1/2e

(
G(`, h)x1/2

mn

)

with |am| ≤ 1, and sums of type II take the form

SII = D−1/2
∑

(h,`)∈E

c(h, `)
∑
m∼M

am
∑
n∼N
mn∼D

bne

(
G(`, h)x1/2

mn

)
,

with |am| ≤ 1, |bn| ≤ 1. We have to show that

(4.20) SI � H3/2x5/13−1/4+ε/6 = H3/2x7/52+ε/6

for N � D2/3, and

(4.21) SII � H3/2x7/52+ε/6

for D1/3 � N � D1/2. The case that determines the exponent in Theorem
1 will turn out to be (4.21) with D = x4/13, H = D5/3x−35/78 and any N ,
D1/3 � N � D1/2.
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We begin with (4.20). By a partial summation argument it suffices to
show that, for fixed (h, `) ∈ E ,

(4.22) D−1/2
∑
m∼M

am
∑

N≤n<u
mn∼D

e

(
G(`, h)x1/2

mn

)
� H−1/2x7/52+ε/6

for u ∈ [N, 2N ]. We apply Theorem 4 of [2] with α = β = −1, X � Hx1/2

D
,

κ = λ = 1/2. The left-hand side of (4.22) is

(4.23) � (log x)2D−1/2(DN−1/2 +DX−1 + (D6X2N−2)1/8).

We observe that X � D1/2 � N , since x1/2 > D3/2. Since N � D2/3, the
bound in (4.23) is

� (log x)2(D1/6 +H1/4x1/8D−1/6).

Recalling (4.19),

D1/6(H−1/2x7/52)−1 � Dx−35/156−7/52

� x4/13−35/156−7/52 � 1.

Moreover,

H1/4x1/8D−1/6(H−1/2x7/52)−1 � D13/12x−36/104 � 1.

Thus (4.23) is a satisfactory bound and we pass on to (4.21).
By a standard device (see for example pp. 49–50 of Harman [6]) it suffices

to show that

S ′II =
∑

(h,`)∈E

c(h, `)
∑
m∼M

am
∑
n∼N

bne

(
G(`, h)x1/2

mn

)
(4.24)

� D1/2H3/2x7/52+ε/7.

Let

R = max

(
1,
Hx1/2+ε/8

NM2

)
.
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We partition
[
−C′H

N
, C
′H
N

]
(where C ′ = C ′(D) > 0) into R subintervals

J1, . . . , JR of equal length. We have

|S ′II | ≤
∑
m∼M

R∑
r=1

∣∣∣∣∣ ∑
G(`,h)

n
∈Jr

c(h, `)e

(
G(`, h)x1/2

nm

) ∣∣∣∣∣,
suppressing summation conditions (h, `) ∈ E , n ∼ N here and below. By
Cauchy’s inequality,

|S ′II |2 ≤MR
R∑
r=1

∑
G(h,`)

n
,

G(h′,`′)
n′ ∈Jr

S(v)(4.25)

≤MR
∑

˛̨̨
G(h,`)

n
−G(h′,`′)

n′

˛̨̨
≤ 2C′H

NR

S(v).

Here v = (h, `, h′, `′, n, n′),

S(v) =
∑
m∼M

e

((
G(`, h)

n
− G(`′, h′)

n′

)
x1/2

m

)
.

By Lemma 17 there are O(H16/5+εN log 4N) vectors v for which∣∣∣∣G(`, h)

n
− G(`′, h′)

n′

∣∣∣∣ < H9/5N−2.

Estimating S(v) trivially, we find that

(4.26)
∑

v

S(v)� xε/8H16/5NM

for these v.
Now consider those v with

(4.27)
δH

N
≤
∣∣∣∣G(`, h)

n
− G(`′, h′)

n′

∣∣∣∣ < 2δH

N
,

where
δ = H9/5N−22k−1, k = 1, 2, . . . , δ ≤ 2C ′/R.
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Again by Lemma 17, there are O(δH4N2xε/8) of these v. We can apply the
Kusmin-Landau estimate [5, Theorem 2.1] to obtain

S(v)�
(
δH

N
· x

1/2

M2

)−1

,

since

d

dm

((
G(`, h)

n
− G(`′, h′)

n′

)
x1/2

m

)
� δHx1/2

NM2

� Hx1/2

NM2R
� x−ε/8.

Thus those v with (4.27) satisfy

∑
v

S(v)� δH4N2

(
δHx1/2

NM2

)−1

xε/8(4.28)

� H3x−1/2+ε/8N3M2

� H16/5NM

since
N2M � D3/2 < x1/2−ε/8.

We conclude from (4.25), (4.26), (4.28) that

|S ′II |2 � RH16/5NM2xε/8

� xε/4(H16/5NM2 +H21/5x1/2).

Since N � D1/3,

(4.29) S ′II � xε/8(H8/5D5/6 +H21/10x1/4).

Now

H8/5D5/6(D1/2H3/2x7/52)−1

= H1/10D1/3x−7/52

≤ D1/2x−7/156−7/52 < D1/2x−2/13 < 1,
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while

H21/10x1/4(D1/2H3/2x7/52)−1

= H3/5D−1/2x3/26 ≤ D1/2x−2/13 ≤ 1.

Thus (4.29) is a satisfactory estimate for S ′II , and the proof of Theorem 1 is
complete.
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