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NUMBERS WITH A LARGE PRIME FACTOR II

ROGER BAKER AND GLYN HARMAN

To Klaus Roth with warmest good wishes on the occasion of his 80th birthday.

1. Introduction
Let x be a large positive number and y = x1/2. Even if we assume the Riemann
hypothesis, it appears to be hopelessly difficult to show that there is a prime number p
in the interval I = (x, x+ y]. One approach is to assume that there are Siegel zeros. By
making a precise hypothesis of this nature, Friedlander and Iwaniec [3] show that there
are primes in intervals [x, x+ x39/79] for long ranges of x.
Ramachandra [13] suggested the problem of showing that there is a number n in I

having a large prime factor p with p > xφ. This is an “approximation” to the original
question. Here of course φ is to be made as large as possible. Increasing values of φ
for which such a p can be shown to exist have been provided by Ramachandra [13, 14],
Graham [4], Baker [1], Jia [7, 8, 9, 10], Liu [11], Baker and Harman [2], Liu and Wu [12]
and Harman [6].
In Harman’s book, the value of φ is 0.74, and it is noted that recent work on expo-

nential sums due to Wu [17] and Robert and Sargos [16] give room for further progress.
In this chapter, we pursue this programme, and prove the following result. We write
P (n) for the largest prime factor of a natural number n, and Q(n) for the smallest prime
factor of n, with Q(1) = 1.

Theorem. For all sufficiently large x, there are integers n in the interval I with

P (n) > x0.7428.

We shall quote liberally from earlier works on the subject, especially [2, 12, 6]. Let ε
be a positive number, which we suppose is sufficiently small. Let

N(d) =
∑
n∈I
d|n

1,

L = log x, U = x3/5−ε and φ = 0.7428. Then (see [6, Section 6.2])∑
d<x

Λ(d)N(d) =
∑
n∈I
(log n − Λ(n)) = yL+O(y),

∑
d�U

Λ(d)N(d) =
(
3
5

− ε

)
yL+O(y),

and ∑
U<d<x

d not prime

Λ(d)N(d) = O(y).
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It suffices for the proof of our theorem to show that∑
U<p�xφ

(log p)N(p) <
(
2
5
+

ε

2

)
yL. (1.1)

For then the above inequalities yield the existence of p > xφ with N(p) = 1. Obviously
N(n) = 0 or 1 for n > y.
Thus we have reduced the question to an upper bound sieve problem. Let v ∈ [U, x3/4].

Define θ by v = xθ and let K = (v, ev], A = {n:n ∈ K, N(n) = 1} and B = {n:n ∈ K}.
Thus A is our set to be sieved, and B is a “comparison set”.
For a finite set E of natural numbers, we write Ed = {n: dn ∈ E} and let |E| denote

the cardinality of E . We shall be concerned with the quantity
S(Ad, z) = |{n ∈ Ad:Q(n) � z}|

and its averages over d. In particular, S(θ) = S(A, (ev)1/2) is the number of primes
in A. It is not hard to see (compare, e.g. [1]) that (1.1) follows from the bound∫ φ

0.6−ε
θS(θ) dθ <

2yL
5

, (1.2)

which we shall establish in the following sections.
We close this section with a few remarks on notation. Throughout the chapter, we

suppose that x > C(ε). We write η = exp(−3/ε) and J = [vy−1x4η]. The quantity δ
denotes Cη, where C is an absolute constant, not necessarily the same at each occurrence.
Constants implied by �, � and Oε( ) depend at most on ε. Constants implied by O( )
are absolute. The notation Y  Z means Y � Z � Y , and m ∼ M stands for
M < m � 2M . We reserve �, m and n for natural number variables and p, q, r, s, t
and u, possibly with suffices, for prime variables. Finally, let ψ(α) = α − [α]− 1/2.

2. The Arithmetical Information
Our first lemma concerns the “type I” sums SI associated to the problem,

SI =
∑
h∼H

∑
n∼N

∑
m∼M

v<mn�ev

bn e

(
hx

mn

)
.

Lemma 1. Suppose that 3/5 � θ < 3/4− ε, 1/2 � H � J and |bn| � 1. Then

SI � vx−6η (2.1)

provided that either
N � x2/5−ε, (2.2)

or
v6x−13/4+ε � N � x1/2−ε. (2.3)

Proof. For the case (2.2), see [12, Corollary 2 of Theorem 2]. The condition v < mn � ev
can be removed at the cost of a logarithmic factor; for more details see [6, Section 3.2],
for example.
For the case (2.3), we apply Wu [17, Theorem 2], which is essentially an abstraction

of a result of Rivat and Sargos [15].
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Again, the condition v < mn � ev can be removed at the cost of a logarithmic
factor; this is done in [15], and the extra details can readily be incorporated into [17].
In the notation of [17], take k = 4, α = γ = −1, β = 1, and replace (H,M,N,X) by
(N,H,M,Hxv−1). We then have the bound

SIx
−η � ((Hxv−1)16N52H68M60)1/80 + ((Hxv−1)N2H2M4)1/4

+NH +N(HM)1/2 +N1/2HM +X−1/2HMN.

Thus we have to verify that

(Hxv−1)16N52H68M60 � v80x−δ, (2.4)

H(xv−1)N2H2M4 � v4x−δ, (2.5)

NH � vx−δ, (2.6)

N(HM)1/2 � vx−δ, (2.7)

and

X−1/2HMN � xv−δ. (2.8)

The left-hand side of (2.4) is � xδ+8v68x−34v60N−8 � v80x−δ from (2.3). The left-
hand side of (2.5) is � xδ+1/2v6x−1N−2 � v4x−δ likewise. The left-hand side of (2.6)
is � vx−δ since N < x1/2−ε. The left-hand side of (2.7) is � N1/2(vx−1/2)1/2v1/2xδ �
vx−δ likewise. Finally, the left-hand side of (2.8) is � H1/2x−1/2+δv3/2 � xδ−3/4v2 �
vx−δ since θ < 3/4− ε. This completes the proof. �

In order to state our results for type II sums

SII =
∑
h∼H

∑
n∼N

∑
m∼M

v<mn�ev

ambn e

(
hx

mn

)
,

we introduce some notation that is adapted from [12, 6]. We define φj by the following
table:

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9

a

b

3
5

11
18

35
54

2
3

90
131

226
323

547
771

23
32

1857
2500

≈ 0.6 0.6111 0.6481 0.6667 0.687 0.6997 0.7095 0.7188 0.7428

In the above ≈ gives the decimal to four significant figures. Put Jj = [φj , φj+1). We
then write J (θ) = [θ − 1/2 + ε, τ(θ)− ε], where τ(θ) is given by the next table:

Interval J1 J2 J3 J4 J5 J6 J7

τ(θ) 2− 3θ 1
6

9θ − 3
17

12θ − 5
17

55θ − 25
17

59θ − 28
66

245θ − 119
261

It is convenient to write K(θ) = [2θ − 1 + ε, 3/2− 2θ − ε] for θ < 5/8− ε.
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Lemma 2. Suppose that φ1 � θ � φ8. Then for |am| � 1, |bn| � 1, 1/2 � H � J , we
have SII � vx−6η, provided that either

xθ−1/2+ε � M � xτ(θ)−ε, (2.9)

or
θ < 5/8− ε and x2θ−1+ε � M � x3/2−2θ−ε. (2.10)

Proof. Again, we may remove the condition v < mn � ev at the cost of a logarithmic
factor. The case (2.9) is covered in [1], with θ ∈ J1, and [12]. For the case (2.10), we
appeal to Robert and Sargos [16, Theorem 1], with X = Hxv−1. We obtain

SIIx
−η � HNM

((
X

NHM2

)1/4
+

1
(HN)1/4

+
1

M1/2 +
1

X1/2

)
.

We already dealt with the last term. Next,

HNM

(
X

HNM2

)1/4
� v2x−1/2+δ

( x

v2M

)1/4
= v3/2x−1/4+δM−1/4 � vx−δ

from (2.10). And, HNM(HN)−1/4 � H3/4v3/4M1/4 � v3/2x−3/8+δM1/4 � vx−δ

from (2.10). Finally, HNM1/2 � v2x−1/2+δM−1/2 � vx−δ from (2.10). �

The key consequence of Lemma 2 is that (2.9) or (2.10) implies∑
m∼M

∑
n∼N

v<mn�ev

ambn

(
ψ

(
x+ y

mn

)
− ψ

( x

mn

))
� yx−5η

and consequently ∑
m∼M

∑
n∼N

mn∈A

ambn = y
∑
m∼M

∑
n∼N

mn∈B

ambn
mn

+O(yx−5η);

compare [2, 6]. Similarly for Lemma 1.

3. The Alternative Sieve: Initial Stage
The sieve introduced in [5], and discussed at length in [6], was designated the
“alternative sieve” in [2] – it is an alternative to the Rosser–Iwaniec sieve. In the
present context, we write

S(Bm, λ) = y
∑
mn∈B
Q(n)�λ

1
mn

,

and compare this quantity with S(Am, u). We can regard S(Bm, u) as “known”.

Lemma 3. We have

S(Bm, λ) = ω

(
log v/m
log λ

)
y

m log λ
(1 +Oε(L−1))

for m � v1−η and xε � λ � v/m. Here ω(u) is Buchstab’s function.

Proof. This is a slight variant of [2, Lemma 8]. �
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Under the conditions of Lemma 1,∑
n∼N

bn|An| = y
∑
n∼N

bn
n
+Oε(yx−5η) (3.1)

(compare [2, Lemma 9]), and one can easily deduce that∑
n∼N

∑
d<xε

p|d⇒p<xη

bn

∣∣∣|And| − y

nd

∣∣∣ = Oε(yx−4η),

provided that either
N � x2/5−2ε (3.2)

or
v6x−13/4+ε � N � x1/2−2ε. (3.3)

Of course, if v < x73/120−ε, then v6x−13/4+ε < x2/5−2ε, so that (3.1) holds whenever

θ < 73/120− ε and N � x1/2−2ε. (3.4)

Arguing just as in [2, Lemma 10], we now obtain

Lemma 4. Suppose that one of (3.2), (3.3) or (3.4) holds. For every n ∼ N , let
0 � an � 1, and an = 0 unless Q(n) � xη. Then

∑
n∼N

anS(An, xη) =
∑
n∼N

anS(Bn, xη)
(
1 +O

(
exp
(

− ε

η
log

ε

η

)))
+Oε(yx−4η).

Here, and in succeeding lemmas, it is possible to attain a sharper error term on the
right-hand side by following the arguments in [6, Chapter 3]. Since this would not
improve our final result, we keep the exposition close to that of [2].
The other structural component of the alternative sieve, in the present application,

is

Lemma 5. Let φ1 � θ � φ8. Let h � 1 be given, and let D ⊂ {1, . . . , h}. Let
1 � M � M1, M1 � 2M , and suppose that one of the two conditions below holds:

(i) Either xθ−1/2+ε � M � xτ(θ)−ε or xθ−τ(θ)+ε � M � x1/2−ε.
(ii) θ < 5/8−ε; and either x2θ−1+ε � M � x3/2−2θ−ε or x3θ−3/2+ε � M � x1−θ−ε.

Then ∑
p1

· · ·
∑∗

ph

S(Ap1...ph
, p1) =

∑
p1

· · ·
∑∗

ph

S(Bp1...ph
) +O(yx−4η).

Here ∗ in the summation indicates that p1, . . . , ph satisfy xη � p1 < · · · < ph and
M �

∏
j∈D pj < M1, together with no more than ε−1 further conditions of the form

R �
∏
j∈F

pj � S. (3.5)

Proof. This is proved in exactly the same way as [2, Lemma 12], using Lemma 2 of this
chapter in place of [2, Lemma 11]. �
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It is convenient to write, for φ1 � θ � φ8, a = vx−1/2−ε and b = xτ(θ)−ε, and for
φ1 � θ < 5/8− ε, c = v2x−1+ε and d = x3/2−2θ−ε. We also write w = b/a and w′ = d/c.
Note that w′ = w for θ � 11/18, while w′ < w for 11/18 < θ � 5/8− ε.
Let E = E(x, ε) be some function of x and ε, with 0 < E(x, ε) � ε. We can now write

down some general conditions under which we have∑
m

amS(Am, z) =
∑
m

amS(Bm, z)(1 +O(E)) (3.6)

for xη � z � w; and some further conditions under which we have (3.6) for the range
xη � z � w′. When (3.6) holds, we say for brevity that

∑
m amS(Am, z) has an

asymptotic formula with error E.
Let us write

γ =
{
1/2− 2ε if φ1 � θ < 73/120− ε,
2/5− 2ε if 73/120− ε � θ � φ8.

Lemma 6. Let φ1 � θ � φ8. Let 1/2 � M � a, 1/2 � N � xγa−1, M � M1 � 2M ,
N � N1 � 2N and xη < z � w. Suppose that {1, . . . , h} partitions into two sets C
and D. Then ∑

p1

· · ·
∑∗

ph

S(Ap1...ph
, w)

has an asymptotic formula with error ε. Here ∗ in the summation indicates that p1, · · · , ph
satisfy z � p1 < · · · < ph, M �

∏
j∈C pj < M1 and N �

∏
j∈D pj < N1, together with

no more than ε−1 further conditions of the form (3.5).

Proof. This is proved in exactly the same way as [2, Lemma 13], using Lemma 4 of this
chapter in place of [2, Lemma 10]. �

Let g = v6x−13/4+ε and φ1 � θ < 37/60. The significance of the number 37/60 is
that g < v/b holds for θ < 37/60.

Lemma 7. Let φ1 � θ � 5/8− ε. Let P1 � xη, . . . , Ph � xη, and suppose either that

P1 . . . Ph � v

d
, xη � z � w′, (3.7)

or that θ < 37/60 and

g � P1 · · ·Ph � v

b
, xη � z � w, (3.8)

where the condition P1 . . . Ph � g can be deleted in (3.8) if θ < 73/120− ε. Then∑
p1∼P1

. . .
∑
ph∼Ph

S(Ap1...ph
, z) (3.9)

has an asymptotic formula with error ε.

Proof. This is similar to that of [2, Lemma 13], so we shall be brief. We write∑
p

for
∑
p1∼P1

. . .
∑
ph∼Ph

,

and m = p1 · · · ph. Suppose first that (3.7) holds. By Buchstab’s identity,∑
p

S(Am, z) =
∑
p

S(Am, xη)−
∑
p

∑
xη�q1<z

S(Amq1 , q1).
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The first term on the right has an asymptotic formula with error

exp
(

− ε

η
log

ε

η

)
, (3.10)

by Lemma 4. The subsum of the second term on the right for which mq1 � v/d has
an asymptotic formula with error x−η by Lemma 5, since mq1 � (v/d)z � v/c. To
the residual sum in which mq1 < v/d, we apply Buchstab again. If we continue in this
fashion, the j-th step is the identity∑

j
=
∑
p

∑
(3.11)

S(Amq1...qj , q)

=
∑
p

∑
(3.11)

S(Amq1...qj , x
η)−

∑
p

∑
(3.12)

S(Amq1...qj+1 , qj+1)

with summation conditions

xη � qj < · · · < q1 < z, mq1 · · · qj < v

d
, (3.11)

xη � qj+1 < qj · · · q1 < z, mq1 · · · qj < v

d
. (3.12)

The first of the subtracted pair of sums has an asymptotic formula with error (3.10) by
Lemma 4, and the subsum of the second of the pair complementary to

∑
j+1 has an

asymptotic formula with error x−η, since

v

d
� mq1 · · · qj+1 <

(v
d

)
qj+1 <

(v
d

)
w =

v

c
. (3.13)

The residual sum is
∑
j+1. After Oε(1) steps the residual sum is empty, giving a dec-

omposition of
∑

p S(Am, z) into a main term and an error term. A corresponding
decomposition applies to

∑
p S(Bm, z), and just as in the proof of [2, Lemma 13], (3.9)

has an asymptotic formula with error

η−121/η exp
(

− ε

η
log

ε

η

)
< ε.

This completes the proof of the case (3.7). The case (3.8) is very similar, with v/b and
w in the roles of v/d and w′: thus (3.13) is replaced by

v

b
� mq1 · · · qj+1 <

(v
b

)
qj+1 <

(v
b

)
w =

v

a
. �

4. Assembling the Components of the Final Decomposition
For each θ, we shall in Section 5 make a “final decomposition” of S(A, (ev)1/2) and a
corresponding decomposition of S(B, (ev)1/2), using Buchstab’s identity and, in some
cases, role reversals. Let us say this takes the form

S(A, (ev)1/2) =
k∑
j=1

Sj −
�∑

j=k+1

Sj , S(B, (ev)1/2) =
k∑
j=1

S∗
j −

�∑
j=k+1

S∗
j .
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Here Sj � 0, S∗
j � 0 and for j � k and, say, k + 1 � j < t, where t � �, we have

Sj = S∗
j (1 +O(ε)). Thus we get the upper bound

S(A, (ev)1/2) �


S(B, (ev)1/2) +

�∑
j=t

S∗
j


 (1 +O(ε)).

We strive to make the “discarded sums” Sj , with t � k � �, as small as possible, thinking
of them as regions in euclidean spaces.
The first step is

S(A, (ev)1/2) = S(A, w)−
∑

w�p<(ev)1/2

S(Ap, p).

To continue the process for p ∈ I, an interval where no asymptotic formula is available
for ∑

p∈I
S(Ap, p), (4.1)

we need to give asymptotic formulae for∑
p∈I

S(Ap, w) and
∑
p∈I

∑
w�q<p

S(Apq, w∗),

where w∗ = w or w′, depending on p, q. If this cannot be done, we discard the sum
(4.1). These remarks should give context to the lemmas in the present section.

Lemma 8. Let θ � 0.65− ε and P < b2. Then∑
p∼P

S(Ap, w)

has an asymptotic formula.

Proof. See [6, Lemma 6.7]. �

Lemma 9. Let φ1 � θ � 5/8 − ε, w � Q � P � (ev)1/2, and suppose that PQ2 � v,
P,Q �∈ [a, b] ∪ [c, d] and PQ �∈ [vd−1, vc−1] ∪ [vb−1, va−1]. Suppose further that either

(i) θ < 73/120− ε; or
(ii) P � x1/2−εv−1/2.

Then ∑
p∼P

∑
q∼Q

S(Apq, w′)

has an asymptotic formula.

Proof. (i) If Q < a, we can apply Lemma 6, since P � (ev)1/2 < x1/2/a. Thus we may
suppose that Q > b. We cannot have P > d, since b2d = x11/2−8θ−3ε > vxε. Thus we
have Q � P < c. Accordingly, PQ < c2 < x1/2−ε = va−1. Hence we have PQ < vb−1,
and the result follows from Lemma 7.
(ii) We have PQ � x1−2εv−1 < v/c. Hence PQ < v/d, and we may apply Lemma 7.

�
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Lemma 10. Suppose that θ ∈ [73/120− ε, 47/75− ε], evb−2 < P < (ev)1/2, and either
P � x2/5−2εa−1, or θ < 11/18− ε and P > x2/5−2εa−1. Then∑

p∼P
S(Ap, p) �

∑
p∼P

S(Bp, p)(1 +O(ε))− S∇, (4.2)

where S∇ and ∇ are defined as follows:
(i) For P � x2/5−2εa−1, we have

S∇ =
∑
∇

S(Bpqr, r), (4.3)

where ∇ is the set of conditions

p ∼ P, w � r < q < a, q <

(
ev
p

)1/2
, r <

(
ev
pq

)1/2
,

it being understood that no combination of the variables p, q, r satisfies the req-
uirements of Lemma 5.

(ii) For θ < 11/18− ε and P > x2/5−2εa−1, we have

S∇ =
∑
∇

S(Bmqu, u), (4.4)

where ∇ is the set of conditions

mq ∼ P, w � q < a, Q(m) � q, w � u <
(ev
P

)1/2
,

it being understood that no combination of the variables m, q, u satisfies the req-
uirements of Lemma 5.

Proof. This is essentially [6, Lemma 6.8], using Lemma 5 in place of the corresponding
result in [6]. �

The role reversal used in the second part of Lemma 10 does not yield useful results
if we extend it beyond θ = φ2. We now treat a role reversal for∑

p∼P
S(Ap, p), (4.5)

where we assume that 73/120 − ε � θ < φ2 and b < P < vg−1. Besides primes q with
pq ∈ A, the above sum counts pq1q2 ∈ A with p � q1 � q2. The dependence of q1 on p
suggests we first show that

∑
p∼P

S(Ap, p) =
∑
p∼P

S(Ap, P ) +O


L−1∑

p∼P
S(Bp, p)


 .

Clearly, it suffices to show that

∑
pq1q2∈A
p∼P
q1�q2
P�q1<p

1 = O


L−1∑

p∼P
S(Bp, p)


 . (4.6)
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The left-hand side of (4.6) is

�
∑
p∼P

q2�vP−2

S(Apq2 , P ) = O


 ∑

p∼P
q2�vP−2

y

pq2L


 = O(yL−3)

from Lemma 4, since vP−1 > g. This implies (4.6).
We now proceed as in [6, Section 6.6]. The sum (4.5) is, with acceptable error,

{p� : p� ∈ A, p ∼ P, Q(�) � P} =
∑
��v/P
Q(�)�P

S(A(�), (2P )1/2),

where A(�) = {m:m ∼ P, m� ∈ A}. We rewrite the sum over � as∑
��v/P
Q(�)�P

S(A(�), w)−
∑
�

w�q<(2P )1/2

S(A(�)q, q).

The first of the subtracted pair of sums has an asymptotic formula by Lemma 7, since
v/P > g. For the second sum, we note that q < x13/8+εv−5/2 < a, since θ > 17/28. We
reverse roles again, so that∑

�
w�q<(2P )1/2

S(A(�)q, q) =
∑
mq∼P

w�q<(2P )1/2

Q(m)�q

S

(
Amq,

(ev
P

)1/2)
.

Since m � x3/4+3εv−1 < b, we can restrict attention to m < a in the last expression.
Now m is prime, since w2 > a; write m = r. Apply Buchstab once more, so that∑

rq∼P
w�q<r<a

S

(
Arq,

(ev
P

)1/2)
=

∑
rq∼P

w�q<r<a

S(Arq, w)−
∑
rq∼P

w�q<r<a
w�u<(ev/P )1/2

S(Arqu, u).

The first sum on the right-hand side satisfies the requirements of Lemma 6. We discard
those parts of the second sum for which we cannot give an asymptotic formula by
Lemma 5. This establishes the first part of the following result.

Lemma 11. Suppose that 73/120− ε � θ < 13/21 and either
(i) θ < 11/18 and b < P < vg−1; or
(ii) P � x1/2−εv−1/2.

Then (4.2) holds, and corresponding to the two cases above, S∇ and ∇ are defined as
follows:

(i) We have
S∇ =

∑
∇

S(Brqu, u),

where ∇ is the set of conditions

rq ∼ P, w � q < r < a, w � u <
(ev
P

)1/2
,
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it being understood that no combination of variables r, q, u satisfies the conditions
of Lemma 5.

(ii) We have
S∇ =

∑
∇

S(Bpqr, r),

where ∇ is the set of conditions

p ∼ P, w′′ � r < q < p, r <

(
ev
pq

)1/2
, (4.7)

it being understood that no combination of variables p, q, r satisfies the conditions
of Lemma 5, and w′′ = w or w′ depending on whether q < a or q > b.

For the second part of the lemma, we apply Buchstab twice to the sum (4.5), tak-
ing into account Lemma 9(ii). We then discard the part of

∑
(4.7) S(Apqr, r) to which

Lemma 5 does not apply.

5. Completion of the Proof of the Theorem
As noted in the introduction, our treatment is just as in [6, Section 6.7] for θ � 5/8− ε.
For the moment, suppose that φ1 � θ < 5/8− ε. We begin our final decomposition with

S(A, (ev)1/2) = S(A, w)−
∑

w�p<a
S(Ap, p)−

∑
p∈[a,b]∪[c,d]

S(Ap, p)

−
∑

b<p<(ev)1/2

p�∈[c,d]

S(Ap, p)

= S1 − S2 − S3 − S4, (5.1)

say. We have asymptotic formulae for S1 and S3. The treatment of S2 and S4 raises
several questions, the answers depending on θ.
(i) Is there an interval of p within S2 for which an asymptotic formula holds?
(ii) For the rest of S2 and S4, which intervals I of p permit two further decompositions,

in the sense∑
p∈I

S(Ap, p) =
∑
p∈I

S(Ap, w)−
∑
p∈I
q∈Jp

w�q<p

S(Apq, w) +
∑
p∈I
q∈Jp

w�r<q<p

S(Apqr, r)

−
∑
p∈I
q �∈Jp

w′�q<p

S(Apq, w′) +
∑
p∈I
q �∈Jp

w′�r<q<p

S(Apqr, r)

= S5 − S6 + S7 − S8 + S9, (5.2)

say?
(iii) In S7 and S9, which portions permit two more decompositions to obtain sums∑

S(Apqr, w1)−
∑

S(Apqrs, w2) +
∑

S(Apqrst, t) = S10 − S11 + S12, (5.3)

say? How do we choose w1 and w2 according to the region in which (p, q, r), (p, q, r, s)
lie?
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(iv) Are there further intervals of p in which a role reversal in∑
p∈I

S(Ap, p) (5.4)

is to be preferred to discarding the sum in (5.4)?
(v) Can a small part of (5.4) be recovered, rather than discarding all of it?
Of course, a decomposition terminates if some combination of variables allows us to

apply Lemma 5. For example, we do not decompose further the portion of S7 with
pqr ∈ [c, d]. There are seven Buchstab decompositions in some cases; these will be noted
below.
We write T (θ) = (L/y)S(θ). For simplicity of writing, we ignore any terms in the

construction of an upper bound for T (θ) which are O(ε).
We now provide answers to (i)–(v) above.
(i) For θ < 11/18, we have w2 > a and, as in [6], there is an asymptotic formula for

the part S′
2 of S2 with p < b1/2. For θ � 11/18 there is nothing corresponding to S′

2.
(ii)(a) For θ < 73/120, (5.2) is applied for I = (b1/2, a), (b, c), (d, v1/2), and Jp consists

of (w, a). For p < v1/2 implies p < x1/2a−1. If q > b, we place (p, q) in S8, since pq2 < v
implies pq < vb−1.
(b) For θ ∈ (73/120, 11/18), (5.2) is applied for p < (x/v)1/2 and d < p < x9/10−θ.

Note that if p > d, then q < b since db2 > v; in this case, Jp = (w, a). In fact, since
(x/v)1/2 < x9/10−θ, Jp = (w, a) for p < (x/v)1/2; while for p < (x/v)1/2, q > a, we may
place (p, q) in S8 since pq < x/v implies pq < v/c.
(c) For θ ∈ (11/18, 13/21), apply (5.2) for p < (x/v)1/2, with Jp = (w, a), arguing as

in the last paragraph.
(d) For θ ∈ (13/21, 5/8), apply (5.2) for p < a, with Jp = (w, a). The point here is

that w′ is too small for numerical results arising from Lemma 7 to be helpful.
(iii) We carry out two more decompositions if either
(a) p, q, r, r can be combined into two products m,n with m < xγa−1 and n < a; or
(b) pqr2 < v/c; or
(c) θ < 73/120 and pqr2 < x1/2; or
(d) 73/120 < θ < 37/60, and (†) p, q, r can be combined into two products m,n with

m < x9/10−θ and n < a, or else pqr < v/d; and (‡) pqrw > g and pqr2 < x1/2.
If (a) is satisfied, we apply Lemma 6 to S10 and S11. If (b) is satisfied, then we apply

Lemma 7 to S11, and to S10 we can definitely apply Lemma 7 and may be able to apply
Lemma 6. If (c) is satisfied, we can apply Lemma 6 or 7 to S10 and S11. Since for
w < r < s, (‡) implies g < pqrs < x1/2, we can apply Lemma 7 in case (d) to S11, and
either Lemma 6 or 7 applies to S10. It is clear that, for θ > 11/18, we always apply
Lemma 6 in preference to Lemma 7 if the necessary hypotheses are fulfilled, and this
determines w1 and w2.
(iv)(a) A role reversal based on Lemma 10(ii) is used for 73/120 < θ < 11/18 and

p > x9/10a−1.
(b) A role reversal based on Lemma 11 is used for 73/120 < θ < 11/18 and

p ∈ ((x/v)1/2, vg−1). The latter interval disappears for θ > 11/18.
(v) According to (i)–(iv), S(Ap, p) is discarded for vg−1 < p < c if θ ∈ (73/120, 11/18),

for p ∈ (x1/2/v, c) and p ∈ (d, v1/2) if 11/18 < θ < 13/21, and for p ∈ (b, c) and
p ∈ (d, v1/2) if θ > 13/21. If θ ∈ (13/21, 5/8), then b2c < v by a generous margin. From
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the discarded terms S(Ap, p), we can recover those pqr in A with b < p < q < r and
c < r < d.
Seven-dimensional integrals arise for θ ∈ (17/28, 5/8), since then w6 < v/b, and it

can happen that in S12, p, q, r, s, t, u permit a treatment similar to that in (iii) whenever
w < u < t: for θ close to 17/28, this would depend on the inequalities pqrstu < pqrst2

and pqrstu > pqrstw.
The above discussion will enable the reader to write down the multidimensional int-

egrals I1, . . . , Ih such that

T (θ) � 1
θ
+ I1 + · · ·+ Ih. (5.5)

In the case θ ∈ (13/21, 5/8), there is a further integral arising from (v), namely

Ih+1 =
∫ (1−θ)/2

1/6

∫ 1−θ−α

max{3θ−3/2−α,α}

dβ
β2
dα
α2

such that

T (θ) � 1
θ
+ I1 + · · ·+ Ih − Ih+1. (5.6)

For integrals similar to I1, . . . , Ih, see the discussion in [6, Section 6.7].
The conclusions that we obtain from (5.5) and (5.6) are as follows. We have∫ φ2

φ1

θT (θ) dθ < 0.01153; (5.7)

note how close this is to the conjectural value 0.01111 . . .. Further,∫ φ4

φ2

θT (θ) dθ < 0.12455. (5.8)

Of course, the saving in (5.8) compared with [6] comes only from φ2 < θ < 5/8.
Just as in [6], ∫ φ8

φ4

θT (θ) dθ < 0.17597, (5.9)

and ∫ φ9

φ8

θT (θ) dθ <
5
2
(φ29 − φ28) < 0.088. (5.10)

We may combine (5.7)–(5.10) to give (1.2). This completes the proof of the theorem.
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