THE ZEROS OF A QUADRATIC FORM AT SQUARE-FREE POINTS

R. C. BAKER

Abstract. Let $F\left(x_{1}, \ldots, x_{n}\right)$ be a nonsingular indefinite quadratic form, $n=3$ or 4 . Results are obtained on the number of solutions of

$$
F\left(x_{1}, \ldots, x_{n}\right)=0
$$

with x_{1}, \ldots, x_{n} square-free, in a large box of side P. It is convenient to count solutions with weights. Let

$$
R(F, w)=\sum_{F(\boldsymbol{x})=0} \mu^{2}(\boldsymbol{x}) w\left(\frac{x}{P}\right)
$$

where w is infinitely differentiable with compact support and vanishes if any $x_{i}=0$, while

$$
\mu^{2}(\boldsymbol{x})=\mu^{2}\left(\left|x_{1}\right|\right) \ldots \mu^{2}\left(\left|x_{n}\right|\right)
$$

It is assumed that F is robust in the sense that

$$
\operatorname{det} M_{1} \ldots \operatorname{det} M_{n} \neq 0
$$

where M_{i} is the matrix obtained by deleting row i and column i from the matrix M of F. In the case $n=3$, there is the further hypothesis that $-\operatorname{det} M_{1},-\operatorname{det} M_{2},-\operatorname{det} M_{3}$ are not squares. It is shown that $R(F, w)$ is asymptotic to

$$
e_{n} \sigma_{\infty}(F, w) \rho^{*}(F) P^{n-2} \log P
$$

where $e_{n}=1$ for $n=4, e_{n}=\frac{1}{2}$ for $n=3$. Here $\sigma_{\infty}(F, w)$ and $\rho^{*}(F)$ are respectively the singular integral and the singular series associated to the problem. The method is adapted from the approach of Heath-Brown to the corresponding problem with x_{1}, \ldots, x_{n} unrestricted integer variables.

1. Introduction

Let $F(\boldsymbol{x})=F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}\left(a_{i j}=a_{j i} \in \mathbb{Z}\right)$ be a nonsingular indefinite quadratic form, $n \geq 3$. Let $M=\left[a_{i j}\right], D=\operatorname{det}(M)$. We are concerned here with the asymptotics of the square-free solutions $\boldsymbol{x} \in \mathbb{Z}^{n}$, of

$$
\begin{equation*}
F(x)=0 \tag{1.1}
\end{equation*}
$$

As in [1], let

$$
\pi_{y}=y_{1} \cdots y_{n} \quad\left(\boldsymbol{y} \in \mathbb{R}^{n}\right)
$$

For $\boldsymbol{x} \in \mathbb{Z}^{n}$, let

$$
\mu(\boldsymbol{x})=\left\{\begin{array}{l}
0 \text { if } \pi_{x}=0 \\
\mu\left(\left|x_{1}\right|\right) \ldots \mu\left(\left|x_{n}\right|\right) \quad \text { if } \pi_{x} \neq 0 .
\end{array}\right.
$$

A square-free solution of 1.1 is a solution having $\mu(\boldsymbol{x}) \neq 0$.
Solutions of (1.1) will be weighted, as in [1], by a function $w\left(\frac{x}{P}\right)$, where the positive parameter P tends to infinity. We assume throughout that
(i) w is infinitely differentiable with compact support;
(ii) $w(\boldsymbol{x})=0$ whenever $\pi_{\boldsymbol{x}}=0$,

[^0](iii) $w(\boldsymbol{x}) \geq 0$, and $w(\boldsymbol{x})>0$ for some real solution \boldsymbol{x} of (1.1).

Our object of study is

$$
R(F, w)=\sum_{F(\boldsymbol{x})=0} \mu^{2}(\boldsymbol{x}) w\left(\frac{\boldsymbol{x}}{P}\right)
$$

An asymptotic formula for $R(F, w)$ was obtained in [1] in the cases
(a) $n \geq 5$,
(b) $n=4$; D not a square.

The method used was an elaboration of that of Heath-Brown [4], whose objective was to obtain an asymptotic formula for

$$
N(F, w)=\sum_{F(w)=0} w\left(\frac{\boldsymbol{x}}{P}\right)
$$

Besides the cases (a), (b), Heath-Brown also successfully treated $N(F, w)$ in the more difficult cases
(c) $n=4 ; D$ a square,
(d) $n=3$.

In the present paper, I treat $R(F, w)$ for the cases (c), (d). Some restrictions are imposed on F.

Let M_{j} be the matrix obtained by deleting row j and column j of M. We say that F is robust if

$$
\begin{equation*}
\operatorname{det}\left(M_{1}\right) \ldots \operatorname{det}\left(M_{n}\right) \neq 0 \tag{1.2}
\end{equation*}
$$

Our results will apply to robust forms, with a further restriction when $n=3$.
In order to state the asymptotic formulae, we define the singular integral by

$$
\sigma_{\infty}(F, w)=\lim _{\epsilon \rightarrow 0^{+}} \frac{1}{2 \epsilon} \int_{|F(x)| \leq \epsilon} w(\boldsymbol{x}) d \boldsymbol{x},
$$

where $\int \ldots d \boldsymbol{x}$ denotes integration over \mathbb{R}^{n} with respect to Lebesgue measure. Under the conditions (i)-(iii), $\sigma_{\infty}(F, w)$ is positive ([4], Theorem 3).

The singular series for our problem is

$$
\rho^{*}(F)=\prod_{p}\left(1-\frac{1}{p}\right) \rho_{p}
$$

Here ρ_{p} is given by

$$
\rho_{p}=\lim _{v \rightarrow \infty} p^{-v(n-1)} \#\left\{\boldsymbol{x}\left(\bmod p^{v}\right): F(\boldsymbol{x}) \equiv 0\left(\bmod p^{v}\right), p^{2} \nmid x_{1}, \ldots, p^{2} \nmid x_{n}\right\} .
$$

Thus ρ_{p} is the p-adic density of solutions of $F=0$ 'square-free with respect to p '.
Theorem 1. Let $n=4$, let D be a square and suppose that F is robust. Then

$$
\begin{aligned}
R(F, w)=\sigma_{\infty}(F, w) \rho^{*} & (F) P^{2} \log P \\
& +O\left(P^{2} \log P(\log \log P)^{-1+\epsilon}\right)
\end{aligned}
$$

As usual, ϵ is an arbitrary positive number, supposed sufficiently small. Constants implied by ' O ' and ' $<$ ' may depend on F, w and ϵ. Any other dependence will be shown explicitly.

Theorem 2. Let $n=3$ and suppose that F is robust. Suppose further that none of $-\operatorname{det} M_{1}$, $-\operatorname{det} M_{2},-\operatorname{det} M_{3}$ is a square. Then

$$
\begin{aligned}
R(F, w)=\frac{1}{2} \sigma_{\infty} & (F, w) \rho^{*}(F) P \log P \\
& +O\left(P \log P(\log \log P)^{-1 / 2}\right)
\end{aligned}
$$

The following propositions give information about $\rho^{*}(F)$.
Proposition 1. Let F be nonsingular (if $n=4$) and robust (if $n=3$).
(a) if $\rho_{p}>0$ for every prime p, then $\rho^{*}(F)>0$.
(b) if the congruence

$$
F(x) \equiv 0 \quad\left(\bmod (2 D)^{5}\right)
$$

has a solution with $p^{2} \nmid x_{1}, \ldots, p^{2} \nmid x_{n}$ whenever $p \mid 2 D$, then $\rho^{*}(F)>0$.
Proposition 2. If $n=3$ and F is not robust, then $\rho^{*}(F)=0$.
As an example for Proposition 2 it is a simple exercise to show that

$$
P \ll \#\left\{\boldsymbol{x}: \mu(\boldsymbol{x}) \neq 0, P \leq x_{j}<2 P, F_{0}(\boldsymbol{x})=0\right\} \ll P
$$

for the ternary form $F_{0}(\boldsymbol{x})=2 x_{1} x_{2}-2 x_{3}^{2}$. The conclusion of Theorem 2 clearly extends to F_{0} ! In fact, I conjecture that for a non-robust ternary quadratic form F and a given w, there is an asymptotic formula

$$
R(F, w) \sim c(F, w) P
$$

with $c(F, w)>0$, precisely when $w>0$ at some point of a certain set $E=E(F)$ of zeros of F. In the example,

$$
E=\{(t, t, \pm t): t \neq 0\} .
$$

Before outlining the proofs of Theorems 1] and 2, we recall some notations from [1] and [4]. We write, for $\boldsymbol{c} \in \mathbb{Z}^{n}$,

$$
S_{q, F}(\boldsymbol{c})=S_{q}(\boldsymbol{c})=\sum_{a=1}^{q} \sum_{\boldsymbol{b}(\bmod q)} e_{q}(a F(\boldsymbol{b})+\boldsymbol{c} \cdot \boldsymbol{b})
$$

As usual, the asterisk indicates $(a, q)=1$, while

$$
\boldsymbol{c} \cdot \boldsymbol{b}=c_{1} b_{1}+\cdots+c_{n} b_{n}, \quad e(\theta)=e^{2 \pi i \theta}, e_{q}(m)=e\left(\frac{m}{q}\right) .
$$

The symbols \boldsymbol{d} and \boldsymbol{t} are reserved for points in \mathbb{Z}^{n} with positive square-free coordinates. Let

$$
F_{\boldsymbol{d}}(\boldsymbol{x})=F\left(d_{1}^{2} x_{1}, \ldots, d_{n}^{2} x_{n}\right)
$$

and similarly for $w_{\boldsymbol{d}}(\boldsymbol{x})$. We write

$$
S_{q}(\boldsymbol{d}, \boldsymbol{c})=S_{q, F_{d}}(\boldsymbol{c})
$$

It is convenient to write $\boldsymbol{d} \mid m$ as an abbreviation for

$$
d_{1}\left|m, \ldots, d_{n}\right| m
$$

Further, let

$$
|\boldsymbol{y}|=\max \left(\left|y_{1}\right|, \ldots,\left|y_{n}\right|\right)
$$

Let $h(x, y)(x>0, y \in \mathbb{R})$ be the smooth function that occurs in Theorem 1 and 2 of [4]. We recall that $h(x, y)$ is nonzero only for $x \leq \max (1,2|y|)$. It is shown in [4, Theorem 2] that

$$
N(F, w)=c_{P} P^{-2} \sum_{\boldsymbol{c} \in \mathbb{Z}^{n}} \sum_{q=1}^{\infty} q^{-n} S_{q}(\boldsymbol{c}) I_{q}(\boldsymbol{c}),
$$

where

$$
\begin{equation*}
c_{P}=1+O_{N}\left(P^{-N}\right) \text { for every } N>0, \tag{1.3}
\end{equation*}
$$

and

$$
I_{q, F, w}(\boldsymbol{c})=I_{q}(\boldsymbol{c})=\int_{\mathbb{R}^{n}} w\left(\frac{\boldsymbol{x}}{P}\right) h\left(\frac{q}{P}, \frac{F(\boldsymbol{x})}{P^{2}}\right) e_{q}(-\boldsymbol{c} \cdot \boldsymbol{x}) d \boldsymbol{x}
$$

Clearly $I_{q, F, w}(\boldsymbol{c})$ is nonzero only for $q \ll P$.
As noted in [1],

$$
\begin{equation*}
I_{q, F_{d}, w_{d}}(\boldsymbol{c})=\frac{1}{\pi_{d}^{2}} I_{q}\left(\frac{c_{1}}{d^{2}}, \ldots, \frac{c_{n}}{d^{2}}\right) . \tag{1.4}
\end{equation*}
$$

Thus

$$
\begin{equation*}
N\left(F_{\boldsymbol{d}}, w_{\boldsymbol{d}}\right)=\frac{c_{P}}{\pi_{\boldsymbol{d}}^{2} P^{2}} \sum_{\boldsymbol{c} \in \mathbb{Z}^{n}} \sum_{q=1}^{\infty} \frac{S_{q}(\boldsymbol{d}, \boldsymbol{c})}{q^{n}} I_{q}\left(\frac{c_{1}}{d_{1}^{2}}, \ldots, \frac{c_{n}}{d_{n}^{2}}\right) . \tag{1.5}
\end{equation*}
$$

Let

$$
\begin{gathered}
z=z(P)=\frac{1}{7} \log \log P, \\
Q(z)=\prod_{p<z} p
\end{gathered}
$$

For $\boldsymbol{x} \in \mathbb{Z}^{n}, \pi_{x} \neq 0$, let

$$
f_{z}(\boldsymbol{x})= \begin{cases}1 & \text { if } p^{2} \nmid x_{j} \text { for } p<z \text { and } j=1, \ldots, n \\ 0 & \text { otherwise }\end{cases}
$$

It is easy to verify that

$$
f_{z}(\boldsymbol{x}) \geq \mu^{2}(\boldsymbol{x}) \geq f_{z}(\boldsymbol{x})-\sum_{\substack{p \geq z \\ p^{2} \mid x_{1}}} 1-\cdots-\sum_{\substack{p \geq z \\ p^{2} \mid x_{n}}} 1 .
$$

Multiplying by $w\left(\frac{x}{P}\right)$ and summing over $\boldsymbol{x} \in \mathbb{Z}^{n}$ with $F(\boldsymbol{x})=0$,

$$
\begin{align*}
& \sum_{F(\boldsymbol{x})=0} f_{z}(\boldsymbol{x}) w\left(\frac{\boldsymbol{x}}{P}\right) \geq R(F, w) \geq \sum_{F(\boldsymbol{x})=0} f_{z}(\boldsymbol{x}) w\left(\frac{\boldsymbol{x}}{P}\right) \tag{1.6}\\
&-\left(S_{1}(z)+\cdots+S_{n}(z)\right) .
\end{align*}
$$

Here

$$
\begin{equation*}
S_{j}(X)=\sum_{\substack{p \geq X, p^{2} \mid x_{j} \\ F(\boldsymbol{x})=0}} w\left(\frac{\boldsymbol{x}}{P}\right) . \tag{1.7}
\end{equation*}
$$

We note that

$$
f_{z}(\boldsymbol{x})=\sum_{\substack{d_{1}^{2}\left|x_{1} \\ d_{1}\right| Q(z)}} \cdots \sum_{\substack{d_{n}^{2}\left|x_{n} \\ d_{n}\right| Q(z)}} \mu(\boldsymbol{d}),
$$

so that

$$
\begin{align*}
\sum_{F(x)=0} f_{z}(\boldsymbol{x}) w\left(\frac{\boldsymbol{x}}{P}\right)=\sum_{F(\boldsymbol{x})=0} w\left(\frac{\boldsymbol{x}}{P}\right) \sum_{\substack{d_{1}^{2}\left|x_{1}, \ldots, d_{n}^{2}\right| x_{n} \\
\boldsymbol{d} \mid Q(z)}} \mu(\boldsymbol{d}) \tag{1.8}\\
\quad=\sum_{d \mid Q(z)} \mu(\boldsymbol{d}) N\left(F_{\boldsymbol{d}}, w_{d}\right) .
\end{align*}
$$

We can express $S_{j}(X)$ somewhat similarly. Take for example $j=1$ and write $\boldsymbol{d}(p)=$ ($p, 1, \ldots, 1$),

$$
F_{p}=F_{\boldsymbol{d}(p)}, w_{p}=w_{\boldsymbol{d}(p)} .
$$

Then

$$
\begin{equation*}
S_{1}(X)=\sum_{p \geq X} N\left(F_{p}, w_{p}\right) \tag{1.9}
\end{equation*}
$$

Our plan is to adapt [4] so as to evaluate $N\left(F_{d}, w_{d}\right)$ via (1.5], making the error explicit in \boldsymbol{d}, and then apply this to the last expression in (1.8) and to $N\left(F_{p}, w_{p}\right)$. The contribution to $S_{1}(z)$ from $p \geq P^{\epsilon}$ will receive a more elementary treatment, similar to [1, Proposition 1].

In conclusion, I point out a refinement of a theorem in [1] due to Blomer [2]. Let $R(m)$ be the number of representations of m as a sum of 3 squarefree integers. If the square-free kernel of m is at least m^{δ}, for a positive constant δ, and $m \equiv 1,3 \operatorname{or} 6(\bmod 8)$, then Blomer obtains

$$
\begin{equation*}
R(m)=c_{\infty} \subseteq(m) m^{1 / 2}+O\left(m^{(1-\gamma) / 2}\right), \gamma=\gamma(\delta)>0 \tag{1.10}
\end{equation*}
$$

Here c_{∞} is the singular integral and $\subseteq(m)$ the singular series,

$$
m^{-\epsilon} \ll \subseteq(m) \ll m^{\epsilon}
$$

In [1], 1.10) is obtained only for square-free m.

2. Some exponential integrals, exponential sums and Dirichlet series

From now on we assume that $n=3$ or 4 , and the determinant of F is a square for $n=4$. It suffices to prove Theorems 1 and 2 for weight functions w with the following property: there exists a positive number $\ell=\ell(F, w)$ such that, whenever $\left(x_{0}, y\right) \in \operatorname{supp}(w)$, we have

$$
\frac{\partial F}{\partial x}(x, y) \gg 1 \quad\left(\left|x-x_{0}\right| \leq \ell\right)
$$

and F has exactly one zero (x, y) with $\left|x-x_{0}\right| \leq \ell$. We shall assume that w has this property. The deduction of the general case of Theorems 1 and 2 is carried out by a simple procedure given on page 179 of [4].

As noted on page 180 of [4],

$$
\begin{equation*}
I_{q}(\boldsymbol{v})=P^{n} I_{r}^{*}(\boldsymbol{v}) \quad\left(r=P^{-1} q\right) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{r}^{*}(\boldsymbol{v})=\int_{\mathbb{R}^{n}} w(\boldsymbol{x}) h(r, F(\boldsymbol{x})) e_{r}(-\boldsymbol{v} \cdot \boldsymbol{x}) d \boldsymbol{x} . \tag{2.2}
\end{equation*}
$$

For $\boldsymbol{v}=\mathbf{0}$, we have

$$
\begin{equation*}
I_{r}^{*}(\mathbf{0})=\sigma_{\infty}(F, w)+O_{N}\left(r^{N}\right) \tag{2.3}
\end{equation*}
$$

for any $N>0$, provided that $r \ll 1$ [4] Lemma 13]. Consequently

$$
\begin{equation*}
I_{q}(\mathbf{0})=P^{n}\left\{\sigma_{\infty}(F, w)+O_{N}\left((q / P)^{N}\right)\right\} \tag{2.4}
\end{equation*}
$$

for $q \ll P$.
By combining the conclusions of [4, Lemmas 14, 15, 16, 18, 19, 22], we arrive at the following bounds:

$$
\begin{align*}
I_{r}^{*}(\boldsymbol{v}) & \ll 1, \tag{2.5}\\
r \frac{\partial I_{r}^{*}(\boldsymbol{v})}{\partial r} & \ll 1, \tag{2.6}\\
I_{q}(\boldsymbol{v}) & \ll P^{n}, \tag{2.7}\\
q \frac{\partial I_{q}(\boldsymbol{c})}{\partial q} & \ll P^{n}, \tag{2.8}\\
I_{r}^{*}(\boldsymbol{v}) & \ll r_{N} r^{-1}|\boldsymbol{v}|^{-N} \quad(N \geq 1) \tag{2.9}\\
I_{q}(\boldsymbol{v}) & \ll{ }_{N} P^{n+1} q^{-1}|\boldsymbol{v}|^{-N} \quad(N \geq 1), \tag{2.10}\\
I_{r}^{*}(\boldsymbol{v}) & \ll\left(r^{-2}|\boldsymbol{v}|\right)^{\epsilon}\left(r^{-1}|\boldsymbol{v}|\right)^{1-n / 2}, \tag{2.11}\\
I_{q}(\boldsymbol{v}) & \ll P^{n}\left(\frac{P^{2}|\boldsymbol{v}|}{q^{2}}\right)^{\epsilon}\left(\frac{P|\boldsymbol{v}|}{q}\right)^{1-n / 2}, \tag{2.12}\\
q \frac{\partial}{\partial q} I_{q}(\boldsymbol{v}) & \ll P^{n}\left(\frac{P^{2}|\boldsymbol{v}|}{q^{2}}\right)^{\epsilon}\left(\frac{P|\boldsymbol{v}|}{q}\right)^{1-n / 2}, \tag{2.13}
\end{align*}
$$

Lemma 1. For any $K>1$,

$$
\begin{align*}
& \int_{0}^{\infty} r^{-1} I_{r}^{*}(\boldsymbol{v}) d r \ll_{K}|\boldsymbol{v}|^{-K} \quad(|\boldsymbol{v}|>1) \tag{2.14}\\
& \int_{0}^{\infty} r^{-1} I_{r}^{*}(\boldsymbol{v}) d r \ll \log \left(\frac{2}{|\boldsymbol{v}|}\right) \quad(|\boldsymbol{v}| \leq 1) \tag{2.15}\\
& \int_{0}^{\infty} q^{-1} I_{q}(\boldsymbol{v}) d q<_{M} P^{n}|\boldsymbol{v}|^{-K} \quad(|\boldsymbol{v}|>1) \tag{2.16}\\
& \int_{0}^{\infty} q^{-1} I_{q}(\boldsymbol{v}) d q \ll P^{n} \log \left(\frac{2}{|\boldsymbol{v}|}\right) \quad(|\boldsymbol{v}| \leq 1) \tag{2.17}
\end{align*}
$$

Proof. In view of (2.1), it suffices to prove (2.14) and 2.15). Suppose first that $|\boldsymbol{v}|>1$. We use 2.11 for the range

$$
r \leq|\boldsymbol{v}|^{-N / 2}
$$

and 2.9 for the remaining range. Thus

$$
\begin{aligned}
\int_{0}^{\infty} r^{-1} I_{r}^{*}(\boldsymbol{v}) d r & \ll|\boldsymbol{v}|^{\epsilon+1-n / 2} \int_{0}^{|\boldsymbol{v}|^{-N / 2}} r^{n / 2-1-2 \epsilon} d r \\
& +|\boldsymbol{v}|^{-N} \int_{|\boldsymbol{v}|^{-N / 2}} r^{-2} d r \\
& \ll|\boldsymbol{v}|^{\epsilon+1-n / 2-N / 2(n / 2-2 \epsilon)}+|\boldsymbol{v}|^{-N / 2} \\
& \lll|\boldsymbol{v}|^{-K}
\end{aligned}
$$

for a suitable choice of $N=N(K, \epsilon)$.
Now suppose that $|\boldsymbol{v}| \leq 1$. We use (2.11) for the range $r \leq|\boldsymbol{v}|, 2.5$ for the range

$$
|\boldsymbol{v}|<r \leq|\boldsymbol{v}|^{-1}
$$

and (2.9) with $N=1$ for the remaining range. Thus

$$
\begin{aligned}
\int_{0}^{\infty} r^{-1} I_{r}^{*}(\boldsymbol{v}) d r & \ll|\boldsymbol{v}|^{\epsilon+1-n / 2} \int_{0}^{|\boldsymbol{v}|} r^{n / 2-1-2 \epsilon} d r \\
& +\int_{|\boldsymbol{v}|}^{|\boldsymbol{v}|^{-1}} r^{-1} d r+|\boldsymbol{v}|^{-1} \int_{|\boldsymbol{v}|^{-1}}^{\infty} r^{-2} d r \\
& \ll|\boldsymbol{v}|^{1-\epsilon}+2 \log \left(\frac{1}{|\boldsymbol{v}|}\right)+1 \ll \log \left(\frac{2}{|\boldsymbol{v}|}\right) .
\end{aligned}
$$

We now turn to estimates for $S_{q}(\boldsymbol{d}, \boldsymbol{c})$. Let $M_{\boldsymbol{d}}$ be the matrix

$$
M_{\boldsymbol{d}}=\left[d_{i}^{2} d_{j}^{2} a_{i j}\right]
$$

Thus

$$
\begin{equation*}
\operatorname{det} M_{\boldsymbol{d}}=\pi_{\boldsymbol{d}}^{4} \operatorname{det}(M), \quad \operatorname{det} M_{\boldsymbol{d}}^{-1}=\frac{(\operatorname{det}(M))^{-1}}{\pi_{\boldsymbol{d}}^{4}} \tag{2.18}
\end{equation*}
$$

Writing $M^{-1}=\frac{1}{\operatorname{det}(M)}\left[b_{i j}\right]$, so that $b_{i j} \in \mathbb{Z}$, we note that

$$
\begin{equation*}
M_{\boldsymbol{d}}^{-1}=\frac{1}{\operatorname{det}(M)}\left[\frac{b_{i j}}{d_{i}^{2} d_{j}^{2}}\right] \tag{2.19}
\end{equation*}
$$

We write $M_{d}^{-1}(\boldsymbol{x})$ for the quadratic form, with rational coefficients, whose matrix is M_{d}^{-1}. Let $\Delta=2|\operatorname{det} M|$. When $p \nmid \pi_{d} \Delta$, we may think of $M_{d}^{-1}(\boldsymbol{x})$ as being defined modulo p.

We recall that, for any nonsingular form F,

$$
\begin{equation*}
S_{q}(\boldsymbol{d}, \boldsymbol{c}) \ll q^{1+n / 2}\left(d_{1}^{2}, q\right) \ldots\left(d_{n}^{2}, q\right) \tag{2.20}
\end{equation*}
$$

[1, Lemma 9]. We need a slight generalization of 2.20. Let $\boldsymbol{c}(a)$ be a vector in \mathbb{Z}^{n} for every $a=1, \ldots, q,(a, q)=1$. Let

$$
S_{\boldsymbol{d}}=\sum_{a=1}^{q} \sum_{\boldsymbol{b}(\bmod q)} e_{q}\left(a F_{\boldsymbol{d}}(\boldsymbol{b})+\boldsymbol{c}(a) \cdot \boldsymbol{b}\right)
$$

Then

$$
S_{\boldsymbol{d}} \ll q^{1+n / 2}\left(d_{1}^{2}, q\right) \ldots\left(d_{n}^{2}, q\right)
$$

To see this, Cauchy's inequality yields

$$
\left|S_{\boldsymbol{d}}\right|^{2} \leq \phi(q) \sum_{a=1}^{q} * \sum_{\boldsymbol{u}, \boldsymbol{v}(\bmod q)} e_{q}\left(a\left(F_{\boldsymbol{d}}(\boldsymbol{u})-F_{\boldsymbol{d}}(\boldsymbol{v})\right)+\boldsymbol{c}(\boldsymbol{a}) \cdot(\boldsymbol{u}-\boldsymbol{v})\right) .
$$

Substitute $\boldsymbol{u}=\boldsymbol{v}+\boldsymbol{w}$, so that

$$
\begin{aligned}
& e_{q}\left(a\left(F_{\boldsymbol{d}}(\boldsymbol{u})-F_{\boldsymbol{d}}(\boldsymbol{v})\right)+\boldsymbol{c}(\boldsymbol{a}) \cdot(\boldsymbol{u}-\boldsymbol{v})\right) \\
= & e_{q}(a F(\boldsymbol{w})+\boldsymbol{c}(a) \cdot \boldsymbol{w}) e_{q}(a \boldsymbol{v} \cdot \nabla F(\boldsymbol{w})) .
\end{aligned}
$$

The summation over \boldsymbol{v} will now produce a contribution of zero unless q divides $\nabla F_{d}(\boldsymbol{w})=$ $2 M_{\boldsymbol{d}} \boldsymbol{w}$. We have

$$
\left|S_{\boldsymbol{d}}\right|^{2} \leq q^{n} \phi(q)^{2} \sum_{\substack{w(\bmod q) \\ 2 M_{d} w \equiv 0(\bmod q)}} 1
$$

We may now complete the proof with the argument used for [1, Lemma 9].
Since

$$
\begin{equation*}
S_{u v}(\boldsymbol{d}, \boldsymbol{c})=S_{u}(d, \bar{v} \boldsymbol{c}) S_{v}(d, \bar{u} \boldsymbol{c}) \tag{2.21}
\end{equation*}
$$

where $u \bar{u} \equiv 1(\bmod v), v \bar{v} \equiv 1(\bmod u)$ [4] Lemma 23], we can do most of our work for prime powers q.

For $n=4, M_{d}^{-1}(c) \neq 0$, we have

$$
\begin{equation*}
\sum_{q \leq X}\left|S_{q}(\boldsymbol{d}, \boldsymbol{c})\right| \ll \pi_{\boldsymbol{d}}^{2} X^{7 / 2+\epsilon}(|\boldsymbol{c}|+1)^{\epsilon} \tag{2.22}
\end{equation*}
$$

[1. Lemma 10]. To get results that play a comparable role when $n=4, M_{d}^{-1}(\boldsymbol{c})=0$ or $n=3$, we use the Dirichlet series

$$
\begin{aligned}
\zeta(s, \boldsymbol{d}, \boldsymbol{c}) & =\sum_{q=1}^{\infty} q^{-s} S_{q}(\boldsymbol{c}) \quad(\sigma>2+n / 2) \\
& =\prod_{p}\left\{\sum_{u=0}^{\infty} p^{-u s} S_{p^{u}}(\boldsymbol{d}, \boldsymbol{c})\right\}
\end{aligned}
$$

[4] p. 194]. Bounds for those Euler factors for which $p \mid \pi_{d}$ will require extra work compared to the analysis on pages 194-5 of [4]. If we write

$$
\begin{equation*}
\tau_{\boldsymbol{d}}(\boldsymbol{c}, \sigma)=\prod_{p \mid \pi_{d}} \sum_{u=0}^{\infty} p^{-u \sigma}\left|S_{p^{u}}(\boldsymbol{d}, \boldsymbol{c})\right|, \tag{2.23}
\end{equation*}
$$

we see that the analysis in question gives
(i) for $n=3, M_{d}^{-1}(c) \neq 0$,

$$
\begin{equation*}
\zeta(s, \boldsymbol{d}, \boldsymbol{c})=L\left(s-2, \chi_{\boldsymbol{d}, \boldsymbol{c}}\right) v(s, \boldsymbol{d}, \boldsymbol{c}) \tag{2.24}
\end{equation*}
$$

where

$$
v(s, \boldsymbol{d}, \boldsymbol{c})=\prod\left(1-\chi_{\boldsymbol{d}, \boldsymbol{c}}(p) p^{2-s}\right)\left\{\sum_{u=0}^{\infty} p^{-u s} S_{p^{u}}(\boldsymbol{c})\right\}
$$

and $\chi_{d, c}$ is a character satisfying

$$
\begin{equation*}
\chi_{d, c}(p)=\left(\frac{-\operatorname{det}\left(M_{\boldsymbol{d}}\right) M_{\boldsymbol{d}}^{-1}(\boldsymbol{c})}{p}\right) . \tag{2.25}
\end{equation*}
$$

We note that $\chi_{d, c}$ (if not trivial) is a character to modulus $4 \Delta \pi_{d}^{4}\left|M_{d}^{-1}(\boldsymbol{c})\right|$. Moreover,

$$
\begin{equation*}
v(s, \boldsymbol{d}, \boldsymbol{c}) \ll|\boldsymbol{c}|^{\epsilon} \tau_{\boldsymbol{d}}(\boldsymbol{c}, \sigma) \quad\left(\sigma \geq \frac{17}{6}+\epsilon\right) . \tag{2.26}
\end{equation*}
$$

(ii) for $n=3, M_{d}^{-1}(\boldsymbol{c})=0$,

$$
\begin{equation*}
\zeta(s, \boldsymbol{d}, \boldsymbol{c})=\zeta(2 s-5) v(s, \boldsymbol{d}, \boldsymbol{c}) \tag{2.27}
\end{equation*}
$$

with

$$
v(s, \boldsymbol{d}, \boldsymbol{c})=\prod_{p}\left(1-p^{5-2 s}\right)\left\{\sum_{u=0}^{\infty} p^{-u s} S_{p^{u}}(\boldsymbol{d}, \boldsymbol{c})\right\} .
$$

Moreover,

$$
\begin{equation*}
v(s, \boldsymbol{d}, \boldsymbol{c}) \ll \tau_{d}(\boldsymbol{c}, \sigma) \quad\left(\sigma \geq \frac{17}{6}+\epsilon\right) . \tag{2.28}
\end{equation*}
$$

(iii) for $n=4, M_{\boldsymbol{d}}^{-1}(\boldsymbol{c})=0$, we find that

$$
\zeta(s, \boldsymbol{d}, \boldsymbol{c})=L\left(s-3, \chi_{\boldsymbol{d}}\right) v(s, \boldsymbol{d}, \boldsymbol{c})
$$

where

$$
v(s, \boldsymbol{d}, \boldsymbol{c})=\prod_{p}\left(1-\chi_{\boldsymbol{d}}(p) p^{3-s}\right)\left\{\sum_{u=0}^{\infty} p^{-u s} S_{p^{u}}(\boldsymbol{d}, \boldsymbol{c})\right\},
$$

with a character χ_{d} satisfying

$$
\chi_{d}(p)=\left(\frac{\operatorname{det} M_{d}}{p}\right) .
$$

Since $\operatorname{det} M_{d}$ is a square, we take the trivial character, and write

$$
\begin{equation*}
\zeta(s, \boldsymbol{d}, \boldsymbol{c})=\zeta(s-3) v(s, \boldsymbol{d}, \boldsymbol{c}) . \tag{2.29}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
v(s, \boldsymbol{d}, \boldsymbol{c}) \ll \tau_{\boldsymbol{d}}(\boldsymbol{c}, \sigma) \quad\left(\sigma \geq \frac{7}{2}+\epsilon\right) . \tag{2.30}
\end{equation*}
$$

For any \boldsymbol{d}, we write $t_{j}=t_{j}(\boldsymbol{d})$ for the product of those primes dividing exactly j of d_{1}, \ldots, d_{n}. Evidently,

$$
\pi_{d}=t_{1} t_{2}^{2} \ldots t_{n}^{n}
$$

We also write

$$
A(\boldsymbol{d})= \begin{cases}\pi_{\boldsymbol{d}}^{5 \epsilon} t_{2}^{2}\left(t_{3} t_{4}\right)^{4} & (n=4) \tag{2.31}\\ \pi_{\boldsymbol{d}}^{5 \epsilon} t_{2}^{5 / 2} t_{3}^{4} & (n=3)\end{cases}
$$

Let us write $\alpha_{3}=17 / 6, \alpha_{4}=7 / 2$.
Lemma 2. (i) Let F be nonsingular. Then

$$
\tau_{d}(c, \sigma) \ll \pi_{d}^{2+\epsilon} \quad\left(\sigma \geq \alpha_{n}+\epsilon\right)
$$

(ii) Let $\sigma \geq n-\epsilon$. Suppose that F is nonsingular (if $n=4$) and robust (if $n=3$). Then

$$
\tau_{d}(\boldsymbol{c}, \sigma) \ll A(\boldsymbol{d})
$$

Proof. (i) For $n=3$, 2.20 yields

$$
\begin{aligned}
& \frac{S_{p^{u}}(\boldsymbol{d}, \boldsymbol{c})}{p^{\sigma u}} \ll p^{-(1 / 3+\epsilon) u}\left(d_{1}^{2}, p^{2}\right)\left(d_{2}^{2}, p^{2}\right)\left(d_{3}^{2}, p^{2}\right) \\
& 1+\sum_{u \geq 1} \frac{\left|S_{p^{u}}(\boldsymbol{d}, \boldsymbol{c})\right|}{p^{\sigma u}} \ll\left(d_{1}^{2}, p^{2}\right)\left(d_{2}^{2}, p^{2}\right)\left(d_{3}^{2}, p^{2}\right) \\
& \tau_{\boldsymbol{d}}(\boldsymbol{c}, \sigma) \ll \pi_{\boldsymbol{d}}^{\epsilon} \prod_{p \mid \pi_{d}}\left(d_{1}^{2}, p^{2}\right)\left(d_{2}^{2}, p^{2}\right)\left(d_{3}^{2}, p^{2}\right) \\
&=\pi_{\boldsymbol{d}}^{2+\epsilon}
\end{aligned}
$$

The argument is similar for $n=4$.
(ii) For $n=4$, 2.20 yields

$$
\begin{align*}
1+\sum_{u \geq 1} \frac{\left|S_{p^{u}}(\boldsymbol{d} \boldsymbol{,} \boldsymbol{c})\right|}{p^{\sigma u}} \ll 1 & +p^{-(1-\epsilon)}\left(d_{1}^{2}, p\right) \ldots\left(d_{4}^{2}, p\right) \tag{2.32}\\
& +p^{-(2-2 \epsilon)}\left(d_{1}^{2}, p^{2}\right) \cdots\left(d_{4}^{2}, p^{2}\right)
\end{align*}
$$

If p divides t_{1}, then

$$
1+\sum_{u \geq 1} \frac{\left|S_{p^{u}}(\boldsymbol{d}, \boldsymbol{c})\right|}{p^{\sigma u}} \ll p^{2 \epsilon}
$$

If p divides t_{2}, then

$$
1+\sum_{u \geq 1} \frac{\left|S_{p^{u}}(\boldsymbol{d}, \boldsymbol{c})\right|}{p^{\sigma u}} \ll p^{2+2 \epsilon} .
$$

If p divides $t_{3} t_{4}$, then

$$
1+\sum_{u \geq 1} \frac{\left|S_{p^{u}}(\boldsymbol{d}, \boldsymbol{c})\right|}{p^{\sigma u}} \ll p^{4+4 \epsilon}+\sum_{u \geq 5} p^{8-(1-\epsilon) u} \ll p^{4+4 \epsilon}
$$

Here we use the trivial bound $(u \leq 4)$ and $2.20(u \geq 5)$. Lemma 2 (ii) follows for $n=4$.
Now let $n=3$. Suppose that $p \mid t_{1}$; let us say $p \mid d_{1}$. Then for $u \leq 4$, and a fixed value of x_{1}, let us write

$$
\begin{gathered}
G\left(x_{2}, x_{3}\right)=\sum_{j, k=2}^{3} a_{j k} d_{j}^{2} d_{k}^{2} x_{j} x_{k}, \\
\boldsymbol{h}=\boldsymbol{h}(a)=\left(a a_{12} d_{1}^{2} d_{2}^{2} x_{1}+c_{2}, a a_{13} d_{1}^{2} d_{3}^{2} x_{1}+c_{3}\right) .
\end{gathered}
$$

We have

$$
\begin{aligned}
a F_{d}(\boldsymbol{x}) \cdot \boldsymbol{c} & \equiv a G\left(x_{2}, x_{3}\right)+\sum_{k=2}^{3} a a_{1 k} d_{1}^{2} d_{k}^{2} x_{1} x_{k}+\boldsymbol{x} \cdot \boldsymbol{c} \\
& \equiv x_{1} c_{1}+a G\left(x_{2}, x_{3}\right)+\left(x_{2}, x_{3}\right) \cdot \boldsymbol{h} \quad\left(\bmod p^{u}\right), \\
\left|S_{p^{u}}(\boldsymbol{d}, \boldsymbol{c})\right|^{2} & \leq p^{u} \sum_{x_{1}=1}^{p^{u}}\left|\sum_{a=1}^{p^{u}} \sum_{\boldsymbol{y}\left(\bmod p^{u}\right)} e(a G(\boldsymbol{y})+\boldsymbol{y} \cdot \boldsymbol{h})\right|^{2}
\end{aligned}
$$

(by Cauchy's inequality)

$$
\ll p^{2 u}\left(p^{2 u}\right)^{2}
$$

by the generalization of 2.20 noted above, with n replaced by 2 and F replaced by $F\left(0, x_{2}, x_{3}\right)$. Hence, applying (2.20) directly for $u \geq 5$,

$$
\begin{aligned}
1+\sum_{u \geq 1} \frac{\left|S_{p^{u}}(\boldsymbol{d}, \boldsymbol{c})\right|}{p^{\sigma u}} & \ll p^{4 \epsilon}+\sum_{u \geq 5} p^{2-u\left(\frac{1}{2}-\epsilon\right)} \\
& \ll p^{4 \epsilon}
\end{aligned}
$$

Now let $p \mid t_{2}$. Then

$$
\frac{S_{p^{u}}(\boldsymbol{d}, \boldsymbol{c})}{p^{\sigma u}} \ll\left\{\begin{array}{l}
p^{2+2 \epsilon}(u \leq 2) \tag{2.33}\\
p^{4-u(1 / 2-\epsilon)}(u \geq 3)
\end{array}\right.
$$

Here we use the trivial bound $(u \leq 2)$ and $2.20(u \geq 3)$. Hence

$$
1+\sum_{u \geq 1} \frac{\left|S_{p^{u}}(\boldsymbol{d}, \boldsymbol{c})\right|}{p^{\sigma u}} \ll p^{5 / 2+3 \epsilon}
$$

Similarly, if $p \mid t_{3}$,

$$
\begin{gathered}
\frac{S_{p^{u}}(\boldsymbol{d}, \boldsymbol{c})}{p^{\sigma u}} \ll\left\{\begin{array}{l}
p^{4+4 \epsilon}(u \leq 4) \\
p^{6-u\left(\frac{1}{2}-\epsilon\right)}(u \geq 5),
\end{array}\right. \\
\quad 1+\sum_{u \geq 1} \frac{\left|S_{p^{u}}(\boldsymbol{d}, \boldsymbol{c})\right|}{p^{\sigma u}} \ll p^{4+4 \epsilon}
\end{gathered}
$$

We now complete the proof as above.
The next lemma is useful for singular series calculations.
Lemma 3. Let F be nonsingular,

$$
\Lambda_{p}(F)=\sum_{\substack{\boldsymbol{d} \mid p \\ \pi_{d}>1}} \sum_{u \geq 1} p^{-n u}\left|S_{p^{u}}(\boldsymbol{d}, \mathbf{0})\right|
$$

Then

$$
\Lambda_{p}(F) \ll \begin{cases}p^{-2} & (n=4, F \text { nonsingular }) \\ p^{-3 / 2} & (n=3, F \text { robust })\end{cases}
$$

If $n=3$ and F is not robust, then $\Lambda_{p}(F) \ll p^{-1}$.
Proof. Suppose first that $n=4$. The proof of Lemma (ii) shows that, for $\boldsymbol{d} \mid p$,

$$
\sum_{u \geq 1} p^{-n u}\left|S_{p^{u}}(\boldsymbol{d}, \mathbf{0})\right| \ll \begin{cases}1 & \left(\pi_{d}=p\right) \\ p^{2} & \left(\pi_{d}=p^{2}\right) \\ p^{4} & \left(\pi_{d} \geq p^{3}\right)\end{cases}
$$

Hence

$$
\pi_{d}^{-2} \sum_{u \geq 1} p^{-n u}\left|S_{p^{u}}(\boldsymbol{d}, \mathbf{0})\right| \ll p^{-2}
$$

and we obtain the desired bound since \boldsymbol{d} has $O(1)$ values.
The argument for $n=3$ is similar in the case when F is robust. However, if F is not robust, we have the weaker bound

$$
\begin{equation*}
\sum_{u \geq 1} p^{-n u}\left|S_{p^{u}}(\boldsymbol{d}, \mathbf{0})\right| \ll p \quad\left(\pi_{d}=p\right) \tag{2.34}
\end{equation*}
$$

For the left-hand side of 2.34) is

$$
\ll p^{-1 / 2}\left(d_{1}^{2}, p\right)\left(d_{2}^{2}, p\right)\left(d_{3}^{2}, p\right)+p^{-1}\left(d_{1}^{2}, p^{2}\right)\left(d_{2}^{2}, p^{2}\right)\left(d_{3}^{2}, p^{2}\right)
$$

from 2.20 .
3. Sums of $\boldsymbol{S}_{q}(\boldsymbol{d}, \boldsymbol{c})$ and $\boldsymbol{S}_{q}(\boldsymbol{d}, \mathbf{0}) \boldsymbol{q}^{\boldsymbol{- n}}$.

Let $e_{n}=1$ if $n=4$ and $e_{n}=1 / 2$ if $n=3$.
We assume throughout Sections 3 and 4 that F is robust $(n=3)$ and nonsingular $(n=4)$. Define

$$
\eta(\boldsymbol{d}, \boldsymbol{c})= \begin{cases}e_{n} & \text { if } M_{d}^{-1}(\boldsymbol{c})=0 \tag{3.1}\\ 1 & \text { if } n=3 \text { and }-\left(\operatorname{det} M_{d}\right) M_{\boldsymbol{d}}^{-1}(\boldsymbol{c}) \text { is a nonzero square } \\ 0 & \text { otherwise }\end{cases}
$$

Define

$$
\sigma(\boldsymbol{d}, \boldsymbol{c})=v(n, \boldsymbol{d}, \boldsymbol{c})
$$

We observe that whenever $\eta(\boldsymbol{d}, \boldsymbol{c}) \neq 0$,

$$
\sigma(\boldsymbol{d}, \boldsymbol{c})=\prod_{p} \sigma_{p}(\boldsymbol{d}, \boldsymbol{c})
$$

where

$$
\sigma_{p}(\boldsymbol{d}, \boldsymbol{c})=\left(1-p^{-1}\right) \sum_{u=0}^{\infty} p^{-n u} S_{p^{u}}(\boldsymbol{d}, \boldsymbol{c})
$$

Lemma 4. For $X>1$,

$$
\sum_{q \leq X} S_{q}(\boldsymbol{d}, \boldsymbol{c})=\eta(\boldsymbol{d}, \boldsymbol{c}) \sigma(\boldsymbol{d}, \boldsymbol{c}) \frac{X^{n}}{n}+O\left(X^{\alpha_{n}+2 \epsilon} \pi_{d}^{3+\epsilon}(1+|\boldsymbol{c}|)^{1 / 2}\right)
$$

Proof. The case $n=4, M_{d}^{-1}(\boldsymbol{c}) \neq 0$ follows from 2.22), and we exclude this case below.
We recall the version of Perron's formula given in [1, Lemma 13]. Let b, c be positive constants and λ a real constant, $\lambda+c>1+b$. For $K>0$ and complex numbers $a_{\ell}(\ell \geq 1)$ with $\left|a_{\ell}\right| \leq K \ell^{b}$, write

$$
\begin{gather*}
h(s)=\sum_{\ell=1}^{\infty} \frac{a_{\ell}}{\ell^{s}} \quad(\sigma>1+b) ; \text { then } \\
\sum_{\ell \leq x} \frac{a_{\ell}}{\ell^{\lambda}}=\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} h(s+\lambda) \frac{x^{s}}{s} d s+O\left(\frac{K x^{c}}{T}\right) \tag{3.2}
\end{gather*}
$$

whenever $x>1, T>1, x-1 / 2 \in \mathbb{Z}$.
For $n=4$, let $a_{\ell}=S_{\ell}(\boldsymbol{d}, \boldsymbol{c}), b=3, \lambda=0, x=[X]+1 / 2, T=x^{10}$. According to (2.20), we may take $K \ll \pi_{d}^{2}$. Recalling (2.29,

$$
\begin{aligned}
\sum_{q \leq X} S_{q}(\boldsymbol{d}, \boldsymbol{c}) & =\frac{1}{2 \pi i} \int_{5-i T}^{5+i T} \zeta(s, \boldsymbol{d}, \boldsymbol{c}) \frac{x^{2}}{s}+O\left(\pi_{\boldsymbol{d}}^{2}\right) \\
& =\frac{1}{2 \pi i} \int_{5-i T}^{5+i T} \zeta(s-3) v(s, \boldsymbol{d}, \boldsymbol{c}) \frac{x^{s}}{s} d s+O\left(\pi_{\boldsymbol{d}}^{2}\right)
\end{aligned}
$$

We move the line of integration back to $\sigma=\frac{7}{2}+\epsilon$. On the line segments $[7 / 2+\epsilon, 5] \pm i T$,

$$
\begin{aligned}
\zeta(s-3) & \ll T^{1 / 4}, \\
\frac{v(s, \boldsymbol{d}, \boldsymbol{c}) x^{s}}{s} & \ll \pi_{\boldsymbol{d}}^{2+\epsilon} T^{-1 / 2}
\end{aligned}
$$

from (2.30) and Lemma 2 (i). Thus these segments contribute $O\left(\pi_{d}^{2+\epsilon}\right)$. Since

$$
\int_{0}^{U}|L(\sigma+i t, \chi)|^{2} d t \ll k^{1 / 2} U \quad\left(\frac{1}{2}<\sigma<1\right)
$$

for a Dirichlet L-function to modulus k, we have

$$
\int_{-T}^{T}\left|\zeta\left(\frac{1}{2}+\epsilon+i t\right) v(s, \boldsymbol{d}, \boldsymbol{c})\right| \frac{d t}{1+|t|} \ll \pi_{\boldsymbol{d}}^{2+\epsilon} \log T
$$

Hence the segment $[7 / 2+\epsilon-i T, 7 / 2+\epsilon+i T]$ contributes $O\left(X^{7 / 2+2 \epsilon} \pi_{d}^{2+\epsilon}\right)$. Writing Res for the residue of the integrand at $s=4$, with Res $=0$ if there is no pole,

$$
\sum_{q \leq X} S_{q}(\boldsymbol{d}, \boldsymbol{c})=\operatorname{Res}+O\left(\pi_{\boldsymbol{d}}^{2+\epsilon} X^{7 / 2+2 \epsilon}\right)
$$

Similarly, for $n=3$,

$$
\begin{aligned}
\sum_{q \leq X} S_{q}(\boldsymbol{d}, \boldsymbol{c}) & =\frac{1}{2 \pi i} \int_{5-i T}^{5+i T} \zeta(s, \boldsymbol{d}, \boldsymbol{c}) \frac{x^{s}}{s} d s+O\left(\pi_{\boldsymbol{d}}^{2}\right) \\
& =\frac{1}{2 \pi i} \int_{5-i T}^{5+i T} E(s) v(s, \boldsymbol{d}, \boldsymbol{c}) \frac{x^{s}}{s} d s+O\left(\pi_{d}^{2}\right)
\end{aligned}
$$

where

$$
E(s)= \begin{cases}L(s-2, \chi) & \text { if } \quad M_{d}^{-1}(\boldsymbol{c}) \neq 0 \\ \zeta(2 s-5) & \text { if } \quad M_{d}^{-1}(\boldsymbol{c})=0\end{cases}
$$

and $\chi=\chi_{d, \boldsymbol{c}}$ satisfies 2.25). We take χ to be the trivial character if $-\operatorname{det}\left(M_{\boldsymbol{d}}\right) M_{\boldsymbol{d}}^{-1}(\boldsymbol{c})$ is a nonzero square. Since χ is a character to modulus $k=O\left(\pi_{d}^{4}|\boldsymbol{c}|^{2}\right)$, a simple hybrid bound [3, Lemma 1] yields

$$
\begin{aligned}
E(s) & =O\left((k T)^{1 / 4}\right) \\
& =O\left((1+|\boldsymbol{c}|)^{1 / 2} \pi_{d} T^{1 / 4}\right)
\end{aligned}
$$

for $\sigma \geq 11 / 4,|t| \leq T$.
We move the line of integration back to $\sigma=17 / 6+\epsilon$. A slight variant of the preceding argument gives

$$
\sum_{q \leq X} S_{q}(\boldsymbol{d}, \boldsymbol{c})=\operatorname{Res}+O\left(X^{17 / 6+2 \epsilon}(1+|\boldsymbol{c}|)^{1 / 2} \pi_{d}^{3+\epsilon}\right)
$$

It now suffices to show that the residue at n is

$$
\eta(\boldsymbol{d}, \boldsymbol{c}) \sigma(\boldsymbol{d}, \boldsymbol{c}) \frac{x^{n}}{n}
$$

In the case $n=4$, the residue is

$$
v(4, \boldsymbol{d}, \boldsymbol{c}) \frac{x^{4}}{4}
$$

as required.
For $n=3$, there is no pole unless either $M_{d}^{-1}(\boldsymbol{c})=0$ or $M_{d}^{-1}(\boldsymbol{c}) \neq 0$ and $\chi_{d, c}$ is trivial, that is, $-\operatorname{det}\left(M_{\boldsymbol{d}}\right) M_{\boldsymbol{d}}^{-1}(\boldsymbol{c})$ is a nonzero square. The residue is $\sigma(\boldsymbol{d}, \boldsymbol{c}) \frac{x^{3}}{3}$ or $\frac{1}{2} \sigma(\boldsymbol{d}, \boldsymbol{c}) \frac{x^{3}}{3}$ depending on whether the coefficient of $\frac{1}{s-3}$ in the Laurent expansion of the zeta factor is 1 or $\frac{1}{2}$, and the lemma follows.

Lemma 5. For $X>1$,

$$
\begin{aligned}
\sum_{q \leq X} q^{-n} S_{q}(\boldsymbol{d}, \mathbf{0})= & e_{n} \sigma(\boldsymbol{d}, \mathbf{0}) \log X \\
& +O\left(A(\boldsymbol{d})+\pi_{\boldsymbol{d}}^{2+\epsilon} X^{\alpha_{n}-n+2 \epsilon}\right)
\end{aligned}
$$

Proof. For $n=4$, we apply 3.2 with a_{ℓ}, b, x, T, K as in the preceding proof, but now $\lambda=4, c=1$. This leads to

$$
\sum_{q \leq X} q^{-4} S_{q}(\boldsymbol{d}, \mathbf{0})=\frac{1}{2 \pi i} \int_{1-i T}^{1+i T} \zeta(s+1) v(s+4, \boldsymbol{d}, \mathbf{0}) \frac{x^{s}}{s} d s+O\left(\pi_{\boldsymbol{d}}^{2}\right)
$$

We move the line of integration back to $\sigma=-\frac{1}{2}+\epsilon$. The integrals along segments are $O\left(\pi_{d}^{2+\epsilon} X^{-1 / 2+2 \epsilon}\right)$ by a variant of the above argument. There is a double pole at 0 ; the Laurent series of the integrand is

$$
\frac{1}{s^{2}}(1+a s+\cdots)\left(v(4, \boldsymbol{d}, \mathbf{0})+v^{\prime}(4, \boldsymbol{d}, \mathbf{0}) s+\cdots\right)(1+(\log x) s+\cdots)
$$

where a is an absolute constant. The residue is

$$
\begin{aligned}
& v(4, \boldsymbol{d}, \mathbf{0})(\log x+a)+v^{\prime}(4, \boldsymbol{d}, \mathbf{0}) \\
& =\sigma(\boldsymbol{d}, \mathbf{0}) \log X+O\left(\max _{\sigma \geq 4-\epsilon} \tau_{\boldsymbol{d}}(\mathbf{0}, \sigma)+1\right) .
\end{aligned}
$$

To get the last estimate, we write $v^{\prime}(4, \boldsymbol{d}, \mathbf{0})$ as a contour integral on $|s-4|=\epsilon$ using Cauchy's formula for a derivative, and apply (2.30). We now complete the proof using Lemma 2 (ii).

For $n=3$, a similar argument gives

$$
\sum_{q \leq X} q^{-3} S_{q}(\boldsymbol{d}, \mathbf{0})=\frac{1}{2 \pi i} \int_{1-i T}^{1+i T} \zeta(2 s+1) v(s+3, \boldsymbol{d}, \mathbf{0}) \frac{x^{s}}{s} d s+O\left(\pi_{\boldsymbol{d}}^{2}\right)
$$

We move the line of integration back to $\sigma=-\frac{1}{6}+\epsilon$, estimating the integrals along line segments as $O\left(\pi_{d}^{2+\epsilon} X^{-1 / 6+\epsilon}\right)$. This time the Laurent series at 0 is

$$
\frac{1}{2 s^{2}}(1+2 a s+\cdots)\left(v(3, \boldsymbol{d}, \mathbf{0})+v^{\prime}(3, \boldsymbol{d}, \mathbf{0}) s+\cdots\right)(1+(\log x) s+\cdots)
$$

with residue

$$
\frac{1}{2} v(3, \boldsymbol{d}, \mathbf{0})(\log x+2 a)+\frac{1}{2} v^{\prime}(3, \boldsymbol{d}, \mathbf{0})
$$

and we complete the proof as before.

$$
\text { 4. Evaluation of } N\left(F_{\boldsymbol{d}}, w_{\boldsymbol{d}}\right) \text {. }
$$

We fix \boldsymbol{d} for the present, with

$$
|\boldsymbol{d}| \leq P^{\epsilon},
$$

and write

$$
\boldsymbol{c}^{\prime}=\left(\frac{c_{1}}{d_{1}^{2}}, \ldots, \frac{c_{n}}{c_{n}^{2}}\right)
$$

Lemma 6. We have

$$
\sum_{\substack{\boldsymbol{c} \in \mathbb{Z}^{n} \\\left|\boldsymbol{c}^{\prime}\right|>P^{\epsilon}}}\left|\sum_{q=1}^{\infty} q^{-n} S_{q}(\boldsymbol{d}, \boldsymbol{c}) I_{q}\left(\boldsymbol{c}^{\prime}\right)\right| \ll P^{n}
$$

Proof. We note first that for $A \geq 1, R>1, N \geq 2$,

$$
\begin{align*}
& \sum_{c>A R}\left(c A^{-1}\right)^{-N}=A^{N} \sum_{k=0}^{\infty} \sum_{2^{k} A R<c \leq 2^{k+1} A R} c^{-N} \tag{4.1}\\
& \ll A^{N} \sum_{k=0}^{\infty} 2^{-(N-1) k} A^{-N+1} R^{-N+1} \ll A R^{-N+1}
\end{align*}
$$

Taking $A=d_{1}^{2}, R=P^{\epsilon}$, we have

$$
\begin{aligned}
& \sum_{\left|c_{1}\right|>d_{1}^{2} P^{\epsilon}}\left(c_{1} d_{1}^{-2}\right)^{-N} \sum_{\max \left(\frac{\left|c_{1}\right|}{d_{2}^{2}} \ldots, \ldots, \frac{\left|c_{n}\right|}{d_{n}^{2}}\right) \leq \frac{c_{1}}{d_{1}^{2}}} 1 \\
& \ll P^{2(n-1) \epsilon} \sum_{\left|c_{1}\right|>d_{1}^{2} P^{\epsilon}}\left(c_{1} d_{1}^{-2}\right)^{-N+n-1} \\
& \ll P^{2(n-1) \epsilon} d_{1}^{2} P^{-(N-n) \epsilon} \ll P^{-(N-3 n) \epsilon} .
\end{aligned}
$$

Here we allow for a possible renumbering of the variables. If $N=N(\epsilon)$ is chosen suitably, we get the lemma by combining this estimate with 2.10 and 2.20 , on recalling that the summation over q is restricted to $q \ll P$.
Lemma 7. Let $\left|\boldsymbol{c}^{\prime}\right| \leq P^{\epsilon}$. Then

$$
\begin{equation*}
\sum_{q=1}^{\infty} q^{-n} S_{q}(\boldsymbol{d}, \boldsymbol{c}) I_{q}\left(\boldsymbol{c}^{\prime}\right)=\eta(\boldsymbol{d}, \boldsymbol{c}) \sigma(\boldsymbol{d}, \boldsymbol{c}) \int_{0}^{\infty} q^{-n} I_{q}\left(\boldsymbol{c}^{\prime}\right) d q+O\left(P^{\alpha_{n}+20 \epsilon}\right) \tag{4.2}
\end{equation*}
$$

Proof. Let

$$
\begin{aligned}
T(q) & =\sum_{\ell \leq q} S_{\ell}(\boldsymbol{d}, \boldsymbol{c}) \\
B & =\pi_{d}^{3+\epsilon}(1+|\boldsymbol{c}|)^{1 / 2}
\end{aligned}
$$

For $R \geq \frac{1}{2}$,

$$
\begin{align*}
& \sum_{R<q \leq 2 R} q^{-n} S_{q}(\boldsymbol{d}, \boldsymbol{c}) I_{q}\left(\boldsymbol{c}^{\prime}\right)=\int_{R}^{2 R} q^{-n} I_{q}\left(\boldsymbol{c}^{\prime}\right) d T(q) \tag{4.3}\\
&=\left.q^{-n} I_{q}\left(\boldsymbol{c}^{\prime}\right) T(q)\right|_{R} ^{2 R}-\int_{R}^{2 R} \frac{\partial}{\partial q}\left(q^{-n} I_{q}\left(\boldsymbol{c}^{\prime}\right)\right) T(q) d q \\
&=\left.q^{-n} I_{q}\left(\boldsymbol{c}^{\prime}\right)\left\{\frac{\eta(\boldsymbol{d}, \boldsymbol{c}) \sigma(\boldsymbol{d}, \boldsymbol{c}) q^{n}}{n}+O\left(B q^{\alpha_{n}+2 \epsilon}\right)\right\}\right|_{R} ^{2 R} \\
& \quad-\int_{R}^{2 R} \frac{\partial}{\partial q}\left(q^{-n} I_{q}\left(\boldsymbol{c}^{\prime}\right)\right)\left\{\frac{\eta(\boldsymbol{d}) \sigma(\boldsymbol{d}, \boldsymbol{c}) q^{n}}{n}+O\left(B q^{\alpha_{n}+2 \epsilon}\right)\right\} d q
\end{align*}
$$

from Lemma 4 Now for $R<q \leq 2 R$,

$$
\begin{aligned}
q^{-n} I_{q}\left(\boldsymbol{c}^{\prime}\right) & \ll P^{n / 2+1+2 \epsilon} R^{-n / 2-1}, \\
\frac{\partial}{\partial q}\left(q^{-n} I_{q}\left(\boldsymbol{c}^{\prime}\right)\right) & \ll P^{n / 2+1+2 \epsilon} R^{-n / 2-2}
\end{aligned}
$$

from (2.12), 2.13). Hence the O-terms in the last expression in (4.3) contribute $O\left(B P^{n / 2+1+2 \epsilon} R^{-n / 2-1+\alpha_{n}+2 \epsilon}\right)$. We conclude that

$$
\begin{align*}
& \sum_{R<q \leq 2 R} q^{-n} S_{q}(\boldsymbol{d}, \boldsymbol{c}) I_{q}\left(\boldsymbol{c}^{\prime}\right)= \tag{4.4}\\
& \quad \eta(\boldsymbol{d}, \boldsymbol{c}) \sigma(\boldsymbol{d}, \boldsymbol{c}) \int_{R}^{2 R} q^{-1} I_{q}\left(\boldsymbol{c}^{\prime}\right) d q+O\left(B P^{n / 2+1+2 \epsilon} R^{-n / 2-1+\alpha_{n}+2 \epsilon}\right)
\end{align*}
$$

The lemma follows because $q=O(P)$ for the nonzero terms of the series in 4.2).
Lemma 8. We have

$$
\sum_{\left|\boldsymbol{c}^{\prime}\right|>|\boldsymbol{d}|^{\mid}}\left|\sum_{q=1}^{\infty} q^{-n} S_{q}(\boldsymbol{d}, \boldsymbol{c}) I_{q}\left(\boldsymbol{c}^{\prime}\right)\right| \ll P^{n} .
$$

Proof. By Lemma6, we can restrict the sum to

$$
|\boldsymbol{d}|^{\epsilon}<\left|\boldsymbol{c}^{\prime}\right| \leq P^{\epsilon} .
$$

Let $K>1$. Combining Lemma 7 with 2.16, these \boldsymbol{c}^{\prime} contribute

$$
\begin{aligned}
& <_{K} P^{n} \sum_{\left|\boldsymbol{c}^{\prime}\right|>|\boldsymbol{d}|^{\epsilon}}\left|\boldsymbol{c}^{\prime}\right|^{-K}|\sigma(\boldsymbol{d}, \boldsymbol{c})|+P^{\alpha_{n}+24 \epsilon} \\
& <_{K} P^{n} \sum_{\left|\boldsymbol{c}^{\prime}\right|>|\boldsymbol{d}|^{\epsilon}}\left|\boldsymbol{c}^{\prime}\right|^{-K+\epsilon} \pi_{\boldsymbol{d}}^{2+\epsilon}+P^{n}
\end{aligned}
$$

by 2.26, 2.28, 2.30 and Lemma 2 (i). The last expression is (arguing as in the proof of Lemma 6

$$
<_{K} P^{n+2 n \epsilon} \pi_{d}^{2+\epsilon} \sum_{c_{1}>d_{1}^{2}|d|^{\epsilon}}\left(c_{1} d_{1}^{-2}\right)^{-K+n-1+\epsilon}+P^{n} .
$$

The lemma now follows from an application of 4.1) with $N=K-n-1-\epsilon, A=d_{1}^{2}$, $R=|\boldsymbol{d}|^{\epsilon} ; K$ is suitably chosen depending on ϵ.

Lemma 9. Let

$$
0<\left|\boldsymbol{c}^{\prime}\right| \leq|\boldsymbol{d}|^{\epsilon} .
$$

Then

$$
\sum_{q=1}^{\infty} q^{-n} S_{q}(\boldsymbol{d}, \boldsymbol{c}) I_{q}\left(\boldsymbol{c}^{\prime}\right) \ll P^{n} A(\boldsymbol{d}) \eta(\boldsymbol{d}, \boldsymbol{c})+P^{\alpha_{n}+20 \epsilon}
$$

Proof. In view of Lemma 7 it suffices to show that

$$
\sigma(\boldsymbol{d}, \boldsymbol{c}) \int_{0}^{\infty} q^{-n} I_{q}\left(\boldsymbol{c}^{\prime}\right) d q \ll P^{n} A(\boldsymbol{d})
$$

The integral is $\ll P^{n} \log (2|\boldsymbol{d}|)$ by (2.16, , 2.17) and the simple observation that $\left|\boldsymbol{c}^{\prime}\right| \geq|\boldsymbol{d}|^{-2}$. The required estimate for $\sigma(\boldsymbol{d}, \boldsymbol{c})$ is provided by (2.26, 2.28, 2.30) and Lemma 2 (ii) (with $\epsilon / 2$ in place of ϵ).

It remains to treat the series

$$
\sum_{q=1}^{\infty} q^{-n} S_{q}(\boldsymbol{d}, \mathbf{0}) I_{q}(\mathbf{0})
$$

Lemma 10. We have

$$
\sum_{q=1}^{\infty} q^{-n} S_{q}(\boldsymbol{d}, \mathbf{0}) I_{q}(\boldsymbol{d}, \mathbf{0})=e_{n} \sigma(\boldsymbol{d}, \mathbf{0}) \sigma_{\infty}(F, w) P^{n} \log P+O\left(P^{n} A(\boldsymbol{d})\right)
$$

Proof. To begin with,

$$
\begin{align*}
& \sum_{q \leq P^{1-\epsilon}} q^{-n} S_{q}(\boldsymbol{d}, \mathbf{0}) I_{q}(\mathbf{0}) \tag{4.5}\\
& \quad=\sum_{q \leq P^{1-\epsilon}} q^{-n} S_{q}(\boldsymbol{d}, \mathbf{0}) P^{n} \sigma_{\infty}(F, w)+O_{N}\left(\pi_{\boldsymbol{d}}^{2} P^{n+(1-\epsilon) / 2} P^{-\epsilon N}\right)
\end{align*}
$$

(from (2.14) and 2.20)

$$
=e_{n} \sigma(\boldsymbol{d}, \mathbf{0}) \sigma_{\infty}(F, w) P^{n} \log P^{1-\epsilon}+O\left(P^{n} A(\boldsymbol{d})\right)
$$

by Lemma 5 together with an appropriate choice of N.
For the range $q>P^{1-\epsilon}$, we use 4.4. Crudely,

$$
\begin{align*}
& \sum_{q>P^{1-\epsilon}} q^{-n} S_{q}(\boldsymbol{d}, \mathbf{0}) I_{q}\left(\boldsymbol{c}^{\prime}\right) \tag{4.6}\\
& \quad=e_{n} \sigma(\boldsymbol{d}, \mathbf{0}) \int_{P^{1-\epsilon}}^{\infty} q^{-1} I_{q}(\mathbf{0}) d q+O\left(\pi_{d}^{3+\epsilon} P^{n / 2+1+2 \epsilon}\right)
\end{align*}
$$

Combining 4.5), 4.6, and substituting $I_{q}(\mathbf{0})=P^{n} I_{r}^{*}(\mathbf{0})$, where $r=q / P$, we obtain

$$
\begin{align*}
& \sum_{q=1}^{\infty} q^{-n} S_{q}(\boldsymbol{d}, \mathbf{0}) I_{q}(\mathbf{0})=e_{n} \sigma(\boldsymbol{d}, \mathbf{0}) \sigma_{\infty}(F, w) P^{n} \log P \tag{4.7}\\
&+e_{n} \sigma(\boldsymbol{d}, \mathbf{0}) L\left(P^{-\epsilon}\right) P^{n}+O\left(P^{n} A(\boldsymbol{d})\right)
\end{align*}
$$

Here

$$
L(\lambda)=\sigma_{\infty}(F, w) \log \lambda+\int_{\lambda}^{\infty} r^{-1} I_{r}^{*}(\mathbf{0}) d r
$$

It is shown by Heath-Brown [4] p. 203] that $L(\lambda)$ tends to a limit $L(0)$ as λ tends to 0 , and more precisely

$$
\begin{equation*}
L(\lambda)=L(0)+O_{N}\left(\lambda^{N}\right) \tag{4.8}
\end{equation*}
$$

Recalling 2.28, 2.30 and Lemma 2 (ii), we see that 4.7) and (4.8) together yield the lemma.

Lemma 11. We have

$$
\begin{aligned}
N\left(F_{\boldsymbol{d}}, w_{\boldsymbol{d}}\right)= & e_{n} \pi_{\boldsymbol{d}}^{-2} \sigma(\boldsymbol{d}, \mathbf{0}) \sigma_{\infty}(F, w) P^{n-2} \log P \\
& +O\left(P^{n-2} \pi_{\boldsymbol{d}}^{-2} A(\boldsymbol{d}) \#\left\{\boldsymbol{c}:\left|\boldsymbol{c}^{\prime}\right| \leq|\boldsymbol{d}|^{\epsilon}, \eta(\boldsymbol{d}, \boldsymbol{c}) \neq 0\right\}\right)
\end{aligned}
$$

Proof. Combining Lemmas 8,9 and 10 , and noting that $\mathbf{0}$ is counted in $\left\{\boldsymbol{c}:\left|\boldsymbol{c}^{\prime}\right| \leq|\boldsymbol{d}|^{\epsilon}\right.$, $\eta(\boldsymbol{d}, \boldsymbol{c}) \neq 0\}$,

$$
\begin{aligned}
& \sum_{\boldsymbol{c} \in \mathbb{Z}^{n}} \sum_{q=1}^{\infty} q^{-n} S_{q}(\boldsymbol{d}, \boldsymbol{c}) I_{q}\left(\boldsymbol{d}, \boldsymbol{c}^{\prime}\right) \\
&= e_{n} \sigma(\boldsymbol{d}, \mathbf{0}) \sigma_{\infty}(F, w) P^{n} \log P \\
& \quad+O\left(P^{n} A(\boldsymbol{d}) \#\left\{\boldsymbol{c}:\left|\boldsymbol{c}^{\prime}\right| \leq|\boldsymbol{d}|^{\epsilon}, \eta(\boldsymbol{d}, \boldsymbol{c}) \neq \mathbf{0}\right\}\right)
\end{aligned}
$$

The lemma now follows easily on combining this with (1.5) and (1.3).

5. Completion of the proof of Theorems 1 and 2 ,

Lemma 12. Suppose that F is nonsingular $(n=4)$ and robust $(n=3)$. In the notation of (1.7), we have

$$
S_{1}\left(P^{\epsilon}\right) \ll P^{n}
$$

Proof. In view of (1.9), it suffices to show that

$$
\begin{equation*}
N\left(F_{p}, w_{p}\right) \ll P^{n+\epsilon / 2} p^{-2} . \tag{5.1}
\end{equation*}
$$

This is a consequence of [1], Proposition 1] for $n=4$. The proof of that proposition can be adapted slightly to give (5.1) for $n=3$. By following the argument on [1] pp. 107-8], we see that it suffices to show for $1 \leq h \leq P$ that the equation

$$
c x_{1}^{2}+z_{1}^{2}+A_{2} z_{2}^{2}=0
$$

has $O\left(P^{1+\epsilon / 2} h^{-1}\right)$ solutions with

$$
\left|\left(x, z_{1}, z_{2}\right)\right| \ll P, \quad x_{1} \neq 0, \quad x_{1} \equiv 0 \quad(\bmod h) .
$$

Here c, A_{2} are nonzero integers, since the quadratic form $c x_{1}^{2}+z_{1}^{2}+A_{2} z_{2}^{2}$ is obtained from F by a nonsingular linear change of variables. There are $O\left(P h^{-1}\right)$ choices for x_{1}. For each of these, there are $O\left(P^{\epsilon / 2}\right)$ possible $\left(z_{1}, z_{2}\right)$ [1] Lemma 1]. This completes the proof of the lemma.

Lemma 13. Let F be nonsingular. Let

$$
B(q)=\sum_{\boldsymbol{d} \mid q} \frac{\mu(\boldsymbol{d})}{\pi_{\boldsymbol{d}}^{2}} S_{q}(\boldsymbol{d}, \mathbf{0})
$$

Then
(i) $B(q)$ is a multiplicative function.
(ii) $\sum_{t \mid Q(z)} \frac{\mu(\boldsymbol{t})}{\pi_{t}^{2}} S_{q}(\boldsymbol{t}, \mathbf{0})=B(q) \prod_{\substack{p<z \\ p \nmid q}}\left(1-p^{-2}\right)^{n}$.
(iii) For all primes p,

$$
1+\left(1-p^{-2}\right)^{-n} \sum_{u=1}^{\infty} p^{-n u} B\left(p^{u}\right)=\left(1-p^{-2}\right)^{-n} \rho_{p}
$$

Proof. (i) This is a special case of [1, Lemma 17].
(ii) This is a variant of [1, Lemma 16]. The sum over \boldsymbol{t} is unrestricted in [1].
(iii) This is obtained by letting N tend to infinity in the expression

$$
1+\left(1-p^{-2}\right)^{-n} \sum_{u=1}^{N} p^{-n u} B\left(p^{u}\right)=\left(1-p^{-2}\right)^{-n} p^{-(n-1) N} M_{N}
$$

where

$$
M_{N}=\#\left\{\boldsymbol{x} \quad\left(\bmod p^{N}\right): F(\boldsymbol{x}) \equiv 0 \quad\left(\bmod p^{N}\right), p^{2} \nmid x_{1}, \ldots, p^{2} \nmid x_{n}\right\},
$$

which is (5.9) of [1]. Convergence is a consequence of Lemma 3
Lemma 14. Let F be nonsingular $(n=4)$ and robust $(n=3)$. We have

$$
\begin{equation*}
\sum_{\boldsymbol{d} \mid Q(z)} \frac{\mu(\boldsymbol{d})}{\pi_{\boldsymbol{d}}^{2}} \sigma(\boldsymbol{d}, \mathbf{0})=\rho^{*}(F)+O\left((\log \log P)^{-e_{n}}\right) \tag{5.2}
\end{equation*}
$$

Proof. Let

$$
V(w)=\prod_{p<w}\left(1-\frac{1}{p}\right) .
$$

The left-hand side of 5.2) is $\lim _{w \rightarrow \infty} h(w)$, where

$$
\begin{aligned}
h(w) & =\sum_{\boldsymbol{d} \mid Q(z)} \frac{\mu(\boldsymbol{d})}{\pi_{\boldsymbol{d}}^{2}} \prod_{p<w}\left(1-\frac{1}{p}\right) \sum_{u=0}^{\infty} \frac{S_{p^{u}}(\boldsymbol{d}, \mathbf{0})}{p^{n u}} \\
& =V(w) \sum_{\substack{q=1 \\
p \mid q \Rightarrow p<w}}^{\infty} q^{-n} \sum_{\boldsymbol{d} \mid Q(z)} \frac{\mu(\boldsymbol{d})}{\pi_{\boldsymbol{d}}^{2}} S_{q}(\boldsymbol{d}, \mathbf{0})
\end{aligned}
$$

(after a simple manipulation). By Lemma 13 (ii),

$$
\begin{aligned}
h(w) & =V(w) \sum_{q=1}^{\infty} q^{-n} B(q) \prod_{\substack{p_{1}<z \\
p_{1} \nmid q}}\left(1-p_{1}^{-2}\right)^{n} \\
& =V(w) \prod_{p_{1}<z}\left(1-p_{1}^{-2}\right)^{n} \sum_{\substack{q=1 \\
p \mid q \Rightarrow p<w}}^{\infty} C(q) .
\end{aligned}
$$

Here

$$
C(q)=q^{-n} B(q) \prod_{\substack{p_{1}<z \\ p_{1} \mid q}}\left(1-p_{1}^{-2}\right)^{-n}
$$

is multiplicative by Lemma 13 (i), and so

$$
\begin{aligned}
h(w) & =V(w) \prod_{p<z}\left(1-p_{1}^{-2}\right)^{n} \prod_{p<w}\left(1+C(p)+C\left(p^{2}\right)+\cdots\right) \\
& =\prod_{p_{1}<z}\left(1-p_{1}^{-2}\right)^{n} \prod_{p<w}\left(1-\frac{1}{p}\right)\left(1+a_{p}(z) \sum_{u=1}^{\infty} \frac{B\left(p^{u}\right)}{p^{n u}}\right) .
\end{aligned}
$$

Here

$$
a_{p}(z)= \begin{cases}\left(1-p^{-2}\right)^{-n} & \text { if } p<z \\ 1 & \text { if } p \geq z\end{cases}
$$

Letting w tend to infinity, the left-hand side of 5.2 is

$$
\begin{equation*}
\prod_{p<z}\left(1-\frac{1}{p}\right) \rho_{p} \prod_{p \geq z}\left(1-\frac{1}{p}\right)\left(1+\sum_{u=1}^{\infty} \frac{B\left(p^{u}\right)}{p^{n u}}\right) \tag{5.3}
\end{equation*}
$$

by Lemma 13 (iii). This is clearly close to $\rho^{*}(F)$ for large z. More precisely,

$$
\begin{aligned}
\left(1-\frac{1}{p}\right) \rho_{p}= & \left(1-\frac{1}{p}\right)\left(\left(1-p^{-2}\right)^{-n}+\sum_{u=1}^{\infty} p^{-n u} S_{p^{u}}(\mathbf{0})\right. \\
& \left.+\sum_{\substack{\boldsymbol{d} \mid p \\
\pi_{d}>1}} \frac{\mu(\boldsymbol{d})}{\pi_{\boldsymbol{d}}^{2}} \sum_{u \geq 1} \frac{S_{p^{u}}(\boldsymbol{d}, \mathbf{0})}{p^{n u}}\right) \\
= & \left(1-\frac{1}{p}\right)\left(1+\sum_{u=1}^{\infty} p^{-n u} S_{p^{u}}(\mathbf{0})+O\left(p^{-\left(1+c_{n}\right)}\right)\right.
\end{aligned}
$$

by Lemma 3 Now for $p \nmid 2 D$,

$$
\left(1-\frac{1}{p}\right)\left(1+\sum_{u=1}^{\infty} p^{-n u} S_{p^{u}}(\mathbf{0})\right)= \begin{cases}1+O\left(p^{-2}\right) & (n=4) \\ 1+O\left(p^{-3 / 2}\right) & (n=3)\end{cases}
$$

as shown by Heath-Brown on p. 195 of [4]; one takes

$$
\delta= \begin{cases}\frac{1}{6} & (n=3) \\ \frac{1}{2} & (n=4)\end{cases}
$$

in his argument. We obtain

$$
\begin{equation*}
\left(1-\frac{1}{p}\right) \rho_{p}=1+O\left(p^{-\left(1+e_{n}\right)}\right) \tag{5.4}
\end{equation*}
$$

Essentially the same argument shows that

$$
\begin{equation*}
\left(1-\frac{1}{p}\right)\left(1+\sum_{u=1}^{\infty} \frac{B\left(p^{u}\right)}{p^{n u}}\right)=1+O\left(p^{-\left(1+e_{n}\right)}\right) \tag{5.5}
\end{equation*}
$$

It is now an easy matter to deduce from (5.4) and (5.5) that the expression in 5.3 is

$$
\prod_{p}\left(1-\frac{1}{p}\right) \rho_{p}+O\left(z^{-e_{n}}\right)
$$

as required.

Proof of Proposition 1 Part (a) is a straightforward consequence of (5.4). For part (b), we may repeat verbatim the proof that $\rho_{p}>0$ for all p in [1, pp. 130-131].

Proof of Proposition 2. We need only show that

$$
\left(1-\frac{1}{p}\right) \rho_{p}=1-\frac{k}{p}+O\left(\frac{1}{p^{3 / 2}}\right)
$$

where k is the number of $j, 1 \leq j \leq 3$, for which $\operatorname{det} M_{j}=0$. Arguing as in the preceding proof, this reduces to showing that

$$
\begin{equation*}
\sum_{\substack{\boldsymbol{d} \mid p \\ \pi_{d}>1}} \frac{\mu(\boldsymbol{d})}{\pi_{\boldsymbol{d}}^{2}} \sum_{u \geq 1} \frac{S_{p^{u}}(\boldsymbol{d}, \mathbf{0})}{p^{3 u}}=-\frac{k}{p}+O\left(\frac{1}{p^{3 / 2}}\right) \tag{5.6}
\end{equation*}
$$

Using unchanged the part of the proof of Lemma3 with $\pi_{d} \geq p^{2}$, we find that these terms contribute $O\left(p^{-3 / 2}\right)$ to the left-hand side of 5.6. A familiar argument also gives, for $\pi_{d}=p$,

$$
\begin{aligned}
\sum_{u \neq 2} \frac{S_{p}(\boldsymbol{d}, \mathbf{0})}{p^{3 u}} \ll & p^{-1 / 2}\left(d_{1}, p\right)\left(d_{2}, p\right)\left(d_{3}, p\right) \\
& +p^{-3 / 2}\left(d_{1}, p^{2}\right)\left(d_{2}, p^{2}\right)\left(d_{3}, p^{2}\right) \ll p^{1 / 2}
\end{aligned}
$$

so that terms with $\pi_{d}=p, u \neq 2$ also contribute $O\left(p^{-3 / 2}\right)$.
Write $\boldsymbol{d}^{(1)}=(p, 1,1), \boldsymbol{d}^{(2)}=(1, p, 1), \boldsymbol{d}^{(3)}=(1,1, p)$ It remains to show that

$$
\frac{S_{p^{2}}\left(\boldsymbol{d}^{(j)}, \boldsymbol{0}\right)}{p^{6}}= \begin{cases}p+O\left(p^{1 / 2}\right) & \text { if } \operatorname{det} M_{j}=0 \tag{5.7}\\ O(1) & \text { if } \operatorname{det} M_{j} \neq 0\end{cases}
$$

The case $\operatorname{det} M_{j} \neq 0$ of (5.7) is essentially the same as the case $n=3, p \mid t_{1}$ of the proof of Lemma 2 (ii). Now suppose $\operatorname{det} M_{j}=0$. Since M_{j} has rank at least 1, its rank is 1 . Taking $j=1$ for simplicity of writing,

$$
\left[\begin{array}{ll}
x_{2} & x_{3}
\end{array}\right] M_{j}\left[\begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right]=\frac{r}{s}\left(b x_{2}+c x_{3}\right)^{2}
$$

with integers $r, s, b, c, r s \neq 0,(b, c) \neq \mathbf{0}$. For $p \nmid s, s \bar{s} \equiv 1\left(\bmod p^{2}\right)$,

$$
F\left(p^{2} x_{1}, x_{2}, x_{3}\right) \equiv r \bar{s}\left(b x_{2}+c x_{3}\right)^{2} \quad\left(\bmod p^{2}\right) .
$$

Hence

$$
\begin{aligned}
S_{p^{2}}\left(\boldsymbol{d}^{(j)}, \mathbf{0}\right) & =p^{2} \sum_{a=1}^{p^{2}} \sum_{x_{2}=1}^{p^{2}} \sum_{x_{3}=1}^{p^{2}} e_{p^{2}}\left(\operatorname{ar} \bar{s}\left(b x_{2}+c x_{3}\right)^{2}\right) \\
& =p^{4} \sum_{a=1}^{p^{2}} \sum_{y=1}^{p^{2}} e_{p}\left(a y^{2}\right) \quad \text { if } p \nmid r s(\operatorname{gcd}(b, c)),
\end{aligned}
$$

since $b x_{2}+c x_{3}$ takes each value $\left(\bmod p^{2}\right)$ exactly p^{2} times. The last expression is evaluated in [4, Lemma 27] as

$$
p^{4} \cdot p^{2}(p-1)=p^{7}-p^{6},
$$

and the proof of the proposition is complete.
Lemma 15. Let F be nonsingular $(n=4)$ or robust $(n=3)$. Then

$$
\begin{align*}
& \sum_{d \backslash Q(z)} \mu(\boldsymbol{d}) N\left(F_{\boldsymbol{d}}, w_{\boldsymbol{d}}\right)=e_{n} \sigma_{\infty}(F, w) \rho^{*}(F) P^{n-2} \log P \tag{5.8}\\
&+O\left(P^{n-2} \log P(\log \log P)^{-e_{n}}\right)
\end{align*}
$$

Proof. From Lemma 11, the left-hand side of (5.8) is

$$
\begin{align*}
& e_{n} \sigma_{\infty}(F, w) P^{n-2} \log P \sum_{d \mid Q(z)} \frac{\mu(\boldsymbol{d}) \sigma(\boldsymbol{d}, \mathbf{0})}{\pi_{\boldsymbol{d}}^{2}} \tag{5.9}\\
&+O\left(P^{n-2} \sum_{\boldsymbol{d} \mid Q(z)} \pi_{\boldsymbol{d}}^{-2} A(\boldsymbol{d}) \#\left\{\boldsymbol{c}:\left|\boldsymbol{c}^{\prime}\right| \leq|\boldsymbol{d}|^{\epsilon}\right\}\right)
\end{align*}
$$

The O-term is

$$
\ll P^{n-2} \sum_{\boldsymbol{d} \mid Q(z)} \pi_{d}^{-2+4 / 3+2+\epsilon}|\boldsymbol{d}|^{5 \epsilon}
$$

since $A(\boldsymbol{d})=O\left(\pi_{\boldsymbol{d}}^{4 / 3+5 \epsilon}\right)$. Moreover, for given k,

$$
\begin{aligned}
\sum_{\boldsymbol{d} \mid Q(z)} \pi_{\boldsymbol{d}}^{k} & \ll \#\{\boldsymbol{d}: \boldsymbol{d} \mid Q(z)\} Q(z)^{4 k} \\
& \ll Q(z)^{4 k+\epsilon} \ll e^{z(4 k+2 \epsilon)}
\end{aligned}
$$

The O-term in 5.9 is thus

$$
\ll P^{n-2} e^{6 z}=P^{n-2}(\log P)^{6 / 7}
$$

The lemma now follows on applying Lemma 14 to the first sum over \boldsymbol{d} in (5.9).
Lemma 16. Under the hypothesis of Theorem 1] or Theorem 2, we have

$$
\sum_{z \leq p<P^{\epsilon}} N\left(F_{p}, w_{p}\right)=O\left(P^{n-2} \log P(\log \log P)^{-1+8 \epsilon}\right)
$$

Proof. By Lemma 11 ,

$$
\begin{align*}
N\left(F_{p}, w_{p}\right)= & e_{n} p^{-2} \sigma\left(\boldsymbol{d}_{p}, 0\right) \sigma_{\infty}(F, w) P^{n-2} \log P \tag{5.10}\\
& +O\left(P^{n-2} p^{-2+5 \epsilon} N_{p}\right)
\end{align*}
$$

Here N_{p} is the number of \boldsymbol{c} in the box

$$
\mathcal{B}:\left|c_{1}\right| \leq p^{2+\epsilon},\left|c_{j}\right| \leq p^{\epsilon} \quad(2 \leq j \leq n)
$$

for which either

$$
\begin{equation*}
\operatorname{det}\left(M_{\boldsymbol{d}(p)}\right) M_{\boldsymbol{d}(p)}^{-1}(\boldsymbol{c})=0 \tag{5.11}
\end{equation*}
$$

or $n=3$ and

$$
\begin{equation*}
\operatorname{det}\left(M_{\boldsymbol{d}(p)}\right) M_{\boldsymbol{d}(p)}^{-1}(\boldsymbol{c})=-q^{2} \tag{5.12}
\end{equation*}
$$

for a nonzero integer q.
Recalling 2.18, 2.19), we find that

$$
\operatorname{det}\left(M_{\boldsymbol{d}(p)}\right) M_{\boldsymbol{d}(p)}^{-1}(\boldsymbol{c})=b_{11} c_{1}^{2}+2 p^{2} \sum_{j=2}^{n} b_{1 j} c_{1} c_{j}+p^{4} \sum_{i, j=2}^{n} b_{i j} c_{i} c_{j}
$$

with

$$
b_{11}=\operatorname{det}\left(M_{1}\right) \neq 0 .
$$

We see at once that (5.11) holds for only $O\left(p^{3 \epsilon}\right)$ points \boldsymbol{c} in \mathcal{B}, since c_{2}, \ldots, c_{n} determine c_{1} to within two choices.

If (5.12) holds, then

$$
\begin{align*}
0 & =b_{11} \operatorname{det} M_{\boldsymbol{d}(p)} M_{\boldsymbol{d}(p)}^{-1}(\boldsymbol{c})+b_{11} q^{2} \tag{5.13}\\
& =\left(b_{11} c_{1}+p^{2} \sum_{j=2}^{n} b_{1 j} c_{j}\right)^{2}-p^{4} \ell+b_{11} q^{2}
\end{align*}
$$

where

$$
\ell=\left(\sum_{j=2}^{n} b_{1 j} c_{j}\right)^{2}-\sum_{i, j=2}^{n} b_{i j} c_{i} c_{j}
$$

If $\ell=0$, then $-b_{11}$ is a nonzero square from (5.13), in contradiction to the hypothesis of Theorem 2 We conclude that the aid of [1, Lemma 1] that for given c_{2}, c_{3}, 5.12] determines c_{1} to within $O\left(p^{\epsilon}\right)$ possibilities. Thus in all cases,

$$
N_{p}=O\left(p^{3 \epsilon}\right) .
$$

We use this estimate together with 2.28 , 2.30) and Lemma 2 (ii) to deduce from 5.10 that

$$
N\left(F_{p}, w_{p}\right)=O\left(P^{n-2}(\log P) p^{-2+8 \epsilon}\right)
$$

The lemma now follows.
We are now ready to complete the proofs of Theorems 1 and 2 . From (1.6, (1.8),

$$
\left|R(F, w)-\sum_{\boldsymbol{d} \mid Q(z)} \mu(\boldsymbol{d}) N\left(F_{\boldsymbol{d}}, w_{\boldsymbol{d}}\right)\right| \leq n \max _{j} S_{j}(z) \leq n \sum_{p \geq z} N\left(F_{p}, w_{p}\right)
$$

after a possible renumbering of the variables. Thus

$$
R(F, w)=\sum_{d \mid Q(z)} \mu(\boldsymbol{d}) N\left(F_{\boldsymbol{d}}, w_{\boldsymbol{d}}\right)+O\left(P^{n-2}(\log P)(\log \log P)^{-1+8 \epsilon}\right)
$$

(from Lemmas 12 and 16)

$$
=e_{n} \sigma_{\infty}(F, w) \rho^{*}(F) P^{n-2} \log P+O\left(P^{n-2}(\log P)(\log \log P)^{-g_{n}}\right)
$$

from Lemma 15 Here

$$
g_{n}= \begin{cases}1-8 \epsilon & (n=3) \\ 1 / 2 & (n=4)\end{cases}
$$

Since ϵ is arbitrary, this completes the proof.

References

[1] R. C. Baker, The values of a quadratic form at square-free points, Acta Arith. 124 (2006), 101-137.
[2] V. Blomer, Ternary quadratic forms, and sums of three squares with restricted variables, Anatomy of Integers, 1-17, Amer. Math. Soc., 2008.
[3] D. R. Heath-Brown, Hybrid bounds for Dirichlet L- functions, Invent. Math. 47 (1978), 149-170.
[4] D. R. Heath-Brown, A new form of the circle method, and its application to quadratic forms, J. Reine Angew. Math. 481 (1996), 147-206.

Department of Mathematics
Brigham Young University
Provo, UT 84602, USA
Email: baker@math.byu.edu

[^0]: 2000 Mathematics Subject Classification. Primary 11P55; Secondary 11E20.

