WEYL'S THEOREM IN THE MEASURE THEORY OF NUMBERS

R.C. BAKER, R. COATNEY, AND G. HARMAN

1. Introduction

We write $\{y\}$ for the fractional part of y. A real sequence y_{1}, y_{2}, \ldots is said to be uniformly distributed $(\bmod 1)$ if

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{\substack{k \leq N \\\left\{y_{k}\right\} \in I}} 1=m(I)
$$

for each subinterval I of $U=[0,1)$. Here $m(\ldots)$ denotes Lebesgue measure.
Let $\mathcal{S}=\left\{a_{1}<a_{2}<a_{3}<\ldots\right\}$ be a strictly increasing sequence of real numbers with a spacing condition,

$$
a_{k+1}-a_{k} \geq \sigma>0 \quad(k=1,2, \ldots)
$$

In his fundamental paper on uniform distribution [29], Hermann Weyl showed that the assertion

$$
\begin{equation*}
a_{1} x, a_{2} x, a_{3} x, \ldots \text { is uniformly distributed }(\bmod 1) \tag{1.1}
\end{equation*}
$$

holds for almost all x in U.
There are many ways of extending and refining this theorem about a sequence of dependent random variables. Here we review some of the literature, including results of Walter Philipp and his collaborators, and add some new theorems. A survey that complements the present article is given in chapter 5 of Harman [15], including improved proofs of some key results.

A result of particular interest is Salem's [26] strengthening of Weyl's assertion when

$$
\begin{equation*}
a_{k}=O\left(k^{p}\right) \tag{1.2}
\end{equation*}
$$

for a constant $p \geq 1$. When (1.2) holds, Salem showed that for a sequence of positive integers \mathcal{S}, (1.1) is valid except for a set of x of Hausdorff dimension at most $1-1 / p$. This result was also found by Erdös and Taylor [12]. The result was extended to real sequences \mathcal{S} by Baker [3]. An example to show that the bound $1-1 / p$ is attained for each p, with a sequence of positive integers \mathcal{S}, was given in Ruzsa [25].

[^0]A strengthening of Weyl's work that is valid for arbitrary \mathcal{S} concerns the discrepancy of the sequence (1.1). For a subinterval I of U, let

$$
\begin{equation*}
Z(N, I, x)=\left|\left\{k \leq N:\left\{a_{k} x\right\} \in I\right\}\right| \tag{1.3}
\end{equation*}
$$

Here $|E|$ denotes the cardinality of a finite set E. Let

$$
\begin{equation*}
D(N, x)=\sup _{I \subset U}|Z(N, I, x)-N m(I)| \tag{1.4}
\end{equation*}
$$

where the supremum is taken over all subintervals of U.
The definition of uniform distribution $(\bmod 1)$ is equivalent to

$$
\begin{equation*}
D(N, x)=o(N) \text { as } N \rightarrow \infty \tag{1.5}
\end{equation*}
$$

It is known that

$$
\begin{equation*}
D(N, x)=O\left(N^{1 / 2}(\log N)^{3 / 2+\epsilon}\right) \text { a.e. } \tag{1.6}
\end{equation*}
$$

(Baker [4] for integer sequences; the general case is given by Harman [15]). An example of Berkes and Philipp [6] shows that the constant $3 / 2$ cannot be reduced below $1 / 2$.

For a lacunary sequence, namely a sequence S with

$$
\frac{a_{j+1}}{a_{j}} \geq c>1 \quad(j=1,2, \ldots)
$$

we can be more precise:

$$
\frac{1}{4} \leq \limsup _{N} \frac{D(N, x)}{\sqrt{N \log \log N}} \leq f(c) \text { a.e. }
$$

This version of the law of the iterated logarithm is due to Philipp [22]. See Berkes, Philipp, and Tichy [7] for further results of this kind; also the papers in the present volume by Aistleitner and Fukuyama.

One way of extending Weyl's theorem is to interpret x in (1.1) as a point of \mathbb{R}^{d} and $\left\{a_{j} x\right\}$ as the unique point $a_{j} x-k, k \in \mathbb{Z}^{d}$, that lies in U^{d}. The definition (1.4) must be modified; U is replaced by U^{d}, and the symbol I now denotes a box, that is, a Cartesian product of subintervals of U. Again, the definition of uniform distribution $(\bmod 1)$ in $[29]$ and subsequent work is equivalent to (1.5).

The extension of versions of (1.5) to this situation is discussed in [15, 21]. However, it seems that the following extension of Salem's theorem is new. For brevity write $E^{d}(S)$ for the set of x in U^{d} for which the sequence $a_{1} x, a_{2} x, \ldots$ is not uniformly distributed $(\bmod 1)$.

Theorem 1. Suppose that (1.2) holds. Then

$$
\operatorname{dim} E^{d}(\mathcal{S}) \leq d-\frac{1}{p}
$$

Without much effort, we can deduce the following from Rusza's work.
Theorem 2. For every $p \geq 1$, there exists a strictly increasing sequence of positive integers \mathcal{S} satisfying (1.2), for which

$$
\operatorname{dim} E^{d}(\mathcal{S})=d-\frac{1}{p}
$$

In metric diophantine approximation, a lot of effort goes into discovering what happens at almost all points on a curve \mathcal{C} in \mathbb{R}^{d}. See for example Kleinbock and Margulis [20]. For a sharp planar result and references to the recent literature, see Vaughan and Velani [28]. However, it seems not to have been asked whether the intersection of $E^{d}(S)$ with a suitable curve is a null subset of the curve.

Let \mathcal{C} be a curve given by

$$
\begin{equation*}
x=x(t)=\left(x_{1}(t), \ldots, x_{d}(t)\right) \quad(a \leq t \leq b) \tag{1.7}
\end{equation*}
$$

where $x_{j}{ }^{\prime}$ is continuous $(1 \leq j \leq d)$. For a sequence S of integers, a necessary condition for a result of the type mentioned is that the functions $1, x_{1}, \ldots, x_{d}$ are linearly independent over the rationals. In the contrary case, we have a relation

$$
h_{1} x_{1}(t)+\ldots+h_{d} x_{d}(t)=h_{d+1} \quad(a \leq t \leq b)
$$

with integers h_{j} not all 0 . The point k with $a_{j} x-k=\left\{a_{j} x\right\}$ satisfies

$$
h_{1}\left(a_{j} x_{1}(t)-k_{1}\right)+\ldots+h_{d}\left(a_{j} x_{d}(t)-k_{)} \in \mathbb{Z}\right.
$$

or

$$
h\left\{a_{j} x(t)\right\}=\alpha
$$

where there are only finitely many possibilities for the integer α as t and j vary. (We write $h y$ for the inner product if $h \in \mathbb{Z}^{d}$ and $y \in \mathbb{R}^{d}$). This restricts $\left\{a_{j} x\right\}$ to points on a finite number of hyperplanes that intersect U^{d}, and precludes uniform distribution.

The following positive result restricts \mathcal{C} in a reasonable way, although it would be nice to require the existence of fewer derivatives.

Theorem 3. Suppose that $x(t)$, given by (1.6), satisfies
(1) $x_{j}{ }^{(d+1)}(t)$ exists and is bounded $(1 \leq j \leq d)$;
(2) The matrix

$$
A(t)=\left[x_{i}{ }^{(j)}(t)\right] \quad(1 \leq i, j \leq d)
$$

is non-singular $(a \leq t \leq b)$.
Then (1.1) holds with $x=x(t)$, except for a null set of t.
Once Theorem 3 is proved, it is easy to relax (2) to the assertion ' $A(t)$ is nonsingular a.e.' This is left as an exercise for the interested reader.

An imperfect analogue of Salem's theorem is:
Theorem 4. Make the hypotheses of Theorem 3. Suppose further that (1.2) holds. Then the set

$$
\{t \in[a, b]:(1.1) \text { fails for } x=x(t)\}
$$

has Hausdorff dimension at most $1-\frac{1}{p d}$.
For the remainder of this section, let $d=1$, and suppose that S is a sequence of positive integers. We examine particularly bad failures of the assertion (1.1). We say that the sequence $a_{1} x, a_{2} x, \ldots$ is almost uniformly distributed $(\bmod 1)$ if there is a sequence $M_{k} \rightarrow \infty$ such that

$$
M_{k}^{-1} Z\left(M_{k}, I, x\right) \rightarrow m(I)
$$

for all subintervals I of U. Let us write
$F(\mathcal{S})=\left\{x \in U: a_{1} x, a_{2} x, \ldots\right.$ is not almost uniformly distributed $\left.(\bmod 1)\right\}$,
so that

$$
F(S) \subseteq E^{1}(\mathcal{S})
$$

Piatetskii-Sapiro [23] showed that for subsequences \mathcal{S} with

$$
\begin{equation*}
a_{k}=O(k) \tag{1.8}
\end{equation*}
$$

the set $F(S)$ is countable. This may be surprising at first. Baker [2] constructed a sequence with

$$
1 \leq a_{k+1}-a_{k} \leq 2 \quad(k \geq 1)
$$

for which $E^{1}(S)$ is uncountable. (This is a slight strengthening of a result in [12].)
If the sequence $a_{1} x, a_{2} x, \ldots$ is almost uniformly distributed, then obviously

$$
\begin{equation*}
\limsup _{N} \frac{Z(N, I, x)}{N} \geq m(I) \tag{1.9}
\end{equation*}
$$

for every subinterval I of U; there is, of course, a corresponding statement about the liminf. We say that the sequence $a_{1} x, a_{2} x, \ldots$ is biased if (1.9) fails for some interval I. The bias of the sequence is then

$$
b(x)=\sup _{I \subset U}\left\{m(I)-\limsup _{N} \frac{Z(N, I, x)}{N}\right\}
$$

Let $B(S)$ be the set of x in U for which $b(x)>0$. By the above remarks,

$$
B(S) \subseteq F(S)
$$

Kahane [16], unaware of [23], showed that (1.8) implies the countability of $B(S)$. He deduced this from the following finiteness result, which does not emerge from the method of [23].
Theorem 5. Let \mathcal{S} be a strictly increasing sequence of positive integers. Let $C>$ $0, \delta>0$. Let I be a subinterval of U. Suppose that

$$
\begin{equation*}
a_{k} \leq C k \quad \text { for infinitely many } k \tag{1.10}
\end{equation*}
$$

The set of x for which

$$
\frac{Z(N, I, x)}{N} \leq m(I)-\delta \text { for } N \geq 1
$$

is finite.
In particular, the set of x, say $H_{I}(\mathcal{S})$, for which

$$
\begin{equation*}
a_{k} x \notin I(\bmod 1) \quad(k \geq 1) \tag{1.11}
\end{equation*}
$$

is finite under the hypothesis (1.8). This result was found independently by Amice [1]. There is an interesting variant due to Kaufman [19]. Let I be a box in U^{d}. if each of the sequences $\mathcal{S}_{1}, \ldots, S_{d}$ satisfies condition (1.10), then the set of x in U for which

$$
x\left(a_{1}, \ldots, a_{k}\right) \notin I(\bmod 1) \quad\left(a_{j} \in \mathcal{S}_{j}, a_{1}<\ldots<a_{d}\right)
$$

is countable.

In this connection, we mention Boshernitzan's result [8] that $H_{I}(S)$ has Hausdorff dimension 0 under the condition

$$
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=1
$$

For a lacunary sequence \mathcal{S}, quite the opposite is true. There is a subinterval I of U for which $H_{I}(\mathcal{S})$ has Hausdorff dimension 1. This result was found independently by de Mathan $[10,11]$ and Pollington [24].

The following strengthening of Theorem 5 seems to have been overlooked.
Theorem 6. Let \mathcal{S} be a strictly increasing sequence of positive integers. Let C be a positive integer and $0<\delta<1$. Assume that (1.10) holds.
(i) The set $B_{\delta}(\mathcal{S})$ of x in U for which $b(x) \geq \delta$ is finite. In fact

$$
\left|B_{\delta}(S)\right| \leq 144 C\left(\log \left(\frac{2 e}{\delta}\right)\right)^{2} \delta^{-3}
$$

(ii) Let I be a subinterval of U. Then

$$
\left|H_{I}(S)\right| \leq \min \left(\frac{288 C}{m(I)^{3}}, \frac{144\left(C \log \left(\frac{2 e}{m(I)}\right)\right)^{2}}{m(I)^{2}}\right)
$$

Part (ii) is not far from the truth for $m(I)$ small. Let C be a positive integer and $0<\delta<1 / 2$. Let E be the set of rational numbers in U of the form

$$
\frac{r}{s C}, \quad 0 \leq r<s C, \quad(r, s)=1, \quad s \leq \frac{1}{\delta}
$$

Clearly

$$
|E| \gg \frac{C}{\delta^{2}}
$$

in view of the average order of the ϕ-function; see Hardy and Wright [14, Theorem 330]. Let $a_{j}=C j$. Then for $x \in E, x=\frac{r}{s C}$, we have

$$
\left\{a_{j} x\right\}=\left\{\frac{j r}{s}\right\} \notin I:=(0, \delta) .
$$

Thus $E \subseteq H_{I}(S)$, and

$$
\left|H_{I}(S)\right| \gg \frac{C}{m(I)^{2}}
$$

We conjecture that, in general, Theorem 6 (ii) could be improved to

$$
\left|H_{I}(S)\right| \lll \epsilon\left(\frac{C}{m(I)^{2}}\right)^{1+\epsilon}
$$

for every $\epsilon>0$.

2. Proofs of Theorems 1 and 2

Let $\|\ldots\|$ denote Euclidean length. We write $D(X)=\sup \{\|x-y\|: x, y \in X\}$ for $X \subset \mathbb{R}^{d}$.

Lemma 1. Let F be a non-negative function on

$$
J=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]
$$

Suppose that $\frac{\partial F}{\partial x_{i}}$ exists, $\frac{\partial F}{\partial x_{i}} \leq A \quad(1 \leq i \leq d, x \in J)$, and

$$
\int_{J} F(x) d x \leq B
$$

Let $0<c<2 A d \min _{j}\left(b_{j}-a_{j}\right)$. Define

$$
E=\{x \in J: F(x) \geq c\}
$$

There is a covering of E with boxes I_{1}, \ldots, I_{q} such that, for $0<\gamma<d$,

$$
\begin{equation*}
\sum_{j=1}^{q} D\left(I_{j}\right)^{\gamma} \lll d B A^{d-\gamma} c^{\gamma-(d+1)} \tag{2.1}
\end{equation*}
$$

Proof. Let

$$
M_{j}=\left[\frac{2 A d}{c}\left(b_{j}-a_{j}\right)\right]+1 \leq \frac{4 A d}{c}\left(b_{j}-a_{j}\right)
$$

We partition J into $M_{1} \ldots M_{d}$ boxes whose sides have respective lengths $\left(b_{j}-a_{j}\right) / M_{j} \quad(1 \leq j \leq d)$. Note that

$$
\frac{c}{4 A d} \leq \frac{b_{j}-a_{j}}{M_{j}} \leq \frac{c}{2 A d}
$$

Among these $M_{1} \ldots M_{d}$ boxes, suppose that I_{1}, \ldots, I_{q} are those that meet E. Now

$$
F(x) \geq \frac{c}{2} \quad \text { on } I_{l}
$$

by applying the mean value theorem d times. Hence

$$
\frac{c}{2} q \prod_{j=1}^{d} \frac{b_{j}-a_{j}}{M_{j}}=\frac{c}{2} \sum_{l=1}^{q} m\left(I_{l}\right) \leq B
$$

So

$$
q \leq \frac{2 B}{c} \prod_{j=1}^{d} \frac{M_{j}}{b_{j}-a_{j}} \leq \frac{2 B}{c}\left(\frac{4 A d}{c}\right)^{d}
$$

By Hölder's inequality,

$$
\begin{aligned}
\sum_{l=1}^{q} D\left(I_{l}\right)^{\gamma} & \leq q^{1-\gamma / d}\left(\sum_{l=1}^{q} D\left(I_{l}\right)^{d}\right)^{\gamma / d} \\
& \ll_{d} q^{1-\gamma / d}\left(\sum_{l=1}^{q} m\left(I_{l}\right)\right)^{\gamma / d} \\
& \ll{ }_{d}\left(\frac{B A^{d}}{c^{d+1}}\right)^{1-\gamma / d}\left(\frac{B}{c}\right)^{\gamma / d}
\end{aligned}
$$

as required.

2.1. Proof of Theorem 1.

Naturally we may confine attention to x in a fixed box $[-K, K]^{d}$. Let $h=$ $\left(h_{1}, \ldots, h_{d}\right)$ be any nonzero point of \mathbb{Z}^{d}. By Weyl's criterion, it suffices to show that the set

$$
Z=\left\{x \in[-K, K]^{d}:\left|\sum_{k=1}^{N} e\left(a_{k} h x\right)\right|>N(\log N)^{-\frac{1}{2}} \quad \text { for infinitely many } N\right\}
$$

has dimension at most $d-\frac{1}{p}$. Here $e(\theta)$ denotes $e^{2 \pi i \theta}$.
Let

$$
N_{r}=\left[e\left(r^{\frac{1}{2}}\right)\right]
$$

Then

$$
\frac{N_{r+1}}{N_{r}}-1 \leq \frac{\exp \left((r+1)^{\frac{1}{2}}\right)}{\exp \left(r^{\frac{1}{2}}\right)-1}-1 \ll r^{-\frac{1}{2}}
$$

Suppose N is a large positive integer with

$$
\left|\sum_{k=1}^{N} e\left(a_{k} h x\right)\right|>N(\log N)^{-\frac{1}{2}}
$$

say

$$
N_{r} \leq N<N_{r+1}
$$

Then

$$
\begin{aligned}
\left|\sum_{k \leq N_{r}} e\left(a_{k} h x\right)\right| & >\frac{N}{(\log N)^{\frac{1}{2}}}-\left(N-N_{r}\right) \\
& >\frac{N_{r}}{\left(\log N_{r}\right)^{\frac{1}{2}}}-\left(N_{r+1}-N_{r}\right) \\
& =N_{r}\left(\frac{1}{\left(\log N_{r}\right)^{\frac{1}{2}}}+\mathrm{O}\left(r^{-\frac{1}{2}}\right)\right) \\
& >\frac{N_{r}}{2\left(\log N_{r}\right)^{\frac{1}{2}}}
\end{aligned}
$$

since $\left(\log N_{r}\right)^{-\frac{1}{2}} \geq r^{-\frac{1}{4}}$. Hence

$$
\begin{gathered}
Z \subseteq\left\{x \in[-K, K]^{d}:\left|\sum_{k=1}^{N_{r}} e\left(a_{k} h x\right)\right|>\frac{N_{r}}{2\left(\log N_{r}\right)^{\frac{1}{2}}} \quad \text { for infinitely many } r\right\} \\
=\bigcap_{m=1}^{\infty} \bigcup_{r=m}^{\infty} E_{r}
\end{gathered}
$$

Here

$$
E_{r}=\left\{x \in[-K, K]^{d}:\left|\sum_{k=1}^{N_{r}} e\left(a_{k} h x\right)\right|>\frac{N_{r}}{2\left(\log N_{r}\right)^{\frac{1}{2}}}\right\}
$$

We now apply Lemma 1 with $J=[-K, K]^{d}$,

$$
\begin{aligned}
F(x) & =\left|\sum_{k=1}^{N_{r}} e\left(a_{k} h x\right)\right|^{2} \\
& =\sum_{k=1}^{N_{r}} \sum_{l=1}^{N_{r}} e\left(\left(a_{k}-a_{l}\right) h x\right) \\
\frac{\partial F}{\partial x_{j}} & =\sum_{k=1}^{N_{r}} \sum_{l=1}^{N_{r}} 2 \pi i\left(a_{k}-a_{l}\right) h_{j} e\left(\left(a_{k}-a_{l}\right) h x\right) \\
& \leq C_{1} N_{r}^{p+2}
\end{aligned}
$$

where $C_{1}=C_{1}(h, S) \geq 1$. Take $A=C_{1} N_{r}^{p+2}, c=N_{r}^{2}\left(4 \log N_{r}\right)^{-1}$, so that $c<2 A d$ as required. With $C_{2}=C_{2}(\sigma, K)$, we have

$$
\int F(x) d x \leq C_{2} N_{r} \log N_{r}=B
$$

To see this, suppose for example that $h_{1} \neq 0$. Then

$$
\begin{aligned}
\left|\int_{[-K, K]^{d-1}} d x_{2} \ldots d x_{d} \int_{-K}^{K} F(x) d x_{1}\right| & \leq(2 K)^{d-1} \sum_{k=1}^{N_{r}} \sum_{l=1}^{N_{r}}\left|\int_{-K}^{K} e\left(\left(a_{k}-a_{l}\right) h_{1} x_{1}\right) d x_{1}\right| \\
& \leq(2 K)^{d} N_{r}+2 \sum_{k=1}^{N_{r}} \sum_{l=1}^{k-1} \frac{1}{a_{k}-a_{l}} \\
& \leq(2 K)^{d} N_{r}+\frac{2}{\sigma} \sum_{k=1}^{N_{r}} \sum_{l=1}^{k-1} \frac{1}{k-l} \\
& <C_{2} N_{r} \log N_{r}
\end{aligned}
$$

Finally, let $0<\epsilon<\frac{1}{2 p}$ and take

$$
\gamma=d-\frac{1}{p}+2 \epsilon
$$

By Lemma 1, we can cover E_{r} with boxes $I_{r 1}, \ldots, I_{r q}, q=q(r)$ such that

$$
\sum_{l=1}^{q} D\left(I_{r \ell}\right)^{\gamma}<_{d, s, h} N_{r} \log N_{r}\left(N_{r}^{p+2}\right)^{d-\gamma}\left\{\frac{N_{r}^{2}}{\log N_{r}}\right\}^{\gamma-(d+1)}
$$

Hence

$$
\sum_{l=1}^{q} D\left(I_{r \ell}\right)^{\gamma}<N_{r}^{p d-1-p \gamma+\epsilon}
$$

for large r. The exponent of N_{r} here is negative and so

$$
\sum_{r=1}^{\infty} \sum_{l=1}^{q(r)} D\left(I_{r \ell}\right)^{\gamma}<\infty
$$

By choosing m large, we cover $\bigcup_{r=m}^{\infty} E_{r}$ with boxes $\left\{I_{r \ell}: r \geq m, 1 \leq l \leq q(r)\right\}$ for which the sum

$$
\sum_{r=1}^{\infty} \sum_{l=1}^{q(r)} D\left(I_{r \ell}\right)^{\gamma}
$$

is arbitrarily small. These intervals cover Z, and so Z has dimension at most γ. The theorem follows at once.

2.2. Proof of Theorem 2.

For any non-empty subsets A, B of \mathbb{R},

$$
\operatorname{dim}(A \times B) \geq \operatorname{dim} A+\operatorname{dim} B
$$

(Falconer [13, Corollary 5.10]).
We may suppose that $d \geq 2$. Now

$$
E^{d}(\mathcal{S}) \supseteq E^{1}(\mathcal{S}) \times U^{d-1}
$$

For suppose that $\left(x_{1}, \ldots, x_{d}\right) \notin E^{d}(\mathcal{S})$. We claim that $x_{1} \notin E^{1}(\mathcal{S})$. Indeed for $I \subseteq U$,

$$
\frac{1}{N} Z\left(N, I, x_{1}\right)=\frac{1}{N} Z\left(N, I \times U^{d-1},\left(x_{1}, \ldots, x_{d}\right)\right) \rightarrow m_{d}\left(I \times U^{d-1}\right)=m_{1}(I)
$$

as $N \rightarrow \infty$.
Now let $p \geq 1$ and let \mathcal{S} be the sequence satisfying (1.2) for which

$$
\operatorname{dim} E^{1}(S)=1-\frac{1}{p}
$$

constructed by Ruzsa [25]. (We may choose any \mathcal{S} with $a_{k}=\mathrm{O}(k)$ for $p=1$.) We have

$$
\begin{aligned}
\operatorname{dim} E^{d}(S) & \geq \operatorname{dim}\left(E^{1}(S) \times U^{d-1}\right) \\
& \geq \operatorname{dim} E^{1}(S)+\operatorname{dim} U^{d-1} \\
& =1-\frac{1}{p}+d-1=d-\frac{1}{p}
\end{aligned}
$$

Since we know already that $\operatorname{dim} E^{d}(\mathcal{S}) \leq d-\frac{1}{p}$, Theorem 2 follows.

It is interesting to observe that in Lemma 1 , the exponents attached to B, A, c cannot be improved in the following sense. If there are constants $e_{1}, \ldots e_{5}$ such that the left-hand side of (2.1) is always

$$
\ll{ }_{d} B^{e_{1}} A^{e_{2}-e_{3} \gamma} c^{e_{4} \gamma-e_{5}}
$$

the we cannot have $e_{1} \leq 1, e_{2} \leq d, e_{3} \geq 1, e_{4} \leq 1, e_{5} \geq d+1$ unless equality holds in all five cases. Otherwise we could clearly obtain a better bound than $d-\frac{1}{p}$ for $\operatorname{dim} E^{d}(S)$, in contradiction to Theorem 2.

3. Proof of Theorems 3 and 4.

Lemma 2. Let $\epsilon>0$. Let f be a real function on $[a, b]$. Suppose that $f^{(m)}$ is continuous and

$$
\left|f^{(m)}(t)\right| \geq 1 \quad(a \leq t \leq b)
$$

After excluding $2^{m}-1$ pairwise disjoint intervals of length $\leq 2 \epsilon^{\frac{1}{m}}$ from $[a, b]$ we have

$$
\begin{equation*}
|f(t)| \geq \epsilon \tag{3.1}
\end{equation*}
$$

Proof. By making a sign change if necessary, we may replace the hypothesis by

$$
\begin{equation*}
f^{(m)}(t) \geq 1 \quad(a \leq t \leq b) \tag{3.2}
\end{equation*}
$$

We prove the assertion (for all f, ϵ) using induction on m.
For $m=1, f$ is strictly increasing, and

$$
\{t \in[a, b]:-\epsilon<f(t)<\epsilon\}
$$

is an interval I (possibly empty). Say $\bar{I}=[u, v]$. The mean value theorem yields

$$
\min _{x \in[a, b]} f^{\prime}(x)(v-u) \leq f(v)-f(u) \leq 2 \epsilon
$$

giving $v-u \leq 2 \epsilon$ as required.

Suppose the assertion has been proved for all f, ϵ, with $1, \ldots, m-1$ in place of m. Let $\eta=\epsilon^{1 / m}$. By the case $m=1$, (3.2) implies

$$
\left|f^{(m-1)}(t)\right| \geq \eta
$$

after excluding an interval I_{0} of length $\leq 2 \eta$. Let I be one of the intervals complementary to I_{0} in $[a, b]$. Then $g=\eta^{-1} f$ has

$$
\left|g^{(m-1)}(t)\right| \geq 1 \quad \text { on } \bar{I}
$$

By the case $m-1$, after excluding $2^{m-1}-1$ pairwise disjoint intervals in \bar{I}, each of length $\leq 2\left(\frac{\epsilon}{\eta}\right)^{\frac{1}{m-1}}=2 \epsilon^{1 / m}$ we have

$$
|g(t)| \geq \frac{\epsilon}{\eta}
$$

that is, $|f(t)| \geq \epsilon$.
Thus after excluding I_{0} and $2\left(2^{m-1}-1\right)=2^{m}-2$ other intervals of length $\leq 2 \epsilon^{1 / m}$ in $[a, b] \backslash I_{0}$, the whole family of $2^{m}-1$ intervals having pairwise disjoint interiors, we have (3.1). After adjusting the endpoints of abutting intervals, this completes the induction step and proves Lemma 1.

By considering the example $f(t)=\frac{t^{m}}{m!}$, it is easy to see that the lemma is sharp for given m apart from the value of the constant $2^{m}-1$.

Lemma 3. Let $0<\epsilon<1, m \geq 2$. Suppose that f is a real function on $[a, b]$ with bounded $(m+1)$-th derivative. Let

$$
C=\max \left\{\left|f^{(j)}(t)\right|: \quad a \leq t \leq b, 2 \leq j \leq m+1\right\} .
$$

Suppose further that

$$
\max \left\{\left|f^{\prime}(t)\right|, \ldots,\left|f^{(m)}(t)\right|\right\} \geq B \quad \text { on }[a, b]
$$

After excluding at most

$$
\left(\frac{C(b-a)}{B}+1\right)\left(2^{m-1}-1\right)
$$

pairwise disjoint intervals of length at most $2 \epsilon^{\frac{1}{m-1}}$ from $[a, b]$ we have

$$
\begin{equation*}
\left|f^{\prime}(t)\right| \geq \frac{B \epsilon}{2} \tag{3.3}
\end{equation*}
$$

Proof. We divide $[a, b]$ into $\left[\frac{C(b-a)}{B}\right]+1$ pairwise disjoint intervals I_{1}, I_{2}, \ldots of length $\leq \frac{B}{C}$. At the midpoint of I_{k}, there is a $j=j_{k}, 1 \leq j \leq m$, with

$$
\left|f^{(j)}(t)\right| \geq B
$$

By the mean value theorem, $\left|f^{(j)}(t)\right| \geq B / 2$ in I_{k}. If $j \geq 2$, we find that

$$
\left|\frac{2 f^{\prime}}{B}\right| \geq \epsilon
$$

on I_{k} after excluding at most $2^{m-1}-1$ intervals of length $2 \epsilon^{1 /(j-1)} \leq 2 \epsilon^{1 /(m-1)}$; this is an application of Lemma 2 with $\frac{2 f^{\prime}}{B}, j-1$ in place of f, m. The lemma follows on summing the total number of excluded intervals contained in those I_{k} with $j_{k} \geq 2$.

In the remainder of this section, C_{1}, C_{2}, \ldots denote positive constants depending only on h, S and on the function $x()=.\left(x_{1}(),. \ldots, x_{d}().\right)$

Lemma 4. Make the hypotheses of Theorem 3. Let $h \in \mathbb{Z}^{d}, h \neq 0$,

$$
\begin{equation*}
f(t)=h x(t) \tag{3.4}
\end{equation*}
$$

Then

$$
\max \left\{\left|f^{\prime}(t)\right|, \ldots,\left|f^{(d)}(t)\right|\right\} \geq C_{1} \quad \text { on }[a, b]
$$

Proof. Fix $t \in[a, b]$. We have

$$
\left[\begin{array}{c}
f^{\prime}(t) \\
\vdots \\
f^{(d)}(t)
\end{array}\right]=A(t)\left[\begin{array}{c}
h_{1} \\
\vdots \\
h_{d}
\end{array}\right] ;
$$

so that, writing

$$
\begin{gathered}
A(t)^{-1}=\left[c_{i j}(t)\right] \\
{\left[\begin{array}{c}
h_{1} \\
\vdots \\
h_{d}
\end{array}\right]=A(t)^{-1}\left[\begin{array}{c}
f^{\prime}(t) \\
\vdots \\
f^{(d)}(t)
\end{array}\right],}
\end{gathered}
$$

we have

$$
\begin{aligned}
1 \leq \max \left(\left|h_{1}\right|, \ldots,\left|h_{d}\right|\right) & \leq \max _{j \leq d}\left(\left|c_{j 1}(t)\right|+\cdots+\left|c_{j d}(t)\right|\right) \max \left|f^{(j)}(t)\right| \\
& \leq C_{2} \max _{j \leq d}\left|f^{(j)}(t)\right|
\end{aligned}
$$

since the determinant $\operatorname{det} A(t)$ is bounded away from zero.
Lemma 5. Make the hypotheses of Lemma 4. Let

$$
F_{N}(t)=\left|\sum_{k=1}^{N} \exp \left(a_{k} h x(t)\right)\right|^{2}
$$

then

$$
\int_{a}^{b} F_{N}(t) d t \leq C_{3} N^{2-\frac{1}{d}}(\log N)^{1 / d}
$$

Proof. Define $f(t)$ by (3.4). Let

$$
\lambda=\left(\frac{\log N}{N}\right)^{\frac{d-1}{d}}
$$

By Lemmas 3 and 4, we may partition $[a, b]$ into intervals $I_{1}, \ldots I_{l}, J_{1}, \ldots, J_{k}$ with $l \leq k+1 \leq C_{4}$ and

$$
\begin{gathered}
\left|f^{\prime}(t)\right| \geq C_{5} \lambda \quad\left(t \in \bigcup_{i \leq l} I_{i}\right) \\
m\left(J_{i}\right) \leq 2 \lambda^{\frac{1}{(d-1)}} \quad(1 \leq i \leq k)
\end{gathered}
$$

Trivially,

$$
\int_{J_{i}} F_{N}(t) d t \leq N^{2} m\left(J_{i}\right) \leq 2(\log N)^{1 / d} N^{2-\frac{1}{d}}
$$

Now

$$
\begin{aligned}
\int_{I_{i}} F_{N}(t) d t & =N m\left(I_{i}\right)+2 \operatorname{Re} \sum_{k=1}^{N} \sum_{1 \leq j<k} \int_{I_{i}} \exp \left(\left(a_{k}-a_{j}\right) f(t)\right) d t \\
& \leq N m\left(I_{i}\right)+8 \sum_{k=1}^{N} \sum_{1 \leq j<k} \frac{1}{a_{k}-a_{j}} \max _{t \in I_{i}} \frac{1}{\left|f^{\prime}(t)\right|}
\end{aligned}
$$

(by a standard lemma; see [27, Lemma 4.2]). Thus

$$
\begin{aligned}
\int_{I_{i}} F_{N}(t) d t & <C_{6}\left(N+\frac{1}{\sigma \lambda} \sum_{k=1}^{N} \sum_{1 \leq j<k} \frac{1}{k-j}\right) \\
& <C_{7} \frac{N \log N}{\lambda}=C_{7} N^{2-\frac{1}{d}}(\log N)^{1 / d}
\end{aligned}
$$

The lemma follows on assembling these upper bounds.
3.1. Proof of Theorem 3. By Weyl's criterion, we need only show for fixed $h \in$ $\mathbb{Z}^{k}, h \neq 0$ that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} \exp (h x(t))=0 \tag{3.5}
\end{equation*}
$$

for almost all t. Let $F_{N}(t)$ be as in Lemma 5. According to (a slight variant of) a theorem of Davenport, Erdös and LeVeque [9], a sufficient condition for (3.5) to hold a.e. is

$$
\sum_{N=1}^{\infty} N^{-3} \int_{a}^{b} F_{N}(t) d t<\infty
$$

We complete the proof on an application of Lemma 5.

3.2. Proof of Theorem 4. Let

$$
\gamma=1-\frac{1}{p d}+2 \epsilon
$$

where $0<\epsilon<\frac{1}{2 p d}$. As in the proof of Theorem 1 , it suffices to show that

$$
Z^{(1)}=\left\{t \in[a, b]:\left|\sum_{k=1}^{N} \exp \left(a_{k} h x(t)\right)\right|>N(\log N)^{-1 / 2} \text { for infinitely many } N\right\}
$$

has dimension at most γ. Here h is a fixed nonzero element of \mathbb{Z}^{d}.
Just as in that proof,

$$
Z^{(1)} \subseteq \bigcap_{m=1}^{\infty} \bigcup_{r=m}^{\infty} E_{r}^{(1)}
$$

where

$$
E_{r}^{(1)}=\left\{t \in[a, b]:\left|\sum_{k=1}^{N_{r}} \exp \left(a_{k} h x(t)\right)\right|>\frac{N_{r}}{\left(2 \log N_{r}\right)^{1 / 2}}\right\}
$$

We apply Lemma 1 with 1 in place of d, and

$$
\begin{aligned}
F(t) & =\left|\sum_{k=1}^{N_{r}} \exp \left(a_{k} h x(t)\right)\right|^{2} \\
F^{\prime}(t) & =2 \pi i \sum_{k=1}^{N_{r}} \sum_{l=1}^{N_{r}}\left(a_{k}-a_{l}\right) h x^{\prime}(t) \exp \left(\left(a_{k}-a_{l}\right) h x(t)\right) \\
& \leq C_{8} N_{r}^{p+2}
\end{aligned}
$$

Thus in Lemma 1 we take

$$
A=C_{8} N_{r}^{p+2}, \quad B=C_{9} N_{r}^{2-1 / d}\left(\log N_{r}\right)^{1 / d}
$$

(recalling Lemma 5) and

$$
c=\frac{N_{r}^{2}}{4 \log N_{r}}
$$

We can cover $E_{r}^{(1)}$ with intervals $I_{r 1}, \ldots, I_{r q}, q=q(r)$, such that

$$
\sum_{l=1}^{q}\left|I_{r l}\right|^{\gamma} \ll C_{9} N_{r}^{2-\frac{1}{d}}\left(\log N_{r}\right)^{1 / d}\left(C_{8} N_{r}^{p+2}\right)^{1-\gamma}\left(\frac{N_{r}^{2}}{4 \log N_{r}}\right)^{\gamma-2}
$$

Hence

$$
\sum_{l=1}^{q}\left|I_{r l}\right|^{\gamma}<N_{r}^{p-1 / d-p \gamma+\epsilon}
$$

for large r. The exponent of N_{r} is negative. Just as in the proof of Theorem 1, $\operatorname{dim} Z^{(1)} \leq \gamma$, and the theorem follows.

4. Proof of Theorem 6

This is rather similar to Kahane's argument. That argument is in turn adapted from Kahane and Salem [17]. In [17], \mathcal{S} is arbitrary, and $B(\mathcal{S})$ is shown not to support a positive Borel measure with Fourier-Stieltjes coefficients vanishing at infinity. We require two standard lemmas. For a subinterval I of U, write

$$
\Phi_{I}(x)= \begin{cases}1 & \text { if }\{x\} \in I \\ 0 & \text { otherwise }\end{cases}
$$

Lemma 6. Let L be a natural number. For any subinterval $I=[a, b)$ of U, there is a trigonometric polynomial

$$
T(x)=\sum_{l=-L}^{L} c_{l} \exp (l x)
$$

satisfying

$$
\begin{gather*}
T(x) \leq \Phi_{I}(x) \tag{4.1}\\
c_{0}=m(I)-\frac{1}{L+1}, \tag{4.2}\\
\left|c_{l}\right| \leq \min \left(\frac{3}{2|l|}, \frac{1}{L+1}+m(I)\right) \quad(l \neq 0) \tag{4.3}
\end{gather*}
$$

Proof. This is obtained by combining Lemma 2.7 and (2.20) of [5], supplemented by the inequality $|\sin \alpha| \leq|\alpha|$.
Lemma 7. Let x_{1}, \ldots, x_{u} be distinct points of U. Then

$$
\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{s=-N}^{N}\left|\sum_{t=1}^{u} b_{t} \exp \left(s x_{t}\right)\right|^{2}=\sum_{t=1}^{u}\left|b_{t}\right|^{2}
$$

Proof. Let μ be the measure on U given by

$$
\mu(E)=\sum_{x_{t} \in E} \overline{b_{t}}
$$

According to Wiener ([18], p. 42, Corollary),

$$
\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{s=-N}^{N}|\widehat{\mu}(s)|^{2}=\sum_{\tau}|\mu(\{\tau\})|^{2}
$$

The lemma follows at once.
4.1. Proof of Theorem 6. Let r be a natural number and $0<\beta<1$. We first obtain an upper bound for the cardinality of the set $H(r, \beta)$ of x in U for which there exists a subinterval I of U with

$$
\frac{Z(N, I, x)}{N} \leq m(I)-\beta \quad(N \geq r)
$$

We may suppose $H(r, \beta)$ is nonempty. Let x_{1}, \ldots, x_{u} be distinct points of $H(r, \beta)$. For $t=1, \ldots, u$ let I_{t} be an interval such that

$$
\sum_{k=1}^{N} \Phi_{I_{t}}\left(a_{k} x_{t}\right) \leq N\left(m\left(I_{t}\right)-\beta\right) \quad(N \geq r)
$$

Let $T_{t}(x)$ be the trigonometric polynomial in Lemma 6 with $I=I_{t}, \quad L=\left[\frac{2}{\beta}\right]$,

$$
T_{t}(x)=\sum_{l=-L}^{L} c_{t}(l) \exp (l x)
$$

then for given t and $N \geq r$,

$$
\begin{aligned}
N\left(m\left(I_{t}\right)-\frac{1}{L+1}\right) & +\sum_{k=1}^{N} \sum_{0<|l| \leq L} c_{t}(l) \exp \left(l a_{k} x_{t}\right) \\
& =\sum_{k=1}^{N} T_{t}\left(a_{k} x_{j}\right) \leq N\left(m\left(I_{t}\right)-\beta\right)
\end{aligned}
$$

Since $\frac{1}{L+1}<\frac{\beta}{2}$,

$$
\sum_{k=1}^{N} \sum_{0<|l| \leq L} c_{t}(l) \exp \left(l a_{k} x_{t}\right) \leq-\frac{N \beta}{2}
$$

and summing over t,

$$
\begin{equation*}
\sum_{0<|l| \leq L} \sum_{k=1}^{N} \sum_{t=1}^{u} c_{t}(l) \exp \left(l a_{k} x_{t}\right) \leq-\frac{N u \beta}{2} \tag{4.4}
\end{equation*}
$$

for $N \geq r$; so that

$$
\begin{equation*}
\sum_{0<|l| \leq L}\left|\sum_{k=1}^{N} \sum_{t=1}^{u} c_{t}(l) \exp \left(l a_{k} x_{t}\right)\right| \geq \frac{N u \beta}{2} \tag{4.5}
\end{equation*}
$$

For l counted in (4.5), Cauchy's inequality gives

$$
\begin{align*}
\left|\sum_{k=1}^{N} \sum_{t=1}^{u} c_{t}(l) \exp \left(l a_{k} x_{t}\right)\right|^{2} & \leq N \sum_{k=1}^{N}\left|\sum_{t=1}^{u} c_{t}(l) \exp \left(l a_{k} x_{t}\right)\right|^{2} \tag{4.6}\\
& \leq N \sum_{s=-C L N}^{C L N}\left|\sum_{t=1}^{u} c_{t}(l) \exp \left(s x_{t}\right)\right|^{2}
\end{align*}
$$

whenever N satisfies $n_{N} \leq C N$. The last expression in (4.6) is

$$
\leq(2+\epsilon) C L N^{2} \sum_{t=1}^{u}\left|c_{t}(l)\right|^{2}
$$

by Lemma 7 if, in addition, N is sufficiently large. Comparing this with (4.5), we find that

$$
\begin{equation*}
\frac{u \beta}{2} \leq \sum_{0<|l| \leq L}(2 C L)^{1 / 2}\left(\sum_{t=1}^{u}\left|c_{t}(l)\right|^{2}\right)^{1 / 2} \tag{4.7}
\end{equation*}
$$

since ϵ is arbitrary.
Recalling (4.3),

$$
\begin{gathered}
\left(\sum_{t=1}^{u}\left|c_{t}(l)\right|^{2}\right)^{1 / 2} \leq \frac{3 u^{1 / 2}}{2|l|} \\
\sum_{0<|l| \leq L}\left(\sum_{t=1}^{u}\left|c_{t}(l)\right|^{2}\right)^{1 / 2} \leq 3 u^{1 / 2} \log (e L)
\end{gathered}
$$

so that (4.7) yields

$$
\frac{u \beta}{2} \leq 3(2 C L u)^{1 / 2} \log (e L)
$$

and indeed

$$
|H(r, \beta)| \leq 144 C \log ^{2}(2 e / \beta) \beta^{-3}
$$

Since $H(1, \beta) \subseteq H(2, \beta) \subseteq \ldots$, it is clear that

$$
\begin{equation*}
\left|\bigcup_{r \geq 1} H(r, \beta)\right| \leq 144 C \log ^{2}(2 e / \beta) \beta^{-3} \tag{4.8}
\end{equation*}
$$

For $x \in B_{\delta}(S)$, there is an interval I and an integer r such that

$$
\frac{Z(N, I, x)}{N}<m(I)-\delta+\epsilon \quad(N \geq r)
$$

Hence

$$
\begin{equation*}
B_{\delta}(S) \subset \bigcup_{r \geq 1} H(r, \delta-\epsilon) \tag{4.9}
\end{equation*}
$$

Here ϵ is arbitrary, $0<\epsilon<\delta$. Theorem 6(i) follows on combining (4.8) and (4.9), and letting ϵ tend to 0 .

Now let x_{1}, \ldots, x_{u} be distinct points of $H_{I}(\mathcal{S})$ (if it is a nonempty set). We return to our basic inequality (4.4), in which we now have

$$
I_{t}=I, \quad c_{t}(l)=c(l), \quad \beta=m(I)
$$

and recalling (4.3),

$$
|c(l)| \leq \frac{3 \beta}{2} \quad(l \neq 0)
$$

Thus

$$
\left|\sum_{0<|l| \leq L} \sum_{k=1}^{N} \sum_{t=1}^{u} c(l) \exp \left(l a_{k} x_{t}\right)\right| \geq \frac{N u \beta}{2}
$$

Write

$$
\begin{aligned}
& d_{s}=\sum_{\substack{a_{k} l=s \\
0<|l| \leq L, k \leq N}} c(l), \\
& f_{s}=\sum_{\substack{a_{k} l=s \\
0<|l| \leq L, k \leq N}} 1 .
\end{aligned}
$$

Clearly $\left|d_{s}\right| \leq \frac{3}{2} \beta f_{s}$. Suppose that N satisfies $n_{N} \leq C N$. We have

$$
\left|\sum_{|s| \leq C L N} \sum_{t=1}^{u} d_{s} \exp \left(s x_{t}\right)\right| \geq \frac{N u \beta}{2}
$$

Cauchy's inequality gives

$$
\begin{equation*}
\sum_{|s| \leq C L N}\left|d_{s}\right|^{2} \sum_{|s| \leq C L N}\left|\sum_{t=1}^{u} \exp \left(s x_{t}\right)\right|^{2} \geq \frac{1}{4} N^{2} u^{2} \beta^{2} \tag{4.10}
\end{equation*}
$$

Now

$$
\sum_{|s| \leq C L N}\left|d_{s}\right|^{2} \leq \frac{9}{4} \beta^{2} \sum_{|s| \leq C L N} f_{s}^{2}
$$

This last sum is simply $2 M$, where M is the number of solutions to

$$
l a_{k}=m a_{r} \quad 1 \leq l, m \leq L, 1 \leq k, r \leq N .
$$

A trivial bound for M is $N L^{2}$. We can obtain a different bound by noting that for fixed l, m we must have $a_{k} \equiv 0(\bmod m /(m, l))$ and there are $\leq C N(m, l) / m$ solutions to this. This yields

$$
\begin{aligned}
M & \leq C N \sum_{1 \leq l, m \leq L} \frac{(m, l)}{m} \\
& \leq C N \sum_{d \leq L} d\left(\frac{L}{d}\right) \sum_{m \leq L / d} \frac{1}{m d} \\
& \leq C N L \sum_{d \leq L} \frac{1}{d} \sum_{m \leq L / d} \frac{1}{m} \\
& \leq C N L(\log (e L))^{2}
\end{aligned}
$$

and

$$
\sum_{|s| \leq C L N}\left|d_{s}\right|^{2} \leq \frac{9}{2} \beta^{2} \min \left(N L^{2}, C N L(\log (e L))^{2}\right)
$$

As for the other factor on the left-hand side of (4.10), we have

$$
\sum_{|s| \leq C L N}\left|\sum_{t=1}^{u} \exp \left(s x_{t}\right)\right|^{2} \leq(2+\epsilon) C L N u
$$

for sufficiently large N, by Lemma 7 . We conclude that

$$
18(2+\epsilon) C u(L N)^{2} \min \left(L, C(\log (e L))^{2}\right) \geq(N u)^{2} .
$$

Since ϵ is arbitrary, this gives the stated result.

References

[1] Y. Amice, Un théorème de finititude, Ann. Inst. Fourier, 14 (1964), 527-531.
[2] R. C. Baker, On a theorem of Erdös and Taylor, Bull. London Math Soc., 4 (1972), 373-374.
[3] R. C. Baker, Slowly growing sequences and discrepancy modulo one, Acta Arith., 23 (1973), 279-293.
[4] R. C. Baker, Metric number theory and the large sieve, J. London Math Soc., 24 (1981), 34-40.
[5] R. C. Baker, Diophantine Inequalities, Oxford University Press, 1986.
[6] I. Berkes and W. Philipp, The size of trigonometric and Walsh series and uniform distribution $\bmod 1$, J. London Math Soc., 50 (1994), 454-463.
[7] I. Berkes, W. Philipp and R. F. Tichy, Empirical processes in probabilistic number theory: the LIL for the discrepancy of $\left(n_{k} w\right)$ mod 1, Illinois J. Math., 50 (2006), 107-145.
[8] M. D. Boshernitzan, Density modulo 1 of dilations of sublacunary sequences, Advances in Math., 108 (1994), 104-117.
[9] H. Davenport, P. Erdös and W. J. LeVeque, On Weyl's criterion for uniform distribution, Michigan Math. J., 10 (1963), 311-314.
[10] B. de Mathan, Sur un problème de densité modulo 1, C. R. Acad. Sci. Paris Sér. A, 287 (1978), 277-279.
[11] B. de Mathan, Numbers contravening a condition in density modulo 1, Acta Math. Acad. Sci. Hung., 36 (1980), 237-241.
[12] P. Erdös and S. J. Taylor, On the set of points of convergence of a lacunary trigonometric series and the equidistribution properties of related sequences, Proc. London Math. Soc., 7 (1957), 598-615.
[13] K. J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, 1985.
[14] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, 1979.
[15] G. Harman, Metric Number Theory, Oxford University Press, 1998.
[16] J-P. Kahane, Sur les mauvaises répartitions modulo 1, Ann. Inst. Fourier, 14 (1964), 519-526.
[17] J-P. Kahane and R. Salem, Distribution modulo 1 and sets of uniqueness, Bull. Amer. Math. Soc., 70 (1964), 259-261.
[18] Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, 1968.
[19] R. Kaufman, Density of integer sequences, Proc. Amer. Math. Soc., 19 (1968), 1501-1503.
[20] D. Y. Kleinbock and G. A. Margulis, Flows on homogenous spaces and Diophantine approximation on manifolds, Ann. of Math., 148 (1998), 339-360.
[21] R. Nair, Some theorems on metric uniform distribution using L^{2} methods, J. Number Theory, 35 (1990), 18-52.
[22] W. Philipp, A functional law of the iterated logarithm for empirical distribution functions of weakly dependent random variables, Ann. Probability, 5 (1977), 319-350.
[23] I. I. Piatetskii-Sapiro, On a generalization of the notion of uniform distribution of fractional parts (in Russian), Mat. Sb. N.S., 30 (72)(1952), 669-676.
[24] A. D. Pollington, On the density of sequences $\left\{n_{k} \xi\right\}$, Illinois J. Math., 23 (1979), 511-515.
[25] I. Z. Ruzsa, On the uniform and almost uniform distribution of $\left(a_{n} x\right) \bmod 1$, Séminaire Théorie des Nombres Bordeaux (1982-1983), exposé no. 20.
[26] R. Salem, Uniform distribution and capacity of sets, Comm. Sem. Math. Univ. Lund., supplement (1952), 193-195.
[27] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd Ed., Oxford University Press, 1986.
[28] R. C. Vaughan and S. Velani, Diophantine approximation on planar curves: the convergence theory, Invent. Math., 166 (2006), 103-124.
[29] H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Annalen, 77 (1916), 313352.

[^0]: Date: October 8, 2009.

