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R. C. Baker

§1 Introduction

Let V (x) be the number of solutions (u, v) in Z2 of

|u|3 + |v|3 ≤ x , (u, v) = 1,

and let

E(x) = V (x)− 4Γ2(1/3)

π2Γ(2/3)
x2/3

be the error term in the asymptotic formula for V (x).
Recent progress in estimating E(x) has been conditional on the Riemann

hypothesis (R.H.). It is known that, for any ε > 0,

(1.1) E(x) = O(x331/1254+ε)

if R.H. holds (Zhai and Cao [26]). Earlier bounds are due to Moroz [15],
Nowak [19], Müller and Nowak [16], Nowak [17, 18, 19] and Zhai [25]. I shall
prove

Theorem 1 We have, subject to R.H.,

(1.2) E(x) = O(xθ+ε),

where θ = 9581/36864.

For comparison,

331/1254 = 0.26395 . . . , 9581/36864 = 0.25990 . . . .

The correct exponent in this problem is likely to be 2/9 (see for example,
Zhai [25]), which would make (1.2) an improvement of over 9% on (1.1).
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In the first instance, the improvement depends on a decomposition of
sums

(1.3)
∑

D<n≤D′

µ(n)f(n)

into ‘Type I’ and ‘Type II’ sums. The decomposition is a slight variant of
that of Heath-Brown [7] for sums∑

D<n≤D′

Λ(n)f(n).

Here the complex function f is arbitrary, and 1 < D < D′ ≤ 2D. The
decomposition is more flexible than that of Montgomery and Vaughan [14],
which is used in [25, 26]. See §2 for details.

The second component of the method is a collection of exponential sum
estimates in two integer variables, which we assemble in §§3–5. It is helpful
to compare these, and the way they are applied, with [25], [26]. The proof
of Theorem 1 reduces to the upper estimation of the quantities E1(x), E2(x)
introduced in §6. Theorem 2 is used to dispatch E2(x). When I wrote the
first version of this paper, this was a substantial improvement (based on [21])
of the treatment in Zhai [25]. While the first version was being refereed, I
found that Zhai and Cao [26] had given a similar treatment of E2(x). Clearly,
then, the present paper is stronger than [26] through the treatment of E1(x).
Zhai and Cao use only one method to estimate Type II sums

S(M,N) =
∑
m∼M

∑
n∼N

D<mn≤D′

ambne

(
x1/3

mn

)
,

namely Theorem 2 of [1], a ‘three variable’ method. Since one of the variables
reduces to the value 1, a refinement of the theorem is possible (Theorem 6
below). I deploy three further estimates for Type II sums (Lemmas 5, 7 and
Theorem 5).

When it comes to Type I sums (bn ≡ 1 in S(M,N)), Zhai and Cao treat
the variable m trivially. I supplement this with Theorems 4 and 8. Moreover,
the decomposition of (1.3) in [26] requires the Type II method to work for

N ∈ [D1/3, D1/2]
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and the Type I method only for the ‘easy’ range N > D2/3. In contrast,
for a particular range of D in the relevant interval [x0.13..., x0.22...], I exam-
ine what ranges of N are accessible for Types I and II, and then choose a
‘decomposition result’ from §2 to take advantage of this information.

I now comment briefly on Theorems 3, 4, 5, 7 and 8. The approach
in Theorems 3–5 resembles [3], but the outcome is different because in [3] a
‘degeneracy’ occurs. Theorem 7 is essentially a generalization of [6], Theorem
6.12, while Theorem 8 is an application of Theorem 7 to Type I sums.

At one point in [6], there is an implicit use of a relation

u
∂2f1

∂u2
� ∂f1

∂u

which I could not verify (see the appeal to Lemma 6.10 for T0 on page 84).
The proof of Theorem 6 bypasses this difficulty. The argument also allows
for another lacuna in [6]: the proof will not work unless R =

√
ZY/X ≥ 1.

Hence, in optimizing the estimate

S2 � N2Z−1 + FN1/12Z1/2 + · · ·+ F 1/2N1/4Y Z3/4

on page 85, extra terms FN1/2X1/2Y −1/2, F 1/2N1/4Y 1/4X3/4 must appear.
(It should be emphasized that [6] is much clearer than any discussion of
similar two-dimensional sums elsewhere in the literature.)

In §6, I recapitulate from the literature a decomposition

E(x) = E1(x) + E2(x) + E3(x)

and use R.H. to dispatch E3(x), essentially as in [25]. The treatment of E2(x)
is also contained in §6. In §7, I complete the proof of Theorem 1 with the
treatment of E1(x).

We conclude this section with a few remarks on notation. We assume, as
we may, that ε is sufficiently small. In later sections, real constants α, β, γ
appear.

The symbol c is reserved for a sufficiently small positive constant depend-
ing at most on α, β, γ. Constants implied by ‘O’ and ‘�’ notations depend
at most on α, β, γ and also (in §§1, 2, 3, 6, 7) on ε. We write A � B if

A� B � A.

The cardinality of a finite set E is denoted by |E|. The symbol D always
denotes a large positive number, and D′ satisfies D < D′ ≤ 2D. We write
‘n ∼ N ’ as an abbreviation for ‘N < n ≤ 2N ’. We reserve the symbols I, J
for bounded real intervals.
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§2 Decomposition of sums involving the Möbius

function.

Let
Y = (2D)1/k,

where k is a natural number, k ≤ ε−1. Let

M(s) =
∑
n≤Y

µ(n)n−s.

It is easy to verify the identify

(2.1)
1

ζ(s)
=

k∑
j=1

(−1)j−1

(
k

j

)
ζ(s)j−1M(s)j + ζ(s)−1(1− ζ(s)M(s))k.

This is nearly the same as (6) of [7], which we can recover from (2.1) by
multiplying by ζ ′(s).

Since
∞∑
n=1

µ(n)

ns
=

1

ζ(s)
(Re s > 1),

we can express the coefficient of f(n) in the sum

(2.2) S(f) =
∑

D<n≤D′

µ(n)f(n)

by picking out the coefficient of n−s on the right in (2.1). The last term
makes no contribution, since

1− ζ(s)M(s) =
∑
n>Y

a(n)n−s,

for suitable a(n). On splitting up the ranges of summation into ranges
(N, 2N ] (N ≥ 1/2), we find that S(f) is a linear combination ofO((logD)2k−1)
sums of the form

(2.3)
∑

ni∼Ni, D<n1...n2k−1≤D′

µ(nk) . . . µ(n2k−1)f(n1 . . . n2k−1),
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where
2k−1∏
i=1

Ni � D and

(2.4) 2Ni ≤ Y if i ≥ k.

We may allow one or more of the Ni to be 1/2, so that ni = 1. This
explains why k is the same in (2.1), (2.3).

We now define a Type I sum to be a sum of the form

(2.5) S1 = S1(M,N) =
∑
m∼M

am
∑
n∼N

D<mn≤D′

f(mn)

in which am � mε for every ε > 0. A Type II sum is a sum of the form

(2.6) S2 = S2(M,N) =
∑
m∼M

∑
n∼N

D<mn≤D′

ambnf(mn)

in which am � mε, bn � nε for every ε > 0.

Lemma 1 Let 0 ≤ α1 ≤ · · · ≤ αr, α1 + · · · + αr = 1. For S ⊆ {1, . . . , r},
we write S ′ = {1, . . . , r}\S and

σS =
∑
i∈S

αi.

(i) Let h be an integer, h ≥ 3. Suppose that αr ≤ 2/(h + 1). Then some
σS ∈ [1/h, 2/(h+ 1)].

(ii) Let λ ≥ 2/3 and suppose that αr ≤ λ. Then some σS ∈ [1− λ, 1/2].

(iii) Let ρ ∈
(

1
3
, 2

5

]
,

τ = min(1− 2ρ, 3/10).

Suppose that αr ≤ ρ. Then some σS ∈ [τ, 1/3] ∪ [2/5, 1/2].

(iv) Let χ ≤ 1/5 and

ψ ≥ max

(
1

3
,
1

5
+

4χ

5

)
.

Suppose that αr ≤ 2χ. Then some σS ∈ [χ, ψ].
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Proof. In each case, we suppose that the conclusion is false and obtain a
contradiction.

(i) Let T be the set of i for which αi ∈
[
0, 2

h+1
− 1

h

]
. Then σT < 1/h. For

otherwise, the least σS with S ⊆ T , σS ≥ 1/h would have

σS ≤
1

h
+

(
2

h+ 1
− 1

h

)
=

2

h+ 1
.

Our next step is to show that |T ′| = h. If |T ′| < h, then

1 = σT + σT ′ < |T ′|h−1 + h−1 ≤ 1,

which is absurd. So |T ′| ≥ h.
Let i, i′ be distinct elements of T ′. Then

αi + αi′ ≥ 2

(
2

h+ 1
− 1

h

)
≥ 1

h
.

Consequently αi + αi′ > 2/(h+ 1). It follows that

(2.7) σT ′ >
|T ′|
2

2

h+ 1
=

|T ′|
h+ 1

.

Clearly |T ′| = h. Now (2.7) yields

σT <
1

h+ 1
.

We can improve this bound further. Let αi = min
j∈T ′

αj. Then

hαi + σT ≤ σT ′ + σT = 1.

Adding on the inequality

(h− 1)σT <
h− 1

h+ 1

we obtain

hαi + hσT < 1 +
h− 1

h+ 1
=

2h

h+ 1
.
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Of course it follows that αi + σT < 1/h. Now

(2.8) σT <
1

h
− αi <

1

h
−
(

2

h+ 1
− 1

h

)
=

2

h
− 2

h+ 1
.

Now let αu = max
j∈T ′

αj. From (2.8),

αu + σT <
1

h
+

(
2

h
− 2

h+ 1

)
≤ 2

h+ 1
,

and it follows that αu + σT < 1/h. But now

σT ′ + σT ≤ hαu + σT < 1,

which is absurd.

(ii) It is clear at once from complementation that no σS ∈ [1 − λ, λ].
Hence αr ≤ 1− λ ≤ 1

3
. From part (i), some σS ∈ [1/3, 1/2], which is absurd.

(iii) Let T be the set of all i for which αi ∈ [0, τ). Then σT < 2/5. To
see this, we prove in succession that σS < 2/5 for S ⊆ T , |S| = 2, 3, . . .. For
|S| = 2, we have

σS ≤ 2τ ≤ 3

5
.

From the hypothesis, it is clear that σS 6∈
[

2
5
, 3

5

]
. So σS < 2/5.

Suppose σS <
2
5

whenever S ⊆ T , |S| = j (where j ≥ 2). For S ⊆ T ,
|S| = j + 1, then,

σS <
j + 1

j

2

5
≤ 3

5
,

hence σS < 2/5. This proves our claim that σT < 2/5.

We now have σT ′ > 3/5 and also

1/3 < αi ≤ ρ (i ∈ T ′).

It follows that |T ′| = 2. Hence

2

3
< σT ′ ≤ 2ρ,
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and so
1− 2ρ ≤ σT < 1/3.

This is absurd.

(iv) Let T be the set of i for which αi ≤ ψ−χ. Arguing as in (i), σT < χ.

Let U = {i : αi ∈ (ψ − χ, χ)}, V = {i : αi ∈ (ψ, 2χ]}. Then

σU + σV = 1− σT > 1− χ.

We cannot have |V | ≥ 2. For if |V | ≥ 2, pick distinct i, j in V and let
W = {i, j}′; then

χ ≤ 1− 4χ ≤ σW < 1− 2ψ ≤ ψ,

which is absurd.
Suppose that |V | = 1, V = {i}. Then

σU > 1− χ− σV ≥ 1− 3χ ≥ 2χ.

Hence |U | ≥ 3. Pick distinct j, k in U and let W = {i, j, k}, then, since
ψ ≥ 1

4
+ χ

2
(as we easily verify), we have

1− ψ ≤ 3ψ − 2χ < σW ≤ 4χ ≤ 1− χ,

χ ≤ σW ′ < ψ.

This is absurd, so V is empty. Now

σU > 1− χ ≥ 4χ.

So |U | ≥ 5. Pick distinct i, j, k, ` in U and let W = {i, j, k, `}; then

1− ψ ≤ 4ψ − 4χ < σW < 4χ ≤ 1− χ,

leading to a contradiction once more.
We use this combinatorial lemma in conjunction with the familiar notion

of grouping variables in (2.3).

Lemma 2 Let h, λ, ρ, τ χ, ψ be as in Lemma 1. Let B > 0 and let f be a
complex function on Z ∩ (D,D′].
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(i) Suppose that every Type I sum with

N � D2/(h+1)

satisfies

(2.9) S1(M,N) � B

and every Type II sum with

D1/h � N � D2/(h+1)

satisfies

(2.10) S2(M,N) � B.

Then

(2.11) S(f) � B(log 3D)A

with A = 2h− 1.

(ii) Suppose that every Type I sum with

M � Dλ

satisfies (2.9), and every Type II sum with

D1−λ �M � D1/2

satisfies (2.10). Then (2.11) holds with A = 3.

(iii) Suppose that every Type I sum with

M � Dρ

satisfies (2.9), and every Type II sum with

Dτ �M � D1/3 or D2/5 �M � D1/2

satisfies (2.10). Then (2.11) holds with A = 5.

(iv) Suppose that every Type I sum with

M � D2χ

satisfies (2.9), and every Type II sum with

Dχ �M � Dψ

satisfies (2.10). Then (2.11) holds with A = 5.
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Proof. (i) Take k = h in (2.3), so that 1
k
< 2

h+1
. We must show that every

sum (2.3) is � B. If some Ni > εD2/(h+1), we must have i < k from (2.4).
Now we group the variables in (2.3) as

n = ni , m =
2k−1∏
j=1
j 6=i

nj

and appeal to (2.9).
Now suppose that

(2.12) Nj ≤ εD2/(h+1) (1 ≤ i ≤ 2k − 1).

Let D0 = 2kN1 . . . Nk and write

2Ni = Dαi
0 .

Then αi ≥ 0, α1 + · · ·+ αk = 1, D � D0 � D, and each αi ≤ 2/(h+ 1). By
Lemma 1 (i), we have σS ∈

[
1
h
, 2
h+1

]
for some S ⊆ T . Clearly

(2.13) D1/h � N :=
∏
i∈S

Ni � D2/(h+1).

Thus we may group the variables in such a way that the sum (2.3) becomes
a linear combination of O(1) Type II sums satisfying (2.10). The desired
estimate follows at once.

(ii) Take k = 2 in (2.3), so that 1/k < λ. The argument is very similar
to the proof of (i), with

Ni ≤ εDλ (1 ≤ i ≤ 3)

in place of (2.12), and with

D1−λ �M =
∏
i∈S

Ni � D1/2

in place of (2.13).

(iii), (iv) Take k = 3 in (2.3). The argument follows the same lines as
above, and we can omit the details.

We conclude this section by recording an elementary lemma that will be
used for ‘optimizations’ in §§3–5.
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Lemma 3 Let t� 1, u� 1,

L(H) =
t∑
i=1

AiH
ai +

u∑
j=1

BjH
−bj

where Ai, Bj, ai, bj are positive. Let 0 < H1 ≤ H2. Then there is some
H ∈ [H1, H2] with

L(H) �
t∑
i=1

u∑
j=1

(A
bj
i B

ai
j )1/(ai+bj) +

t∑
i=1

AiH
ai
1 +

u∑
j=1

BjH
−bj
2 .

Proof. See [6], Lemma 2.4.

§3 Estimates for exponential sums

Lemma 4 Let β be a real constant, β ≤ 4, β(β− 1) 6= 0. Let M > 1/2, δ >
0. Let N (M, δ) denote the number of integer quadruples (m1,m2, m̃1, m̃2),
1 ≤ mi ≤M , 1 ≤ m̃i ≤M , such that

(3.1) |mβ
1 +mβ

2 − m̃β
1 − m̃β

2 | ≤ δMβ.

Then
N (M, δ) �M2+ε + δM4+ε.

Proof. Robert and Sargos ([21], Theorem 2) give the corresponding result
for quadruples satisfying (3.1) and

mi ∼M, m̃1 ∼M (i = 1, 2).

(The restriction β ≤ 4 does not occur in their result.) We indicate the details
of their argument that have to be changed in order to get Lemma 4.

Clearly we may suppose that M is a power of 2. By Lemma 1 of [21],

N (M, δ) � δ

∫ δ−1

0

∣∣∣∣∣
M∑
m=1

e

(
x
(m
M

)β)∣∣∣∣∣
4

dx.

By a splitting-up argument combined with Minkowski’s inequality, there is
an interval I of the form (H, 2H], H ≤M , or [1, 2], such that

(3.2) N (M, δ) � L4δ

∫ δ−1

0

∣∣∣∣∣∑
m∈I

e

(
x
(m
M

)β)∣∣∣∣∣
4

dx.
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Here L = log(M + 2). If I = [1, 2], then trivially

N (M, δ) � L4δδ−1 = L4.

So we may suppose that I = (H, 2H].
Make a change of variable y = x(HM−1)β in the above integral. We

obtain

(3.3) N (M, δ) � L4δ(HM−1)−β
∫ δ−1(HM−1)β

0

∣∣∣∣∣∑
m∈I

e

(
y
(m
H

)β)∣∣∣∣∣
4

dy.

If the upper limit of integration satisfies

δ−1(HM−1)β ≤ H2,

then it follows from [21], Lemma 7 that

N (M, δ) � L4δ(HM−1)−βH4+ε/2

� L4δM4+ε/2 � δM4+ε,

since β ≤ 4.
Suppose now that

δ−1(HM−1)β > H2.

Then ∫ δ−1(HM−1)β

0

∣∣∣∣∣∑
m∈I

e

(
y
(m
H

)β)∣∣∣∣∣
4

dy(3.4)

� L4

{
δ−1(HM−1)β

H2

}∫ H2

0

∣∣∣∣∣∑
m∈I

e

(
y
(m
H

)β)∣∣∣∣∣
4

dy

([21], Lemma 3)
� δ−1(HM−1)βM2+ε/2

by a further application of [21], Lemma 7. Combining (3.3), (3.4), we obtain

N(M, δ) �M2+ε.

This completes the proof of Lemma 4.
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We introduce the notation

|(m1,m2)|α = (|m1|α + |m2|α)1/α

for an integer pair (m1,m2). The following theorem is roughly comparable
to Lemma 4.2 of [26].

Theorem 2 Let (κ, λ) be an exponent pair. Let γ, β be constants, γ < 1,
γ 6= 0, 1 < β ≤ 4. Let M ≥ 1/2, 1/2 ≤ M1 ≤ M2, X � M2

2 . Let |am| ≤ 1,
|bm1,m2| ≤ 1,

S =
∑
m∼M

∑
m1∼M1

∑
m2∼M2

ambm1,m2 e

(
Xmγ|(m1,m2)|β

MγM2

)
.

Then

(3.5) S �ε MM1+ε
2 +MM2+ε

2

(
X

M2
2

)κ/(2+2κ)

M−(1+κ−λ)/(2+2κ).

We remark that if M1 = M2, Theorem 2 of the same strength as the
estimate for trilinear sums∑

m∼M

∑
m1∼M1

∑
m2∼M2

ambm1,m2 e

(
Xmγmα1

1 m
α2
2

MγMα1
1 Mα2

2

)
obtained by Heath-Brown’s method [8]. See for example [1], Theorem 2. The
estimate (3.5) deteriorates for fixed M1 and increasing M2, but this will not
cost us anything in the application in §6.

Proof of Theorem 2. For m1 ∼M1, m2 ∼M2, we have

|(m1,m2)|β ∈ [c1M2, c2M2]

where c1, c2 are suitable positive constants. Let Q be an arbitrary natural
number. We divide [c1M2, c2M2] into intervals I1, . . . , IQ of equal length, so
that

|S| ≤
∑
m∼M

Q∑
q=1

∣∣∣∣∣∣∣∣
∑

mi∼Mi
|(m1,m2)|β∈Iq

bm1,m2e

(
Xmγ|(m1,m2)|β

MγM2

)∣∣∣∣∣∣∣∣ .
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Cauchy’s inequality gives

(3.6) |S|2 ≤MQ

Q∑
q=1

∑
m

(3.7)

∣∣∣∣∣∑
m∼M

e

(
XmγD(m)

MγM2

)∣∣∣∣∣ ,
where

m = (m1,m2, m̃1, m̃2) (mj, m̃j ∼Mj), D(m) = |(m1,m2)|β − |(m̃1, m̃2)|β

and the sum over m in (3.3) is restricted by

(3.7) |(m1,m2)|β ∈ Iq, |(m̃1, m̃2)|β ∈ Iq.

Clearly

(3.8) |S|2 ≤MQ
∑
m

(3.9)

∣∣∣∣∣∑
m∼M

e

(
XmγD(m)

MγM2

)∣∣∣∣∣ ,
where m is restricted in the last sum by

(3.9) |D(m)| ≤ (c2 − c1)
M2

Q
.

A splitting-up argument yields

(3.10) |S|2 �MQL
∑
m

(3.11)

∣∣∣∣∣∑
m∼M

e

(
XmγD(m)

MγM2

)∣∣∣∣∣ .
Here L = log 3M2 and the sum over m in (3.10) is restricted by

(3.11)

(
∆− 1

M2
2

)
M2 ≤ |D(m)| < 2∆M2.

The positive number ∆ is of the form

(3.12) ∆ = 2hM−2
2 , ∆ � Q−1 , h ≥ 0.

Now it is easy to see that (3.11) implies (3.1) with M2 in place of M and
a suitable δ � ∆. Accordingly, the number of quadruples satisfying (3.11) is

�M2+ε
2 + ∆M4+ε

2 .
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If h = 0 in (3.12), we use the trivial estimate for the inner sum in (3.10). It
follows that

(3.13) |S|2 �M2QLM2+ε
2 .

If h > 0, the number of quadruples satisfying (3.11) is � ∆M4+ε
2 . By the

definition of an exponent pair, we have∑
m∼M

e

(
XmγD(m)

MγM2

)
� (X∆)κMλ−κ + (X∆M−1)−1

for any quadruple m counted in (3.10). Here the contribution to the right-
hand side of (3.10) from (X∆M−1)−1 is

�MQL∆M4+ε
2 X−1∆−1M(3.14)

�M4+2ε
2 M2X−1Q�M2QM2+2ε

2

since X �M2
2 . The remaining contribution is

�MQ∆M4+2ε
2 (X∆)κMλ−κ(3.15)

�M1+λ−κQ−κM4+2ε
2 Xκ

from (3.12). Collecting (3.13)–(3.15),

(3.16) S �MM1+ε
2 Q1/2 +M (1+λ−κ)/2M2+ε

2 Xκ/2Q−κ/2.

Now the theorem follows on applying Lemma 3 with H1 = 1 and arbitrarily
large H2.

Lemma 5 Let α, β be real constants with αβ(α − 1)(β − 1) 6= 0, X > 0,
M ≥ 1, N ≥ 1, |am| ≤ 1, |bn| ≤ 1, and 1 < D < D′. Let L = log(2+XMN).
Let (κ, λ) be an exponent pair and

(3.17) S(M,N) =
∑
m∼M

∑
n∼N

D<mn≤D′

ambn e

(
Xmαnβ

MαNβ

)
.

Then

S(M,N) � L3{(X2+4κM8+10κN9+11κ+λ)1/(12+16κ)

+X1/6M2/3N3/4+λ/(12+12κ) + (XM3N4)1/5

+ (XM7N10)1/11 +M2/3N11/12+λ/(12+12κ)

+MN1/2 + (X−1M14N23)1/22 +X−1/2MN}.
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Proof. At the cost of a factor L, we can remove the condition D < mn ≤ D′

from the sum in (3.17). See the discussion in the proof of [2], Lemma 11.
Now the result follows at once from Theorem 2 of Wu [24]. (As pointed out
by Wu, his theorem is essentially an abstraction of an idea of Jia [11].)

Lemma 6 Let αj be nonzero constants and Mj ≥ 1 (1 ≤ j ≤ 4). Let X > 0
and |am1m2| ≤ 1, |bm3m4| ≤ 1. Let L = log 2M1M2M3M4. We have∑

mj∼M
D<m1m2m3m4≤D′

am1m2bm3m4 e

(
Xmα1

1 m
α2
2 m

α3
3 m

α4
4

Mα1
1 Mα2

2 Mα3
3 Mα3

4

)

� L2{(XM1M2M3M4)
1/2 +M1M2(M3M4)

1/2

+ (M1M2)
1/2M3M4 +X−1/2M1M2M3M4}.

Proof. We remove the condition D < m1m2m3m4 ≤ D′ as explained in
the preceding proof. Now the result follows from Theorem 2 of Fouvry and
Iwaniec [5].

The key element of the proof of Theorem 2 of [5] is the double large sieve
of Bombieri and Iwaniec [4]. The same applies to the following result of
Robert and Sargos [21], but they need the difficult ‘counting lemma’ stated
as Lemma 4, above.

Lemma 7 Let α, β, γ be constants, α(α−1)βγ 6= 0. Let H,M,N be positive
integers and X > 1. Let |ah,n| ≤ 1, |bm| ≤ 1. Then∑

h∼H

∑
n∼N

ah,n
∑
m∼M

D<mn≤D′

bm e

(
Xhβnγmα

HβNγMα

)

� (HNM)1+ε

{(
X

HNM2

)1/4

+
1

(HN)1/4
+

1

M1/2
+

1

X1/2

)
.

Proof. After the preliminary removal of the condition D < mn ≤ D′ as
above, this reduces to Theorem 1 of [21].

§4 Applications of the theory of exponent pairs.

We begin with a simple lemma from [12] (Lemma 2.8).
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Lemma 8 Let K > 0 and let f be a continuously differentiable function on
[N, 2N ] with

F0 = max
N≤t≤2N

|f(t)|, F1 = max
N≤t≤2N

|f ′(t)| > 0.

Then ∑
n∼N

min

{
K,

1

‖f(n)‖

}
� (F0 + 1)(K + F−1

1 log 2N).

We next state a version of the ‘B-process’.

Lemma 9 Suppose that f has four continuous derivatives on [N, 2N ], f ′′ >
0 on [N, 2N ], and for some F > 0,

|f (j)(t)| � FN−j (t ∼ N, 2 ≤ j ≤ 4).

Let tν be defined by f ′(tν) = ν, and let φ(ν) = −f(tν) + νtν. Let L =
log(FN−1 + 2). Then for [a, b] ⊆ [N, 2N ],∑

a≤n≤b

e(f(n)) =
∑

f ′(a)≤ν≤f ′(b)

e(φ(ν) + 1/8)

f ′′(tν)1/2
(4.1)

+O(L+ min(F−1/2N, ‖f ′(a)‖−1)

+ min(F−1/2N, ‖f ′(b)‖−1)).

Proof. This can easily be obtained by an elaboration of the proof of [6],
Lemma 3.6, with −f in place of f , and −ν in place of ν. We simply separate
the smallest term from the sum∑

H1≤ν≤H2

min(| − f ′(a) + ν|−1, F−1/2N)

on p. 29, and proceed similarly with b in place of a.
We now add to the hypothesis of Lemma 9 the assumption that

f (j)(t) =

(
α

j

)
Atα−j(1 +Rj(t)) (0 ≤ j ≤ 2)

where α < 0, A is positive and independent of t, and

|Rj(t)| < c2 (a ≤ t ≤ b, 0 ≤ j ≤ 2).

17



Then
|α|Atα−1

ν (1 +R1(tν)) = −ν > 0.

Hence
tν = (|α|A)−1/(α−1)(1 +R(tν))(−ν)1/(α−1),

with
R(t) = (1 +R1(t))

−1/(α−1) − 1.

So

f ′′(tν) =
1

2
α(α− 1)Atα−2

ν (1 +R2(tν))

= τA1/(α−1)(−ν)(α−2)/(α−1)(1 +R∗(tν)),

with

τ = −|α|1/(α−1)(α− 1)/2 , R∗(t) = (1 +R2(t))(1 +R(t))α−2 − 1.

Similarly,

φ(ν) = −Atαν (1 +R0(tν))− (|α|A)−1/(α−1)(1 +R(tν))(−ν)α/(α−1)(4.2)

= γA−1/(α−1)(−ν)α/(α−1)(1 + R̂(tν)),

with γ = −|α|−α/(α−1) − |α|−1/(α−1) and

γ(1 + R̂(t)) = −|α|−α/(α−1)(1 +R0(t))(1 +R(t))α − |α|−1/(α−1)(1 +R(t)).

The point is that

max(|R∗(t)|, |R̂(t)|) < c (a ≤ t ≤ b).

We now permit A to depend on a variable u:

A = Cg(u) (u ∼M,M � N)

where C > 0,

(4.3) g(u) = uβ

(
1 +

∑
j≥1

dj(B/u)
j

)
(u ∼M)

18



where β is a nonzero constant,

(4.4) α+ β < 1, 0 < B < cM,

and the power series
∑
j

djz
j converges in the unit disc. Writing h(t) =

tα(1 +R0(t)), we have
f(t, u) = C h(t)g(u)

in place of f(t). Let F = CMβNα. We rewrite (4.1), with [a(m), b(m)] in
place of [a, b], as

∑
a(m)≤n≤b(m)

e(f(n,m))

(4.5)

=
∑

A(m)≤ν≤B(m)

W (ν)e(G(ν,m))

g(m)1/(2α−2)

+O(L+ min(F−1/2N, ‖A(m)‖−1) + min(F−1/2N, ‖B(m)‖−1)).

Here

W (ν) = (τC1/(α−1)(1 +R∗(tν))(−ν)(α−2)/(α−1))−1/2e(1/8),

G(ν,m) = γ(−ν)α/(α−1)C−1/(α−1)(1 + R̂(tν))g(m)−1/(α−1)

A(m) = Cg(m)h′(a(m)) , B(m) = C g(m)h′(b(m)).

We apply this formula to the sum

S(h, g, C) =
∑
m∼M

∑
a(m)≤n≤b(m)

e(C h(n)g(m))

where [a(m), b(m)] ⊂ (N, 2N ]. Summing over m in (4.5) and interchanging
summations,

S(h, g, C) =
∑

ν�FN−1

W (ν)
∑
m∈Eν

e(G(ν,m))

g(m)1/(2α−2)
(4.6)

+O

(
ML+

∑
m∼M

min

(
F−1/2N,

1

‖G(m)‖

))
.
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Here G(m) is one of A(m), B(m),

Eν = {m ∼M : A(m) ≤ ν ≤ B(m)}.

Let us suppose that

Eν is a union of O(1) disjoint intervals,(4.7)

G is continuously differentiable and G′(m) � F (MN)−1,(4.8)

F � N.(4.9)

In view of Lemma 8 and the monotonicity of g, (4.6) yields

S(h, g, C) � (FN−2)−1/2FN−1 max
ν�FN−1

I⊆(M,2M ]

∣∣∣∣∣∑
m∈I

e(Gν(m))

∣∣∣∣∣+ML+ F 1/2

(4.10)

� F 1/2+κMλ−κ +ML

for any exponent pair (κ, λ). It is clear that ∂G(ν,m)
∂mj satisfies the required

conditions ([6], pp. 30–31) for the last bound, for j = 1, 2, . . .. (The exponent
in m−β/(α−1) is less than 1, by hypothesis.)

We summarize our conclusions in the following theorem. In the language
of [6], the theorem asserts that

(
1
2
, 1

2
;κ, λ

)
is an exponent quadruple.

Theorem 3 Let (κ, λ) be an exponent pair. Define S(h, g, C) by (4.6), with
the assumptions on h and g made above. Let F = CMβNα, M � N ,
L = log(FN−1 + 2). Suppose further that (4.7), (4.8) hold. Then

(4.11) S(h, g, C) � F 1/2+κMλ−κ +ML+MNF−1.

Note that the condition (4.9) has been dropped and the term MNF−1

incorporated in (4.11). This is justified since, if F < cN , the Kusmin-Landau
theorem ([6], Theorem 2.1) gives

(4.12) S(h, g, C) =
∑
m∼M

O(F−1N) �MNF−1.

We now apply Theorem 3 to Type I sums.
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Lemma 10 Let K ≥ 1, M ≥ 1, |uk,m| ≤ 1 (k ∼ K,m ∼ M). Let Im ⊆
(K, 2K]. There is a real number t such that

(4.13)
∑
m∼M

∣∣∣∣∣∑
k∈Im

uk,m

∣∣∣∣∣� (log 2K)
∑
m∼M

∣∣∣∣∣∑
k∼K

uk,me(kt)

∣∣∣∣∣ .
Proof. From Lemma 2.2 of [4], there is a positive continuous function FK(t)
on R such that

∫
R FK(t)dt� log 2K and∣∣∣∣∣∑
k∈Im

uk,m

∣∣∣∣∣ ≤
∫ ∞

−∞
FK(t)

∣∣∣∣∣∑
k∼K

uk,me(kt)

∣∣∣∣∣ dt.
Thus the left-hand side of (4.13) is

≤
∫ ∞

−∞
FK(t)

∑
m∼M

∣∣∣∣∣∑
k∼K

uk,me(kt)

∣∣∣∣∣ dt
� log 2Kmax

t

∑
m∼M

∣∣∣∣∣∑
k∼K

uk,me(kt)

∣∣∣∣∣ ,
as required.

Theorem 4 Let (κ, λ) be an exponent pair. Let α, β be constants, α 6= 0,
α < 1, β < 0. Let X > 0, M ≥ 1/2, N ≥ 1/2, MN � D, N0 = min(M,N),
L = log(D + 2). Let |am| ≤ 1, Im ⊆ (N, 2N ],

(4.14) S1 =
∑
m∼M

am
∑
n∈Im

e

(
Xmβnα

MβNα

)
.

Then

(4.15) S1 � L2{DN−1/2 +DX−1 + (D4+4κX1+2κN−(1+2κ)N
2(λ−κ)
0 )1/(6+4κ)}.

Proof. We may suppose that N is large. If X < cN , we proceed as in (4.12).
Now suppose that X ≥ cN . Let Q be a natural number, Q < c2N .

By Lemma 10, there is a real number t such that

S1 � L
∑
m∼M

∣∣∣∣∣∑
n∼N

e

(
Xmβnα

MβNα
+ tn

)∣∣∣∣∣ .
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By the Cauchy-Schwarz inequality and the Weyl-van der Corput inequality
([6], (2.3.4)), and writing I(q) = (N, 2N − q],

S2
1 � L2M

∑
m∼M

∣∣∣∣∣∑
n∼N

e

(
Xmβnα

MβNα
+ tn

)∣∣∣∣∣
2

� L2D2Q−1 + L2DQ−1

Q∑
q=1

∑
m∼M

∑
n∈I(q)

e

(
Xmβ((n+ q)α − nα)

MβNα
+ tq

)
.

After applying a splitting-up argument to the sum over q, we find that there
is a q ∈ [1, Q] for which

S2
1 � L2D2Q−1 + L3DqQ−1

∣∣∣∣∣∣
∑
m∼M

∑
n∈I(q)

e

(
Xmβ((n+ q)α − nα)

MβNα

)∣∣∣∣∣∣ .
After a straightforward verification that the conditions are satisfied, we

may apply Theorem 3 to the above double sum, with either (nβ, (m+q)α−mα)
or ((n + q)α − nα,mβ) in the role of h(n), g(m) (depending on whether N0

is N or M). Thus

F � XN−1q,

L−4S2
1 � D2Q−1 +D(X

1
2
+κN− 1

2
−κNλ−κ

0 Q
1
2
+κ +N0 +DX−1NQ−1).

We can drop the last two terms since

DN0 � D2N−1 � D2Q−1 , D2X−1Q−1N � D2Q−1.

The resulting bound for L−4S2
1 holds, in fact, for 0 < Q < c2N . An applica-

tion of Lemma 3 completes the proof.

We now adapt this proof to estimate a Type II sum.

Theorem 5 Make the hypothesis of Theorem 4 and suppose that |bn| ≤ 1.
Let

S2 =
∑
m∼M

am
∑
n∼N

D<mn≤D′

bne

(
Xmβnα

MβNα

)
.
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Suppose further that

(4.16) N �M, X � D.

Then

(4.17) S2 � L7/4(DN−1/2 +DM−1/4 + (D11+10κX1+2κN2(λ−κ))1/(14+12κ)).

Proof. We remove the condition D < mn ≤ D′ at the cost of a factor L.
Let Q be a positive integer, Q < c2N . As in the preceding proof, there is a
q ∈ [1, Q] such that (writing Im,q = Im ∩ (Im − q))

L−2S2
2 � D2Q−1 +

DqL

Q

∣∣∣∣∣∑
m∼M

∑
n∼N

b̄nbn+qe

(
Xmβ((n+ q)α − nα)

MβNα

)∣∣∣∣∣
(4.18)

� D2Q−1 +
DqL

Q

∑
n∼N

∣∣∣∣∣∑
m∼M

e

(
Xmβ((n+ q)α − nα)

MβNα

)∣∣∣∣∣ .
Suppose further that Q < cM1/2. Using the Weyl-van der Corput in-

equality again, we obtain∣∣∣∣∣∑
m∼M

e

(
Xmβ((n+ q)α − nα)

MβNα

)∣∣∣∣∣
2

≤ M2

Q2
+
LMq′

Q2

∑
m∈J(q′)

e

(
X((m+ q′)β −mβ)((n+ q)α − nα)

MβNα

)

for some q′ ≤ Q2, with J(q′) = (M, 2M − q′]. Combining this with (4.18)
and Cauchy’s inequality, we have

L−4S4
2 �

D4L2

Q2
+
D3q2q′L3

Q4
SM,N

where

SM,N =
∑
n∼N

∑
m∈J(q′)

e

(
X((m+ q′)β −mβ)((n+ q)α − nα)

MβNα

)
.
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An application of Theorem 3 to SM,N now yields

L−7S4
2 �

D4

Q2
+D3

((
XQ3

D

) 1
2
+κ

Nλ−κ +N +
D2

XQ3

)

(this is of course also true for 0 < Q < 1).
We may discard the term D5/XQ3 since

D5/XQ3 ≤ D5/XQ2 � D4/Q2.

An application of Lemma 3 with H1 → 0+, H2 = min(c2N, cM1/2) yields

L−7S4
2 � D4N−2 +D4M−1 + (D11+10κX1+2κN2(λ−κ))2/(7+6κ) +D3N.

Since D3N � D4M−1, the theorem follows at once.
We now pursue a variant of the above arguments.

Theorem 6 Let (κ, λ) be an exponent pair. Let α, β be constants, α 6= 1,
β < 0, α + β < 2. Let N ≥ 1/2, X � N , M � N , MN � D, L =
log(XD + 2). Let |am| ≤ 1, |bn| ≤ 1. Let

S2 =
∑
m∼M

am
∑
n∼N

D<mn≤D′

bne

(
Xmβnα

MβNα

)
.

Then

S2 � L2(DN−1/2 +DM−1/4 +X1/6(D4+5κNλ−κ)1/(6+6κ)).

Proof. Let Q be a positive integer, Q < c2 min(N,M1/2). As in (4.18), there
is a q, 1 ≤ q ≤ Q, for which

(4.19) L−2S2
2 � D2Q−1 +

DqL

Q

∑
n∼N

∣∣∣∣∣∑
m∼M

e

(
Xmβ((n+ q)α − nα)

MβNα

)∣∣∣∣∣ .
We apply (4.5) to the inner sum, with the roles of n, m reversed, so that

(α, β) is replaced by (β, α− 1):
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∑
m∼M

e

(
Xmβ((n+ q)α − nα)

MβNα

)
(4.20)

=
∑
ν∈In

W (ν)

g(n)1/(2β−2)
e(G(ν, n))

+O

(
L+ min

((
Xq

N

)−1/2

, ‖A(n)‖−1

)

+ min

((
Xq

N

)−1/2

, ‖B(n)‖−1

)
+

D

Xq

)
.

HereB(n) = X
MβNα ((n+q)α−nα)βMβ−1, A(n) = 2β−1B(n), In = [A(n), B(n)].

The last term on the right-hand side of (4.20) allows for a possible application
of the Kusmin-Landau inequality.

Combining (4.19), (4.20), there are numbers wν , |wν | ≤ 1, with

L−2S2
2 � D2Q−1 +

LqD

Q

(
Xq

DM

)−1/2∑
n

∣∣∣∣∣∑
ν∈In

wνe(G(ν, n))

∣∣∣∣∣
+ L2DN + LDX1/2Q1/2N−1/2.

Since DN � D2Q−1 from Q < N � D1/2,

L−4S2
2 � D2Q−1 +DX1/2Q1/2N−1/2

+Q−1/2X−1/2D3/2M1/2
∑
n

∣∣∣∣∣∑
ν∈In

wνe(G(ν, n))

∣∣∣∣∣ .
We apply the Cauchy and Weyl-van der Corput inequalities to obtain

L−8S4
2 � D4Q−2 +D2XQN−1

(4.21)

+ (QX)−1D4

(Xq/D)2

H
+
Xq

D

∣∣∣∣∣∣
∑
n

∑
ν∈In∩(In−h)

e(G1(ν, n))

∣∣∣∣∣∣
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with H (specified below) satisfying 0 < H < cXq/D and some h, 1 ≤ h ≤ H.
Here

G1(ν, n) = G(ν + h, n)−G(ν, n).

We make the obvious choice

H = Qq2NX/D2;

the assumption Q < c2M1/2 yields H < c(Xq/D).
We interchange the summations over n and ν in (4.21). Once ν is fixed,

n runs over a single interval. We apply the method of exponent pairs to∑
n

e(G1(ν, n));

the order of size of G1 is

h

Xq/D

Xq

N
� hM � N.

Thus ∑
n

e(G1(ν, n)) � (hM)κNλ−κ

� (Q3X/D)κNλ−κ.

Combining this with (4.21),

L−8S4
2 � D4Q−2 +D2XQN−1

+D2XQ(Q3X/D)κNλ−κ

� D4Q−2 +D2XQN−1 +D2−κX1+κQ1+3κNλ−κ.

An application of Lemma 3 yields

L−8S4
2 � D4/3(D2XN−1)2/3

+ (D4)(1+3κ)/(3+3κ)(D2−κX1+κNλ−κ)2/(3+3κ)

+D4M−1 +D4N−2

� D4/3X2/3N−2/3 +X2/3(D8+10κNλ−κ)2/(3+3κ)

+D4M−1 +D4N−2.

In the last expression, the first term is clearly dominated by the second, and
Theorem 6 follows.
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§5 The AB theorem.

Let X ≥ 1, Y ≥ 1, N = XY . Let D be a subset of R = [X, 2X] × [Y, 2Y ]
satisfying some mild restrictions discussed below. Let α, β be real,

(5.1) (α)3 (β)3 (α+ β + 1)2 6= 0,

where (α)0 = 1, (α)s = (α+ s− 1)(α)s−1 for s = 1, 2, . . ..
Theorem 6.12 of [6] states that, for F > 0, L = log(FN + 2),

Sf :=
∑

(m,n)∈D

e(FXαY βm−αn−β)

� F 1/3N1/2 +N5/6L2/3 + F−1/8N15/16L3/8

+ F−1/4NL1/2

(the ‘AB theorem’). In the present section, I extend this by replacing u−α,
v−β by more general functions h1(u), h2(v), with

(h1(u)− u−α)(j) � η|(u−α)(j)| (u ∼ X)(5.2)

(h2(v)− v−β)(j) � η|(v−β)(j)| (v ∼ Y )(5.3)

where η is a sufficiently small positive quantity (in terms of α, β) and j =
0, 1, . . . , j � 1. We write f0(u, v) = Ah1(u)h2(v) for (u, v) ∈ R.

We must deal with some monotonicity conditions for

f1(u, v; q, r) = f0(u+ q, v + r)− f0(u, v)

=

∫ 1

0

∂

∂t
f0(u+ qt, v + rt)dt.

These are a technical nuisance rather than a serious obstacle. We shall see
that R can be partitioned into O(1) rectangles R′ = I × J such that one

of f
(2,0)
1 or f

(0,2)
1 has no zero in each R′. This allows us to impose helpful

conditions in Lemmas 11–14 below. In these lemmas, let f(u, v) be a real
function on Ī× J̄ and D ⊆ Ī× J̄ . We write f (a,b) for ∂a+bf/∂ua∂vb. Suppose
that f (2,0) is nonzero on R. Let ψ(w, v) denote the solution of

(5.4) f (1,0)(ψ(w, v), v) = w.
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For any function φ having second order partial derivatives on D, let Hφ =
φ(2,0)φ(0,2)−{φ(1,1)}2. We need to state some ‘omega conditions’ on f , which
we assume to be true for the duration of these lemmas.

(Ω1) f has partial derivatives of all orders. For a suitable F > 0 there is a
constant C1 such that

|f (a,b)(u, v)| ≤ C1FX
−aY −b ((u, v) ∈ Ī × J̄ , 0 ≤ a, b ≤ 4).

(Ω2) There is a constant C2 such that the set

U(v) = {u : (u, v) ∈ D}

is the union of at most C2 intervals for each v.

(Ω3) There is a constant C3 such that the set

V (`) = {v : (ψ(`, v), v) ∈ D}

is the union of at most C3 intervals for each `.

A function f : I → R is said to be C-monotonic if I can be partitioned
into C intervals on each of which f is monotonic.

(Ω4) There is a constant C4 such that, for each fixed `, f (2,0)(ψ(`, v), v) is
C4-monotonic on J̄ .

In Lemmas 11–14, implied constants depend at most on C1, . . . , C4. In
Theorem 7, implied constants depend at most on C1, . . . , C4, α and β.

Lemma 11 Suppose that

|f (2,0)| � Λ on D.

Then
Sf � |D|Λ1/2 + Λ−1/2Y.

Proof. See [6], Lemma 6.6.

We shall write

g(w, v) = f(ψ(w, v), v)− wψ(w, v).
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Lemma 12 We have

∂ψ

∂v
(w, v) = −f (1,1)(ψ(w, v), v)/f (2,0)(ψ(w, v), v),(i)

∂g

∂v
= f (0,1)(ψ(w, v), v),

∂2g

∂v2
=

(Hf)(ψ(w, v), v)

f (2,0)(ψ(w, v), v)
.(ii)

Proof. See [6], proof of Lemma 6.7.

Lemma 13 Suppose that

|f (j,0)| � FX−j, |f (0,j)| � FY −j (j = 1, 2),

|Hf | � F 2N−2

and that (Ω2) − (Ω4) hold, and remain valid with the roles of the variables
interchanged. Then

Sf � F + F−1/2NL.

Proof. We may follow the proof of [6], Lemma 6.11 almost verbatim.

We now give a variant of [6], Lemma 6.8.

Lemma 14 Suppose that

|f (2,0)| � Λ , |Hf | �M

on D. Then

Sf � |D|M1/2 + FM−1/2X−1 +M−1/2 + Y Λ−1/2 + Y L.

Proof. In view of Lemma 11, we may suppose that Λ ≥ M . Replacing f
by −f if necessary, we may suppose that f (2,0) < 0 on D. Lemma 3.6 of [6]
gives

Sf =
∑
n∼Y

∑
m∈I(n)

e(f(m,n))

=
∑
n∼Y

∑
k∈K(n)

e

(
−1

8
+ g(k, n)

)
|f (2,0)(ψ(k, n), n)|−1/2

+O(Y Λ−1/2 + Y L).
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Here
K(n) = {k : (ψ(k, n), n) ∈ D}.

Changing the order of summation,

Sf =
∑

k�FX−1

∑
n∈V (k)

e

(
−1

8
+ g(k, n)

)
|f (2,0)(ψ(k, n), n)|−1/2

+O(Y Λ−1/2 + Y L).

Thanks to (Ω3), (Ω4), we may now apply partial summation to conclude that

(5.5) Sf �
∑

k�FX−1

Λ−1/2

∣∣∣∣∣∣
∑
n∈J(k)

e(g(k, n))

∣∣∣∣∣∣+O(Y Λ−1/2 + Y L)

for an interval J(k) ⊂ V (k). Now an application of [6], Theorem 2.2, in
conjunction with (5.5) and Lemma 12, gives

(5.6) Sf �
∑

k�FX−1

Λ−1/2

{
M1/2

Λ1/2
|V (k)|+

(
M

Λ

)−1/2
}

+ Y Λ−1/2 + Y L.

Moreover, ∑
k

|V (k)| =
∑
n

∑
k

ψ(k,n)∈U(n)

1.

Now the inner sum is the number of integer values assumed by f (1,0)(m,n)
as m runs over U(n). Recalling (Ω2), the inner sum is

�
∫
U(n)

f (2,0)(t, n)dt+ 1

� |U(n)|Λ + 1.

Hence ∑
k

|V (k)| �
∑
n∼Y

(|U(n)|Λ + 1)(5.7)

� |D|Λ + Y.
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Combining (5.6), (5.7),

S � |D|M1/2 + Λ−1M1/2Y +M−1/2(FX−1 + 1) + Y Λ−1/2 + Y L.

Since Y Λ−1/2 ≥ Λ−1M1/2Y , the lemma follows.

For convenience, we record three more lemmas from [6].

Lemma 15 Let P be a polynomial over C having distinct zeros, P (0) 6= 0.
Let δ > 0. Let q, r be integers, r 6= 0. Let

E =
{

(m,n) : m ∼ X,n ∼ Y,
∣∣∣P ( qn

rm

)∣∣∣ < δ
}
.

Then
|E| < C(P ){δN + 1}.

Proof. For q 6= 0, this follows from [6], Lemma 6.4. For q = 0, E is empty
if δ is sufficiently small, and otherwise the result is trivial.

Lemma 16 Let P , Q be polynomials over C having no common zero. Let
q, r, m, n be integers, rm 6= 0. Then

max
(∣∣∣P ( qn

rm

)∣∣∣ , ∣∣∣Q( qn
rm

)∣∣∣) > C(P,Q) > 0.

Proof. This follows from [6], Lemma 6.5.

Lemma 17 For 1 ≤ Q ≤ X, 1 ≤ R ≤ Y , we have

S2
f �

N

QR

∑
|q| ≤Q

∑
|r| ≤R

∑
(m,n)∈D(q,r)

e(f1(m,n; q, r)).

Here D(q, r) = D ∩ (D− (q, r)),

(5.8) f1(m,n; q, r) = f(m+ q, n+ r)− f(m,n).

Proof. See [6], p. 76.

In Theorem 7, we write f0 ∈ E as an abbreviation for the following
hypothesis. If f0 is restricted to a rectangle I × J with the property that

31



f
(2,0)
1 6= 0 in E = Ī × J̄ , then (Ω2), (Ω3), (Ω4) hold for f1 when the domain

of f1 is D(q, r, θ) or D′(q, r, θ) (for all (q, r) ∈ Z2, θ > 0). Here

D(q, r) = {(u, v) ∈ (E ∩D) ∩ (E ∩D− (q, r))},
D(q, r, θ) = {(u, v) ∈ D(q, r) : θ ≤ |Hf1| < 2θ},
D′(q, r, θ) = {(u, v) ∈ D(q, r) : |Hf1| < θ}.

Moreover, f0 has the same property when the variables interchange roles.

Theorem 7 Let 0 < η < c(α, β) where c is sufficiently small. Let f0 satisfy
(5.2), (5.3) and suppose that f0 ∈ E. Let F = AX−αY −β � N1/6 and
Y ≤ X. Then

Sf0 � L{F 1/3N1/2 +N5/6 + F−1/8N15/16 + F 1/2N1/2Y −1/2 + F 1/12N1/2Y 5/12

(5.9)

+ η2/5N1/2F 1/5Y 2/5 + η1/4N3/4Y 1/4

+ η1/2F 1/4N1/2Y 1/4}.

Proof. We may assume that F > N5/6 and that Y > N1/4. For suppose
that N1/6 � F ≤ N5/6. Since

(−α)(−α− 1)(−β)(−β − 1)− α2β2 = αβ(α+ β + 1),

it is easy to deduce from (5.2), (5.3) that

Hf0 � F 2N−2.

The omega conditions are rather straightforward to check for f0. Hence
Lemma 13 gives

Sf0 � F + F−1/2NL� N5/6 + F−1/8N15/16L,

as required. Now suppose that F > N5/6 and Y ≤ N1/4. We note that (5.9)
is trivial for F > N3/2, so we suppose that F ≤ N3/2. Then Lemma 11 gives

Sf0 � N(FX−2)1/2 + (FX−2)−1/2Y

� F 1/2Y + F−1/8N15/16

� F 1/3N1/2 + F−1/8N15/16,
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since F 1/6Y N−1/2 � Y N−1/4 � 1.
We write f1(u, v) rather than f1(u, v; q, r) for the function in (5.8) with

f = f0. Let S = Sf0 . From Lemma 17,

(5.10) S2 � N2

Z
+
N

Z

∑
|q|≤Q

∑
|r|≤R

(q,r) 6=(0,0)

S(q, r)

where
S(q, r) =

∑
(m,n)∈D(q,r)

e(f1(m,n)).

Here Z is at our disposal subject to

X/Y ≤ Z ≤ c2N,

and we choose
Q =

√
ZX/Y , R =

√
ZY/X.

Note that
Q/X = R/Y =

√
Z/N ≤ c.

For a fixed pair q, r,

ρ := max

(
|q|
X

,
|r|
Y

)
≤ c.

We consider the contribution to the right-hand side of (5.10) from terms
with ρ = |r|/Y (in particular, r 6= 0). The remaining terms can be estimated
similarly.

The hypotheses of the theorem imply that, for bounded a, b

(5.11) f
(a,b)
1 (m,n) = (−1)a+b+1Am−α−an−β−b

r

n

{
Ta,b

( qn
rm

)
+O(ρ+ η)

}
where

Ta,b(z) = (α)a+1 (β)bz + (α)a(β)b+1.

Moreover,

Hf1(m,n) = A2m−2α−2n−2β−2 r
2

n2

{
U
( qn
rm

)
+O(ρ+ η)

}
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where

U(z) = αβ(α+ β + 2){(α)2z
2 + 2(α+ 1)(β + 1)z + (β)2}.

As pointed out on p. 84 of [6], U(z) has degree 2 and has distinct zeros. We
also need the observation that no two of T0,2, T1,1 and T2,0 have a common
zero; nor does T0,2 or T2,0 share a zero with U .

Because of these observations, it suffices to prove (5.9) with D replaced

by a domain D∩(I×J) with the property that f
(2,0)
1 6= 0 in Ī×J̄ or f

(0,2)
1 6= 0

in Ī × J̄ . Let us suppose, say, that f
(2,0)
1 6= 0 in Ī × J̄ .

Let δ be a small positive number, to be chosen later. Consider the do-
mains (possibly empty):

D0,j =
{

(m,n) ∈ D(q, r) : 2jδρ2F 2N−2 ≤ |Hf1| < 2j+1δρ2F 2N−2

and
∣∣∣T2,0

( qn
rm

)∣∣∣ ≥ c
}

(j ≥ 0),

S0,j =
∑

(m,n)∈D0,j

e(f(m,n)),

D1 =
{

(m,n) ∈ D(q, r) :
∣∣∣T2,0

( qn
rm

)∣∣∣ < c
}

S1 =
∑

(m,n)∈D1

e(f(m,n)),

D2 =
{
(m,n) ∈ D(q, r) : |Hf1| < δρ2F 2N−2

}
and

S2 =
∑

(m,n)∈D2

e(f(m,n))

By Lemma 16, the sets D0,j (0 ≤ j � L), D1, D2 form a partition of D(q, r).
Clearly

(5.12) |Hf1| � 2jδρ2F 2N−2 and |f (2,0)
1 | � ρF 2X−2 on D0,j.

Moreover, from Lemma 16,

|Hf1| � ρ2F 2N−2 and |f (0,2)
1 | � ρFX−2 on D1,(5.13)

|f 2,0)
1 | � ρFX−2 on D2.(5.14)
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We may estimate the terms on the right in the decomposition

S(q, r) =
∑

0≤j�L

S0,j + S1 + S2

by applying Lemmas 11 and 14. For D0,j, D1, D2 are domains D(q, r, θ) or
D′(q, r, θ).

From Lemma 14 and (5.12),

S0,j � N(ρ2F 2N−2)1/2 + ρF (δρ2F 2N−2)−1/2X−1(5.15)

+ (δρ2F 2N−2)−1/2 + Y (ρFX−2)−1/2 + Y L

� ρF + ρ−1/2F−1/2N + δ−1/2Y L+ δ−1/2ρ−1F−1N.

Similarly, Lemma 14 and (5.13) give

S1 � N(ρ2F 2N−2)1/2 + ρF (ρ2F 2N−2)−1/2Y −1(5.16)

+ (ρ2F 2N−2)−1/2 +X(ρFY −2)−1/2 +XL

� ρF + ρ−1F−1N +XL+ ρ−1/2F−1/2N.

By Lemma 15, and since ρN ≥ N/X, the number of points in D2 is
� (δ + ρ+ η)N . From Lemma 11 and (5.14),

(5.17) S2 � (δ + ρ+ η)ρ1/2F 1/2Y + ρ−1/2F−1/2N.

Collecting (5.15)–(5.17),

S(q, r) � LρF + Lρ−1/2F−1/2N + L2δ−1/2Y

+ Lδ−1/2ρ−1F−1N + LNY −1 + (δ + ρ+ η)ρ1/2F 1/2Y.

Note that, since F ≥ N5/6, we have ρF � FX−1 � 1. We may take
δ = c(ρF )−1/3 to obtain

L−2S(q, r) � ρF + ρ−1/2F−1/2N + ρ1/6F 1/6Y(5.18)

+ ρ−5/6F−5/6N +NY −1 + ρ3/2F 1/2Y + ηρ1/2F 1/2Y.
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Now if a is a constant, a > −1, we have

1

Z

∑
(q,r)∈Q

ρa � 1

Z

Q∑
q=1

R∑
r=1

(
qa

Xa
+
ra

Y a

)
�
(
Z

N

)a/2
.

We combine this with (5.10), (5.18) to obtain

L−2S2 � N2Z−1 + FN1/2Z1/2 + F−1/2N9/4Z−1/4(5.19)

+ F 1/6N11/12Y Z1/12 + F−5/6N29/12Z−5/12 +N2Y −1

+ F 1/2N1/4Y Z3/4 + ηF 1/2N3/4Y Z1/4.

We may discard F−5/6N29/12Z−5/12 since F � N5/6:

F−5/6N29/12Z−5/12 = (N2Z−1)11/18(FN1/2Z1/2)7/18NF−11/9

� (N2Z−1)11/18(FN1/2Z1/2)7/18.

Applying Lemma 3, we find that

L−2S2 � F 2/3N + F 2/13NY 12/13 + F 2/7NY 4/7

+ η4/5NF 2/5Y 4/5 +N5/3 +N5/4Y 3/4 + F−1/4N7/4Y 1/4

+ η1/2N3/2Y 1/2 + FN1/2X1/2Y −1/2 + F 1/6N11/12X1/12Y 11/12

+ F 1/2N1/4X3/4Y 1/4 + F−1/2N2 +N2Y −1 + ηF 1/2N3/4X1/4Y 3/4.

Clearly we may suppose that F � N3/2. We use N5/6 � F � N3/2,
N1/4 � Y � N1/2 to obtain

F−1/4N7/4Y 1/4 � F−1/4N15/8, F−1/2N2 � F−1/4N15/8,

F 1/2N1/4X3/4Y 1/4 � NX3/4Y 1/4 � N5/3, N5/4Y 3/4 � N5/3.

Moreover,

F 2/7NY 4/7 � F 2/7N9/7 ≤ (F 2/3N)33/49(F−1/2N2)16/49,

F 2/13NY 12/13 � F 2/13N19/13 ≤ (F 2/3N)63/143(F−1/4N15/8)80/143.
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Hence

L−2S2 � F 2/3N + F−1/4N15/8 + η4/5NF 2/5Y 4/5 +N5/3(5.20)

+η1/2N3/2Y 1/2 +N2Y −1 + ηF 1/2NY 1/2 + FNY −1 + F 1/6NY 5/6.

We noted above that

S � F 1/2Y +NF−1/2,

S2 � FY 2 +N2F−1.

If N2Y −1 is the maximum term in (5.20),

S2 � (N2Y −1)2/3(FY 2)1/3 +N2F−1

� N4/3F 1/3 + F−1/4N15/8

� (F 2/3N)1/2(N5/3)1/2 + F−1/4N15/8,

which yields (5.9). We conclude that (5.9) always holds.
Let us now specialize h1 and h2 for application to Type I sums. We

suppose that

(a) Either h1(u) = u−α or h1(u) = u1−α−(u+p)1−α

(1−α)p
, where p > 0 and p/X is

sufficiently small;

(b) Either h2(v) = v−β or h2(v) = v1−β−(v+s)1−β

(1−β)s
, where s > 0 and s/Y is

sufficiently small.

Thus h1(u) is a holomorphic function in G =
{
u ∈ C : Re u ∈

(
X
2
, 3X

)}
satisfying the approximation (5.2) in G; and similarly for h2(v) and G′ ={
v ∈ C : Re v ∈

(
Y
2
, 3Y

)}
.

We further suppose that D is a rectangle.
We can now make some observations useful for verification of the omega

conditions, with f1, ρF in place of f , F . The condition (Ω1) gives no diffi-
culty. Interchanging α, β if necessary, we suppose that

|f (2,0)
1 (u, v)| � 1 on D.

Let us define ψ as in (5.4), with f1 in place of f . Then:
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(i) For fixed real k and `, the equation

(5.21) f
(1,0)
1 (k, v) = `

has O(1) solutions v ∈ J .
Take a suitable rectangle R in G′ containing J in its interior. We readily

obtain a holomorphic function g on G such that

|g(v)| < |f (1,0)
1 (k, v)|

on R, namely

f
(1,0)
1 (k, v) + g(v) = Ak−α−1v−β

r

v
T1,0

(qv
rk

)
for v ∈ G. From Rouché’s theorem, the equation (5.21) has O(1) solutions
inside R.

(ii) For fixed real k and `, the equation

ψ(`, v) = k

has O(1) solutions v ∈ J .

For if ψ(`, v) = k, then f
(1,0)
1 (k, v) = `. This equation has O(1) solutions

v ∈ J from (i).

(iii) For fixed real k′ and `, the equation

(5.22)
∂ψ

∂v
(`, v) = k′

has O(1) solutions v ∈ J .
For (5.22) implies

f
(1,1)
1 (ψ(`, v), v) + k′f

(2,0)
1 (ψ(`, v), v) = 0.

In view of (ii), we need only show that

f
(1,1)
1 (k, v) + k′f

(2,0)
1 (k, v) = 0

has O(1) solutions v ∈ J . This is accompanied by an application of Rouché’s
theorem much as above.
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(iv) Let q be a given function on R2. Suppose that

h(v) := −q(1,0)(k, v)f
(1,1)
1 (k, v) + q(0,1)(k, v)f

(2,0)
1 (k, v)

is holomorphic in G for any fixed k in I. Suppose further that h has only
O(1) zeros on the interval J . Then the equation

(5.23) (q(ψ(`, v), v))′ = 0

has O(1) solutions v in J for fixed `. To see this, we apply Lemma 12 again.
Abbreviating ψ(`, v) to ψ,

(q(ψ(`, v), v))′ = q(1,0)(ψ, v)
∂ψ

∂v
+ q(0,1)(ψ, v)

=
−q(1,0)(ψ, v)f

(1,1)
1 (ψ, v) + q(0,1)(ψ, v)f

(2,0)
1 (ψ, v)

f
(2,0)
1 (ψ, v)

.

Our claim now follows from observation (ii) and the hypothesis concerning
the zeros of h.

The domain D(q, r, θ), D′(q, r, θ) take the form

{(u, v) ∈ D : Hf1 ∈ I ′}

where D has the property assumed above and I ′ is an interval. Thus for (Ω2),
we need to show that (Hf1)(u, k) is C-monotonic in u for fixed k, C = O(1).
For (Ω3), (Ω4) we need statements of the form

‘q(ψ(`, v), v) is C-monotonic in v for fixed `’

with C = O(1). For (Ω3), we must take q = Hf1, and for (Ω4), q = f
(2,0)
1 .

Thus the verification of these two conditions can be completed by showing
(for both choices of q) that the equation h(v) = 0 has O(1) solutions v in J .
As above, all we need is a suitably chosen rectangle R, containing J in its
interior, and a holomorphic function g, |g(v)| < |h(v)| on R, such that g + h
is of a simple form and can be seen to have finitely many zeros in G. The
case q = Hf1 is distinctly more difficult.

Looking ahead to Theorem 8, we now take (α, β) = (1, 2). Routine

calculations, using the approximations to Hf1 and f
(a,b)
1 already found above,

give the desired approximation g(v)+h(v) to h(v). No matter what the value
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of k, the rational function g + h cannot vanish identically. This is a matter
of examining the roots of certain quadratic and linear polynomials, which we
leave to the reader. In this way we can verify (Ω3). The corresponding tasks
for (Ω4) and (Ω2) are similar but simpler.

We now apply Theorem 7 to Type I sums.

Theorem 8 Let D ≥ 1, MN � D, X � ND1/6, L = log(XD+2), |an| ≤ 1.
Let Im ⊆ (N, 2N ],

S1 =
∑
m∼M

am
∑
n∈Im

e

(
XMN

mn

)
.

Then

S1 � L3/2{D11/12 +DN−1/2 +X−1/14D27/28N1/14

+X1/8D13/16N−1/8 +X1/16D27/32N−1/16

+X1/14N−1/7D6/7 +X1/6D5/6N−1/6N
−1/6
0

+X1/26D10/13N2/13}.

Proof. Let Q be a positive integer, Q < cN . Just as in the proof of Theorem
4, there is a q ∈ [1, Q] and a rectangle D ⊆ [M, 2M ]× [N, 2N ] for which

(5.24) S2
1 � LD2Q−1 +

L2Dq

Q

∑
(m,n)∈D

e(XMNm−1((n+ q)−1 − n−1)).

Let N0 = min(M,N). We apply Theorem 7 to the sum on the right-hand
side of (5.24), replacing F by Xq/N , (X, Y,N) by (D/N0, N0, D) and η by
Q/N . (We note that Xq/N � D1/6.) Thus

L−3S2
1 � D2Q−1 +D{(XQ/N)1/3D1/2

+D5/6 + (XQ/N)−1/8D15/16

+ (Q/N)2/5D1/2(XQ/N)1/5N
2/5
0 + (Q/N)1/4D3/4N

1/4
0

+ (Q/N)1/2(XQ/N)1/4D1/2N
1/4
0 +D1/2(XQ)1/2N−1/2N

−1/2
0

+D1/2(XQ)1/12N−1/12N
5/12
0 }.

40



We simplify this bound using N0 ≤ N . We further restrict Q by

Q < X1/7D1/14N−1/7,

so that
(XQ)−1/8D31/16N1/8 < D2/Q.

It follows that, for 0 < Q < min(cN,X1/7D1/14N−1/7), we have

L−3S2
1 � D2Q−1 +X1/3D3/2N−1/3Q1/3 +D11/6

+D11/8X1/2Q1/2N−1/2N
−1/4
0 +X1/5D3/2N−1/5Q3/5

+D7/4Q1/4 +X1/4D3/2N−1/2Q3/4 +D3/2X1/2Q1/2N−1/2N
−1/2
0

+D3/2X1/12Q1/12N1/3.

Applying Lemma 3, we find that

L−3S2
1 � D11/6 +X1/4D13/8N−1/4 +D19/12X1/3N−1/3N

−1/6
0

+X1/8D27/16N−1/8 +D2N−1 +D27/14X−1/7N1/7

+X1/7N−2/7D12/7 +D5/3X1/3N−1/3N
−1/3
0

+D20/13X1/13N4/13.

Theorem 8 follows at once.

§6 Proof of Theorem 1: initial steps.

In this section, let s = σ + it denote a complex variable.

Lemma 18 Assume the Riemann hypothesis, and let σ ∈
(

1
2
, 2
]
. For y ≥ 1,

we have ∑
n≤y

µ(n)

ns
=

1

ζ(s)
+O(y1/2−σ+ε(|t|ε + 1)).

Proof. This is proved in all essentials in [22], §14.25.
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We shall write

r(n) =
∑

(u,v)∈Z2

|u|3+|v|3=n

1, b =
2Γ2(1/3)

3Γ(2/3)
,

∆(x) =
∑
n≤x

r(n)− bx2/3,

Z(s) =
∑
n≥1

r(n)

ns
(σ > 1).

Nowak [17] showed (in a more general context) that Z(s) has an analytic
continuation to σ > 2/9 with the exception of a simple pole at s = 2/3, with
residue 2b/3. His discussion yields the estimate

(6.1) Z(s) � |t|9/7(1−σ+ε) (σ ≥ 2/9 + ε, |t| ≥ 1).

Lemma 19 Let λ be a constant, 2/9 < λ < 1/2, and suppose that, for every
ε > 0,

(6.2)

∫ 2T

T

|Z(λ+ it)|dt� T 1+ε.

for T ≥ 1. Then for ε > 0, 1 ≤ y < x1/3, we have

E(x) =
∑
d≤y

µ(d)∆
( x
d3

)
+O(xλ+εy1/2−3λ).

Proof. This is essentially stated in [25]. We give details for the convenience
of the reader, following [17]. First of all,

V (x) =
∑

|m|3+|n|3≤x

∑
d≥1

d |m,d |n

µ(d)(6.3)

=
∑
d≥1

d3(|m|3+|n|3)≤x

µ(d) =
∑

d≥1,t≥1
d3t≤x

µ(d)r(t)

= bx2/3
∑
d≤y

µ(d)

d2
+
∑
d≤y

µ(d)∆
( x
d3

)
+Q(x),
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where
Q(x) =

∑
d>y,t≥1
d3t≤x

µ(d)r(t).

Now let

f(s) =
1

ζ(s)
−
∑
n≤y

µ(n)n−s (σ > 1/2),

so that

f(3s)Z(s) =
∑
n≥1

a(n)

ns
, a(n) =

∑
d>y,t≥1
d3t=n

µ(d)r(t).

An application of Perron’s formula gives

Q(x) =
1

2πi

∫ 2+ixC

2−ixC

f(3s)Z(s)
xs

s
ds+O(1)

for any constant C > 2 We move the vertical segment to the left. For a
sufficiently large C, we obtain

Q(x) =
1

2πi

∫ λ+ixC

λ−ixC

f(3s)Z(s)
xs

s
ds(6.4)

+ Res

(
f(3s)Z(s)xs

s
,
2

3

)
+O(1)

=
1

2πi

∫ λ+ixC

λ−ixC

f(3s)Z(s)
xs

s
ds+ bx2/3

∑
d>y

µ(d)

d2
+O(1)

on applying (6.1) on the horizontal segments.
By a splitting up argument, there is a T , 1 ≤ T ≤ xC , such that∣∣∣∣∣

∫ λ+ixC

λ−ixC

f(3x)Z(s)
xs

s
ds

∣∣∣∣∣� xλ log x

T

∫ 2T

T−1

|f(3λ+ 3it)Z(λ+ it)| dt(6.5)

� xλ+εy
1
2
−3λ.

The last estimate follows from Lemma 18 and (6.2). The lemma follows at
once on combining (6.3)–(6.5), since

b
∑
d≥1

µ(d)

d2
=

6b

π2
=

4Γ2(1/3)

π2Γ(2/3)
.
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The best available value of λ at present is 4/9:

Lemma 20 For T ≥ 1,∫ 2T

T

∣∣∣∣Z (4

9
+ it

)∣∣∣∣ dt� T log T.

Proof. This follows from Lemma 3.1 of Zhai [25] on applying the Cauchy-
Schwarz inequality.

Let ψ(t) = {t} − 1/2, where { } denotes the fractional part.

Lemma 21 We may write

∆(x) = ∆1(x) + ∆2(x)

where, for a positive constant c1,

∆(x) = c1x
2/9

∞∑
`=1

1

`4/3
cos 2π

(
`x1/3 − 1

3

)
+O(1),

∆2(x) = −8
∑

(x/2)1/3≤n≤x1/3

ψ((x− n3)1/3) +O(1).

Proof. See Krätzel [12], Chapter 3.

On combining the last three lemmas, we obtain the decomposition

E(x) = E1(x) + E2(x) + E3(x)

where (for a parameter y in [1, x1/3] which is at our disposal)

E1(x) = c1x
2/9
∑
d≤y

µ(d)

d2/3

∞∑
k=1

1

k4/3
cos 2π

(
kx1/3

d
− 1

3

)
,

E2(x) = −8
∑
d≤y

µ(d)
∑

x1/3/(21/3d)≤n≤x1/3/d

ψ

(( x
d3
− n3

)1/3
)

and

E3(x) = O(x4/9+εy−5/6 + y).
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To obtain (1.2), we choose

y = x8/15−6θ/5.

It now suffices to show, for any D, D′, 1 ≤ D ≤ y, D < D′ ≤ 2D, and any
K ≥ 1, that

(6.6)
∑
k∼K

∑
D≤d≤D′

µ(d)e

(
kx1/3

d

)
� K4/3D2/3xθ−2/9+ε

and

(6.7)
∑
d∼D

µ(d)
∑

n∼x1/3/(21/3d)

ψ

(( x
d3
− n3

)1/3
)
� xθ+ε.

We complete this section with a proof of a stronger result than (6.7),
namely

(6.8) S(D) :=
∑
d∼D

µ(d)
∑

n∼x1/3/(21/3d)

ψ

(( x
d3
− n3

)1/3
)
� x7/27+ε (D � x2/9).

(This is the bound corresponding to (6.7) if θ is replaced by 7/27).

Lemma 22 For H ≥ 1, we have a representation

ψ(u) =
∑

1≤|h|≤H

a(h)e(hu) +O

( ∑
1≤h≤H

b(h)e(hu)

)
+O(H−1)

with coefficients a(h) � 1/|h|, b(h) � 1/H.

Proof. See Vaaler [23], or the appendix to [6].

We now split up S(D) as follows. For d ∼ D, (suppressing dependence
on d) let

Nj =
x1/3

d(1 + 2−3j/2)1/3
, j = 0, 1, . . . , J.

Here J is the least integer such that

x1/3/d−NJ ≤ xε.
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Thus J � log x, Nj+1 −Nj � x1/32−3j/2D−1 � xε, and in particular

(6.9) x1/32−3j/2D−1 � xε

for j = 0, 1, . . . , J .

It suffices to show that for each j = 0, . . . , J ,

(6.10)
∑
d∼D

µ(d)
∑
n∈Id

ψ

(( x
d3
− n3

)1/3
)
� x7/27+ε,

where Id = Id(j) = [Nj, Nj+1].

It is convenient to write P for 2j. We apply Lemma 22 with

(6.11) H = max(x2/27P−3/2, 1).

Thus the sum in (6.10) can be rewritten∑
d∼D

µ(d)
∑

1≤|h|≤H

a(h)
∑
n∈Id

e

(
h
( x
d3
− n3

)1/3
)

+O

(∑
d∼D

∑
1≤h≤H

b(h)
∑
n∈Id

e

(
h
( x
d3
− n3

)1/3
))

+O(x7/27).

We need only show that, for 1 ≤ K ≤ H and |ah| ≤ 1,

S(D,K, P ) := K−1
∑
d∼D

µ(d)
∑
h∼K

ah
∑
n∈Id

e

(
h
( x
d3
− n3

)1/3
)

(6.12)

� x7/27+ε.

The corresponding result with 1 in place of µ(d) is, of course, easier.
We apply the B-process to the sum over n in (6.10). We may quote the

result from Kühleitner [13], (3.5):

(6.13) S(D,K, P ) � x1/6

P 5/4D1/2K3/2
|S ′(D,K, P )|+D log x,

with

S ′(D,K, P ) =
∑
d∼D

µ(d)

(
D

d

)1/2 ∑
(h,m)∈T

b(h,m)e

(
−x1/3 | (h,m)|3/2

d

)
.
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Here b(h,m) � 1 and

T = {(h,m) : h ∼ K, Ph ≤ m ≤ 2Ph}.

Thus we must show that∑
D<d≤D′

µ(d)
∑

(h,m)∈T

b(h,m)e

(
−x1/3 |(h,m)|3/2

d

)
(6.14)

� x5/54+εP 5/4D1/2K3/2.

If
K < x5/27P 1/2D−1,

then (6.14) is trivial. We now assume that

(6.15) H ≥ K ≥ x5/27P 1/2D−1.

We next dispose of the case where

(6.16) K < min(x−2/27P−1/4D1/2, x5/27P 1/2D−2/3)

by treating the variables h,m trivially in (6.14). In view of Lemma 2 (ii), we
need only show that, for |am| ≤ 1, |bn| ≤ 1,

(6.17)
∑

m∼M,n∼N
D<mn≤D′

ambne

(
Y

mn

)
� x5/54+εP 1/4D1/2K−1/2

whenever

(6.18) D1/3 � N � D1/2 , Y � x1/3PK

and that for |am| ≤ 1,

(6.19)
∑

m∼M,n∼N
D<mn≤D′

ame

(
Y

mn

)
� x5/54+εP 1/4D1/2K−1/2

whenever

(6.20) N � D2/3 , Y � x1/3PK.

47



For (6.17), we use Lemma 5 with M1 = M , M2 = 1, M3 = N , M4 = 1.
The left-hand side of (6.17) is

� (log x)2{Y 1/2 +M1/2N +MN1/2 +MN(Y/D)−1/2}

� (log x)2{x1/6P 1/2K1/2 +D5/6 +D3/2x−1/6P−1/2K−1/2}

� (log x)2{x1/6P 1/2K1/2 +D5/6}

� x5/54+εP 1/4D1/2K−1/2,

where we appeal to (6.16) in the last step.
For (6.19), we treat m trivially and estimate the sum over n using the

exponent pair
(

1
2
, 1

2

)
. The left-hand side of (6.19) is

�M

(
Y

D

)1/2

+M

(
Y

DN

)−1

�MD−1/2x1/6P 1/2K1/2 +D2x−1/3P−1K−1.

Certainly D2x−1/3P−1K−1 � x5/54P 1/4D1/2K−1/2, and we obtain

MD−1/2x1/6P 1/2K1/2 � x5/54P 1/4D1/2K−1/2

by appealing to (6.16) and (6.18). This completes the treatment of the case
(6.16).

We note in particular that (6.14) holds whenever H = 1. For in this case
K = 1, while, (6.15) gives D ≥ x5/27P 1/2. Now (6.16) is easily verified. We
may now suppose that H = x2/27P−3/2. Since K ≤ H, we have

(6.21) KP 3/2 ≤ x2/27 , P ≤ x4/81.

We are now in a position to apply Theorem 2, with (κ, λ) = (1/2, 1/2)
and essentially (D,K, PK, x1/3PKD−1) in place of (M,M1,M2, X). We
may suppose, in addition to (6.21), that

(6.22) K ≥ DP−1/2x−5/27.

For in the contrary case, we note that (6.16) holds, since

DP−1/2x−5/27(x−2/27P−1/4D1/2)−1 � D1/2x−3/27 � 1,

DP−1/2x−5/27(x5/27P 1/2D−2/3)−1 � D5/3x−10/27 � 1.
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The condition X � M2
2 in Theorem 2 reduces to x1/3PKD−1 � P 2K2,

that is,
DPK � x1/3.

This is a consequence of (6.21). Thus the left-hand side of (6.14) is

� xε(DPK +D2/3(PK)2(x1/3/(DPK))1/6)

� xεDPK +D1/2x1/18+ε(PK)11/6.

It remains to show that

DPK ≤ x5/54P 5/4D1/2K3/2.

(which is simply (6.22)), and that

D1/2x1/18(PK)11/6 � x5/54P 5/4D1/2K3/2,

that is,
P 7/12K1/3 � x1/27.

This is an easy consequence of (6.21):

P 7/12K1/3 = P 1/12(P 3/2K)1/3 � x1/243+2/81.

This completes the proof of (6.14).

§7 Completion of the proof of Theorem 1.

It remains to prove (6.6). We write D = xφ. Since the trivial bound gives
(6.6) for φ ≤ 3θ − 2/3, we assume that

(7.1) 0.113 . . . = 3θ − 2

3
< φ ≤ 8

15
− 6θ

5
= 0.221 . . . .

We fix K ≥ 1 and D′, D ≤ D′ < 2D. Let

S1 =
∑
`∼K

∑
m∼M

∑
n∼N

D≤mn<D′

ame

(
`x1/3

mn

)
,

S2 =
∑
`∼K

∑
m∼M

∑
n∼N

D≤mn<D′

ambne

(
`x1/3

mn

)

with coefficients satisfying |am| ≤ 1, |bn| ≤ 1.
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Lemma 23 Suppose that

(7.2) N � D2/3x4/9−2θ.

Then

(7.3) S1 � K4/3D2/3xθ−2/9+ε,

provided that either

N � D−25/21x−50θ/7+19/9(7.4)

or

N � D−944/267x−1888θ/89+4898/801.(7.5)

Proof. It suffices to show that

(7.6) S ′1 :=
∑
m∼M

∑
n∼N

D≤mn<D′

ame

(
`x1/3

mn

)
� `1/3D2/3xθ−2/9+ε.

We appeal to Theorem 4, with X � `x1/3D−1. In (4.15), the terms DN−1/2,
DX−1/2 are acceptable because of (7.2). Since N0 ≤ N and (1 + 2κ)/(6 +
4κ) ≤ 1/4, we need only show that

(D4+4κ(x1/3D−1)1+2κN−(1+4κ−2λ))1/(6+4κ) � D2/3xθ−2/9.

The condition (7.4) arises on choosing (κ, λ) =
(

2
7
, 4

7

)
= BA2B(0, 1), while

(7.5) arises from (κ, λ) =
(

89
570
, 1

2
+ 89

570

)
. The latter exponent pair requires

lengthy arguments (Huxley [9], Chapter 17).
We remark that the slightly stronger exponent pair in [10],

(
32
205
, 1

2
+ 32

205

)
,

would not significantly ‘reduce θ’.

Lemma 24 Suppose that (7.2) holds, and that φ ≤ 4
(
θ − 2

9

)
= 0.151 . . .,

(7.7) N ≤ D−25/21x−50θ/7+19/9,

and

(7.8) N ≥ x19/9−8θD1/6.

Then (7.3) holds.
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Proof. It suffices to prove (7.6). Since N � D � x1/3D−7/6, we may appeal
to Theorem 8 with X � `x1/3D−1. Thus

S1 � (log x)3/2`1/6{D11/12 +DN−1/2 + x−1/42D29/28N1/14(7.9)

+ x1/24D11/16N−1/8 + x1/48D25/32N−1/16 + x1/42D11/14N−1/7

+D2/3x1/18N−1/3 + x1/18D1/2 + x1/78D19/26N2/13}.

The first term on the right-hand side of (7.9) is acceptable since φ ≤ 4(θ −
2/9). The second term is acceptable because of (7.2). The third term is
acceptable because of (7.7), which is stronger than the required condition

N ≤ D−31/6x14θ−25/9

since φ < 0.152.
The fourth, fifth, sixth and seventh terms are acceptable because of (7.8).

The eighth term is acceptable since D > x0.11. The last term is also accept-
able because of (7.7). This completes the proof of the lemma.

Lemma 25 Let φ < 1/6. We have

(7.10) S2 � K4/3D2/3xθ−2/9+ε

provided that (7.2) holds, and either

N � min(x276θ/5−14D−2, D1/2)(7.11)

or

N � min(D−2/3x1508θ/95−226/57, D1/2).(7.12)

Proof. It suffices to show that

(7.13) S ′2 :=
∑
m∼M

∑
n∼N

D≤mn<D′

ambne

(
`x1/3

mn

)
� `1/3D2/3xθ−2/9+ε.

We appeal to Theorem 5, with X � `x1/3/D � D. Again, DN−1/2 is
acceptable. Since M � D1/2 and φ < 1/6,

DM−1/4(D2/3xθ−2/9)−1 � D5/24x−θ+2/9 � 1,
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so the term DM−1/4 is acceptable. Since (1 + 2κ)/(14 + 12κ) < 1/3, it
remains to show that

(D11+10κ(x1/3/D)1+2κN2(λ−κ))1/(14+12κ) � D2/3xθ−2/9.

The condition (7.11) arises on choosing (κ, λ) =
(

11
30
, 16

30

)
= BA3B(0, 1), while

(7.12) arises from (κ, λ) =
(

89
570
, 1

2
+ 89

570

)
.

Lemma 26 We have (7.10) provided that (7.2) holds and either

φ < 26/15− 6θ = 0.17 . . . , N � D13/6x10θ−26/9(7.14)

or

φ ≥ 26/15− 6θ , N � D1/2.(7.15)

Proof. Again, we need only prove (7.13). Lemma 5, with (κ, λ) = (1/2, 1/2),
yields

S ′2 � (log x)3`1/5{x1/15D9/20N1/10 + x1/18D1/2N1/9 + x1/15D2/5N1/5

+ x1/33D6/11N3/11 +D2/3N5/18 +DN−1/2 + x−1/66D15/22N9/22

+D3/2x−1/6}.

The last four terms are easily seen to be acceptable in view of (7.2). Since
N � D1/2, we have

x1/15D2/5N1/5 � x1/15D9/20N1/10,

x1/33D6/11N3/11 � x1/33D15/22 � D2/3xθ−2/9.

Moreover,
x1/15D9/20N1/10 � D2/3xθ−2/9

for N � D13/6x10θ−26/9, and certainly if (7.15) holds.
The remaining term x1/18D1/2N1/9 is � D2/3xθ−2/9 for N � D3/2x9θ−5/2,

which holds if either (7.14) or (7.15) is assumed.

Lemma 27 We have (7.10) provided that

(7.16) N � D4/3x8/9−4θ,
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and either

φ <
22

21
− 24θ

7
= 0.155 . . . , N � D5/3x4θ−11/9(7.17)

or

φ ≥ 22

21
− 24θ

7
, N � D1/2.(7.18)

Proof. From Lemma 7, essentially with (K,N,M,Kx1/3/D) in place of
(H,N,M,X), we have

S2 � xεK{x1/12D1/4N1/4 +DN−1/4 +D1/2N1/2 +D3/2x−1/6}.

The last term has already been discussed above. The second term is ac-
ceptable since (7.16) holds. The first term is acceptable since (7.17) (or, if
φ ≥ 22

21
− 24θ

7
, the stronger condition (7.18)) holds. Finally, the third term is

acceptable since N � D1/2.

Lemma 28 Let

(7.19) φ <
24

5

(
θ − 2

9

)
= 0.18 . . .

We have (7.10) provided that (7.2) holds and

(7.20) N � min((D659x5076θ−1410)1/187, D1/2).

Proof. We apply Theorem 6 with α = β = −1, X � x1/3D−1, taking
(κ, λ) = BA

(
89
570
, 1

2
+ 89

570

)
=
(

187
659
, 374

659

)
, The term L2DN−1/2 is acceptable

because of (7.2). The term L2DN−1/4 is acceptable since

DM−1/4 � D7/8 � D2/3xθ−2/9

from (7.19). Finally, the term

X1/6(D4+5κNλ−κ)1/(6+6κ) � x1/18(D2725N187)1/5076

is acceptable because of (7.20).

Completion of the proof of Theorem 1. We assume (7.1) and show that
(6.6) holds.
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Suppose first that

φ >
26

15
− 6θ.

By Lemma 25, we have (7.13) for

D2/3x4/9−2θ � N � D1/2

and moreover, D2/3x4/9−2θ � D1/3.
By Lemma 23, we have (7.3) for

N � D−25/21x−50θ/7+19/9.

We note that

(7.21) D−25/21x−50θ/7+19/9 � D3/5 for φ > 0.142.

Now (6.6) follows from Lemma 2 (ii).
Suppose next that

(7.22) 0.161 . . . =
30

7

(
θ − 2

9

)
< φ ≤ 26

15
− 6θ.

We claim that (7.10) holds for D1/4 � N � D2/5 and (7.3) holds for N �
D2/5. This is sufficient for (6.6) in view of Lemma 2 (i), with h = 4.

For S2, we use Lemma 28. We have

D2/3x4/9−2θ < D1/4,

since φ ≤ 26
15
− 6θ < 24

5

(
θ − 2

9

)
. We also have

(D659x5076θ−1410)1/187 > D2/5;

this requires only φ > 0.156. Moreover,

min(D1/2, (D659x5076θ−1410)1/187) > D−25/21x−50θ/7+19/9;

this requires only φ > 0.157. In view of Lemma 25, we conclude that (7.13)
holds for D1/4 � N � D2/5 and (7.3) holds for N � D2/5, as required for
the range (7.22).

Suppose next that

(7.23) 0.156 . . . =
22

21
− 24θ

7
< φ ≤ 30

7

(
θ − 2

9

)
.

54



We claim that (7.10) holds for D1/5 � N � D1/3 and D2/5 � N � D1/2,
while (7.3) holds for N � D2/5. This is sufficient for (6.6), in view of Lemma
2 (iii).

We have
D2/3x4/9−2θ ≤ D1/5,

since φ ≤ 30
7

(
θ − 2

9

)
, while

(D659x5076θ−1410)1/187 > D1/3;

this requires only φ > 0.153. Thus Lemma 28 gives (7.10) for D1/5 � N �
D1/3. Moreover, Lemma 27 gives (7.10) for D2/5 � N � D1/2, and indeed
for D2/5 � N � D3/5. Now, recalling (7.21), we have (7.3) for N � D2/5,
and we have established (6.6) in the range (7.23).

Suppose next that

(7.24) 0.150 . . . = 4

(
θ − 2

9

)
< φ ≤ 22

21
− 24θ

7
.

We now use Lemma 25. This yields (7.10) for

D2/3x4/9−2θ � N � D−2/3x1508θ/95−226/57,

while Lemma 27 yields (7.10) for

D4/3x8/9−4θ � N � D5/3x4θ−11/9.

Note that
D5/3x4θ−11/9 ≥ D−944/267x−1888θ/89+4898/801,

since

φ

(
5

3
+

944

267

)
≥ 4

(
θ − 2

9

)(
5

3
+

944

267

)
=

4898

801
+

11

9
− θ

(
1888

89
+ 4

)
.

In view of Lemma 23, we have (7.10) for

N � D4/3x8/9−4θ.
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We now apply Lemma 2 (iv) with

Dχ = D2/3x4/9−2θ, Dψ = D−2/3x1508θ/95−226/57.

Since 4
(
θ − 2

9

)
< φ ≤ 30

7

(
θ − 2

9

)
, we have 1

6
< χ ≤ 1

5
,

max

(
1

3
,
1

5
+

4χ

5

)
=

1

5
+

4χ

5
.

Moreover,
D−2/3x1508θ/95−226/57 > D1/5(D2/3x4/9−2θ)4/5;

this requires only φ < 0.157. Thus Lemma 2 (iv) is applicable, and (6.6)
holds in the range (7.24).

Suppose now that

(7.25) 0.138 . . . =
2

5

(
276θ

5
− 14

)
< φ ≤ 4

(
θ − 2

9

)
.

Then (7.3) holds for

(7.26) N � x19/9−8θD1/6.

To see this, we appeal to Lemma 24. We may suppose that (7.7) holds, in
view of Lemma 23.

In order to apply Lemma 2 with h = 5, we need only verify that

max(D1/3, x19/9−8θD1/6) < D−2/3x1508θ/95−226/57.

This requires only φ < 0.154, and we have established (6.6) in the range
(7.25).

Suppose finally that

(7.27) φ ≤ 2

5

(
276θ

5
− 14

)
.

From Lemma 25, (7.10) holds for

D2/3x4/9−2θ � N � D1/2.

Moreover,
D1/3x2θ−4/9 > D2/3.
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In view of Lemma 2 (ii), it suffices to establish (7.6) for

N > D1/3x2θ−4/9.

We estimate the sum over m in (7.6) trivially and apply the exponent pair
(1/6, 2/3) = AB(0, 1) to the sum over n. Since

`x1/3/D > D � N,

this gives

S ′1 �M

(
`x1/3

D

)1/6

N1/2

� `1/6x1/18D5/6N−1/2 � `1/6D2/3xθ−2/9

for

N � D1/3x5/9−2θ.

This is stronger than we need, and we have (6.6) for the range (7.27). This
completes the proof of Theorem 1.
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