Schäffer's determinant argument

R. C. Baker

1 Introduction

Let $\|\ldots\|$ denote distance from the nearest integer. Various versions of the following problem in simultaneous Diophantine approximation have been studied since 1957, beginning with Danicic [5]. Given an integer $h \geq 2$. we seek a number θ having the following property, for every $\epsilon>0$ and every pair $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{h}\right), \boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{h}\right)$ in \mathbb{R}^{h} :

For $N>C(h, \epsilon)$, there is an integer $n, 1 \leq n \leq N$, satisfying

$$
\left\|n^{2} \alpha_{j}+n \beta_{j}\right\|<N^{-\theta+\epsilon} \quad(j=1, \ldots, h)
$$

It is convenient to say that θ is admissible for h quadratic polynomials if θ possesses the above property. The best known result for general h is that

$$
\begin{equation*}
\frac{1}{h^{2}+h} \text { is admissible for } h \text { quadratic polynomials. } \tag{1.1}
\end{equation*}
$$

Most of the ideas leading to (1.1) occur in the lectures of W. M. Schmidt [7]. In particular [7] contains the corresponding result for the special case $\boldsymbol{\beta}=\mathbf{0}$. The finishing touches for (1.1) are in Baker [1], [2]; see also [3]. One should note the correction in [4], which applies equally to Theorem 5.1 of [3]. This theorem is used in proving (1.1) in [3], and again in the present paper.

Schäffer [6] was able to improve (1.1) in the case $h=2$, showing that $2 / 11$ is admissible for a pair of quadratic polynomials. The key to his improvement is Lemma 4 of [6], which we need not restate here since it is essentially subsumed under Theorems 2 and 3 below. Schäffer's lemma is an ingenious refinement of the 'determinant argument' of Schmidt. This is Lemma 18A of [7], abstracted as Lemma 7.6 in [3] and repeated below as Lemma 4.

Theorems 2 and 3 will be applied to give the following modest improvement of (1.1).

Theorem 1 Let $h \geq 3$. The number $\left(h^{2}+h-1 / 2\right)^{-1}$ is admissible for h quadratic polynomials.

We now give a version of Schäffer's lemma for \mathbb{R}^{h}. We write $\boldsymbol{a} \boldsymbol{b}$ for inner product in \mathbb{R}^{h}, and $|\boldsymbol{a}|=(\boldsymbol{a} \boldsymbol{a})^{1 / 2}$. The constants $C(h, \epsilon), C(h)$ need not be the same at each occurrence. The cardinality of a finite set \mathcal{E} is denoted by $|\mathcal{E}|$.

Theorem 2 Let $h \geq 2, \epsilon>0, M>C(h, \epsilon), A \geq 1, U \geq 1, U A \leq M$ and $0<V<1$, with

$$
\begin{equation*}
M^{h-1+\epsilon} A V<1 \tag{1.2}
\end{equation*}
$$

Let $\boldsymbol{e} \in \mathbb{R}^{h}$. Let \mathcal{A} be a subset of \mathbb{Z}^{h}, with

$$
|\mathcal{A}|>M^{2 \epsilon} \max \left(1,\left(M^{h} V\right)^{h /(h+1)}\right)
$$

Suppose that, for \boldsymbol{p} in \mathcal{A}, we have

$$
\begin{equation*}
|\boldsymbol{p}| \leq A \tag{1.3}
\end{equation*}
$$

and there are coprime integers $\ell(\boldsymbol{p}), w(\boldsymbol{p})$,

$$
\begin{equation*}
0<\ell(\boldsymbol{p}) \leq U \tag{1.4}
\end{equation*}
$$

with

$$
\begin{equation*}
|\ell(\boldsymbol{p}) \boldsymbol{p e}-w(\boldsymbol{p})|<V \tag{1.5}
\end{equation*}
$$

Then there is a subset \mathcal{C} of \mathcal{A} and a natural number ℓ such that

$$
|\mathcal{C}| \geq|\mathcal{A}| M^{-\epsilon} \min \left(1,\left(M^{h} V\right)^{-h /(h+1)}\right)
$$

and $\ell(\boldsymbol{p})=\ell$ for all \boldsymbol{p} in \mathcal{C}.
In Theorem 3, we assume a somewhat similar situation but we suppose that there is some 'known repetition' among the $\ell(\boldsymbol{p})$. We use this to get a 'lot of repetition'. The linear span of a set S in \mathbb{R}^{h} is denoted by Span S.

Theorem 3 Let $h \geq 2, \epsilon>0, M>C(h, \epsilon), A \geq 1, U \geq 1, U A \leq M, 0<$ $V<1$ and let $\boldsymbol{e} \in \mathbb{R}^{h}$. Let \mathcal{A} be a subset of $\mathbb{Z}^{h}, W=\operatorname{Span} \mathcal{A}, \operatorname{dim} W=m$. Suppose that, for each \boldsymbol{p} in \mathcal{A},

$$
\begin{equation*}
A / 2<|\boldsymbol{p}| \leq A \tag{1.6}
\end{equation*}
$$

and there exist coprime integers $\ell(\boldsymbol{p}), w(\boldsymbol{p})$ satisfying

$$
\begin{gather*}
U / 2<\ell(\boldsymbol{p}) \leq U \tag{1.7}\\
|\ell(\boldsymbol{p}) \boldsymbol{p} \boldsymbol{e}-w(\boldsymbol{p})|<V \tag{1.8}
\end{gather*}
$$

Suppose that for some integer $n, 2 \leq n \leq m$ with

$$
\begin{equation*}
C(h) U^{1+m-n} A^{m} V<1 \tag{1.9}
\end{equation*}
$$

for a suitable positive $C(h)$, there are linearly independent $\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{n}$ in \mathcal{A} with $\ell\left(\boldsymbol{p}_{1}\right)=\ell\left(\boldsymbol{p}_{2}\right)=\cdots=\ell\left(\boldsymbol{p}_{n}\right)$. Then there is a subset \mathcal{C} of \mathcal{A} and a natural number ℓ^{\prime} such that

$$
|\mathcal{C}|>|\mathcal{A}| M^{-\epsilon}
$$

and $\ell(\boldsymbol{p})=\ell^{\prime}$ for all \boldsymbol{p} in \mathcal{C}.
Lemma 4 of [6] is essentially equivalent to the cases $h=2$ of Theorems 3 and 4 , taken together.

2 Proofs of Theorems 2 and 3.

As in [3], the determinant of t vectors $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{t}$ in \mathbb{R}^{h}, where $1 \leq t \leq h$, is the t-dimensional volume of the parallellepiped

$$
\left\{\sum_{i=1}^{t} y_{i} \boldsymbol{a}_{i}: 0 \leq y_{1}, \ldots, y_{t} \leq 1\right\}
$$

and is denoted by $\operatorname{det}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{t}\right)$. Note that

$$
\operatorname{det}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{t}\right)^{2}=\operatorname{det}\left\{\boldsymbol{a}_{i} \boldsymbol{a}_{j}: 1 \leq i, j \leq t\right\}
$$

is an integer whenever $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{t}$ are in \mathbb{Z}^{h}; compare [8], equation (2.1), p. 4. If $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{t}$ are linearly independent, and

$$
\Lambda=\left\{\sum_{i=1}^{t} n_{i} \boldsymbol{a}_{i}: n_{1}, \ldots, n_{t} \in \mathbb{Z}\right\}
$$

is the t-dimensional lattice generated by $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{t}$, then the determinant of Λ is defined to be

$$
d(\Lambda)=\operatorname{det}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{t}\right)
$$

The unit ball in \mathbb{R}^{h} is denoted by K_{0}.
We begin with a few observations from linear algebra.

Lemma 1 Let $\boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{h}$ be in $\mathbb{R}^{h}, \boldsymbol{v}_{0} \neq \mathbf{0}$. Then
$\operatorname{det}\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{h}\right) \leq h \max \left(\frac{\left|\boldsymbol{v}_{1}\right|}{\left|\boldsymbol{v}_{0}\right|}, \ldots, \frac{\left|\boldsymbol{v}_{h}\right|}{\left|\boldsymbol{v}_{0}\right|}\right) \max _{i} \operatorname{det}\left(\boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{i-1}, \boldsymbol{v}_{i+1}, \ldots, \boldsymbol{v}_{h}\right)$.
Proof. Evidently we may suppose that $\left|\boldsymbol{v}_{0}\right|=1$ and, after applying a linear isometry to \mathbb{R}^{h}, that $\boldsymbol{v}_{0}=(1,0, \ldots, 0)$. Let $\boldsymbol{v}_{i}=\left(v_{i 1}, \ldots, v_{i h}\right)$, and let M_{i} be the cofactor of $v_{i 1}$ in the matrix $A=\left[v_{i j}: 1 \leq i, j \leq h\right]$. Then

$$
\begin{equation*}
\operatorname{det}\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{h}\right) \leq \sum_{i=1}^{h}\left|v_{i 1} M_{i}\right| \leq h \max _{i}\left|\boldsymbol{v}_{i}\right| \max _{i}\left|M_{i}\right| \tag{2.1}
\end{equation*}
$$

Now consider the matrix A_{i} obtained by replacing row i of A by \boldsymbol{v}_{0}. We have

$$
\begin{equation*}
\operatorname{det}\left(\boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{i-1}, \boldsymbol{v}_{i+1}, \ldots, \boldsymbol{v}_{h}\right)=\left|\operatorname{det} A_{i}\right|=\left|M_{i}\right| . \tag{2.2}
\end{equation*}
$$

The lemma follows from (2.1), (2.2).
Lemma 2 Let $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{h}$ be linearly independent in \mathbb{R}^{h}. The distance between parallel hyperplanes

$$
\boldsymbol{c}+a_{i} \boldsymbol{x}_{h}+\operatorname{Span}\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{h-1}\right\} \quad(i=1,2)
$$

is

$$
\left|a_{1}-a_{2}\right| \frac{\operatorname{det}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{h-1}, \boldsymbol{x}_{h}\right)}{\operatorname{det}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{h-1}\right)}
$$

Proof. It suffices to show that the distance d from \boldsymbol{x}_{h} to $\operatorname{Span}\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{h-1}\right\}$ is

$$
\frac{\operatorname{det}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{h}\right)}{\operatorname{det}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{h-1}\right)}
$$

We use the Gram-Schmidt process to replace $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{h}$ by an orthogonal set

$$
\boldsymbol{v}_{1}=\boldsymbol{x}_{1}, \boldsymbol{v}_{2}=\boldsymbol{x}_{2}-\frac{\boldsymbol{x}_{2} \cdot \boldsymbol{v}_{1}}{\boldsymbol{v}_{1} \cdot \boldsymbol{v}_{1}} \boldsymbol{v}_{1}
$$

and so on. Note that

$$
\operatorname{det}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{i}\right)=\operatorname{det}\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{i}\right)=\left|\boldsymbol{v}_{1}\right| \ldots\left|\boldsymbol{v}_{i}\right| \quad(i=1, \ldots, h)
$$

Hence

$$
d=\left|\boldsymbol{v}_{h}\right|=\frac{\operatorname{det}\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{h}\right)}{\operatorname{det}\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{h-1}\right)}=\frac{\operatorname{det}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{h}\right)}{\operatorname{det}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{h-1}\right)}
$$

Lemma 3 Let $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{h}$ be linearly independent points of a hyperplane with equation

$$
\boldsymbol{a x}=b
$$

in \mathbb{R}^{h}. Then for any \boldsymbol{x} in the hyperplane, we have

$$
\begin{equation*}
\boldsymbol{x}=t_{1} \boldsymbol{x}_{1}+\cdots+t_{h} \boldsymbol{x}_{h} \tag{2.3}
\end{equation*}
$$

with $t_{1}+\cdots+t_{h}=1$.
Proof. We may define t_{1}, \ldots, t_{h} uniquely via (2.3). On each side of (2.3), take the inner product with \boldsymbol{a} :

$$
\begin{aligned}
b=\boldsymbol{a} \boldsymbol{x} & =t_{1} \boldsymbol{a} \boldsymbol{x}_{1}+\cdots+t_{h} \boldsymbol{a} \boldsymbol{x}_{h} \\
& =\left(t_{1}+\cdots+t_{h}\right) b .
\end{aligned}
$$

Since $b \neq 0$ by independence of $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{h}$, the lemma follows.
Throughout the remainder of the paper, constants implied by \ll depend at most on h and ϵ. We suppose (as we may) that ϵ is sufficiently small. A quantity of the form $C(h) \epsilon^{2}$ is denoted by δ.

Lemma 4 Let $N>C(h, \epsilon)$. Let Λ be an h-dimensional lattice in \mathbb{R}^{h} with $d(\Lambda)=D \leq N^{2}$ and $\Lambda \cap K_{0}=\{\mathbf{0}\}$. Let Π be the dual lattice of Λ. Let \mathcal{A} be a subset of Π with $|\boldsymbol{p}| \leq N$ for all \boldsymbol{p} in \mathcal{A}. Suppose that $\operatorname{Span} \mathcal{A}$ has dimension t, and that any t vectors in \mathcal{A} have determinant $\leq Z$. Let $\boldsymbol{e} \in \mathbb{R}^{h}$. Let U, V be positive numbers, $U \leq N$, such that for any \boldsymbol{p} in \mathcal{A} there are coprime integers $\ell(\boldsymbol{p}), w(\boldsymbol{p})$ satisfying

$$
1 \leq \ell(\boldsymbol{p}) \leq U,|\ell(\boldsymbol{p}) e \boldsymbol{p}-w(\boldsymbol{p})|<V .
$$

Suppose further that

$$
Z U^{t} V D N^{\epsilon} \leq 1
$$

Then there is an integer ℓ and a subset \mathcal{C} of \mathcal{A} with $|\mathcal{C}| \geq|\mathcal{A}| N^{-\delta}, \ell(\boldsymbol{p})=\ell$ for all \boldsymbol{p} in \mathcal{C}.

Proof. As noted above, this is Lemma 7.6 of [3].
Proof of Theorem 2. There are two cases to consider.
Case 1. There is a subset \mathcal{E} of \mathcal{A} with

$$
|\mathcal{E}|>|\mathcal{A}| M^{-\epsilon / 2} \min \left(1,\left(M^{h} V\right)^{-h /(h+1)}\right),
$$

such that $\operatorname{Span} \mathcal{E}$ has dimension $t \leq h-1$.
We apply Lemma 4 with $\Lambda=\Pi=\mathbb{Z}^{h}, D=1, N=M$ and $\mathcal{E}, \epsilon^{2}$ in place of \mathcal{A}, ϵ. Clearly we may take

$$
Z=A^{t}
$$

Now

$$
\begin{aligned}
Z U^{t} V D N^{\epsilon^{2}} & \ll A^{t} U^{t} V M^{\epsilon^{2}} \\
& \ll M^{h-1+\epsilon^{2}} V \ll M^{-\epsilon^{2}}
\end{aligned}
$$

Hence there is a subset \mathcal{C} of \mathcal{E} and a natural number ℓ such that

$$
|\mathcal{C}| \geq|\mathcal{E}| M^{-\delta}>|\mathcal{A}| M^{-\epsilon} \min \left(1,\left(M^{h} V\right)^{-h /(h+1)}\right)
$$

and $\ell(\boldsymbol{p})=\ell$ for all \boldsymbol{p} in \mathcal{C}.
Case 2. Case 1 does not hold.
It is convenient to write

$$
f(\boldsymbol{x})=\boldsymbol{x} \boldsymbol{e}, R=(M / V)^{1 /(h+1)}
$$

By Dirichlet's theorem, there is a point \boldsymbol{p}_{0} in \mathbb{Z}^{h} and an integer w_{0} such that

$$
\begin{equation*}
0<\left|\boldsymbol{p}_{0}\right| \leq R,\left|f\left(\boldsymbol{p}_{0}\right)-w_{0}\right| \ll R^{-h} \tag{2.4}
\end{equation*}
$$

We choose $\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{h-1}$ in \mathcal{A} to maximize

$$
C=\operatorname{det}\left(\boldsymbol{p}_{0}, \ell\left(\boldsymbol{p}_{1}\right) \boldsymbol{p}_{1}, \ldots, \ell\left(\boldsymbol{p}_{h-1}\right) \boldsymbol{p}_{h-1}\right)
$$

Since we are in Case 2, we have $\operatorname{Span} \mathcal{A}=\mathbb{R}^{h}$ and $C>0$. Let us write

$$
\ell_{j}=\ell\left(\boldsymbol{p}_{j}\right), w_{j}=w\left(\boldsymbol{p}_{j}\right) \quad(j=1, \ldots, h)
$$

We note that

$$
\begin{equation*}
\operatorname{det}\left(\boldsymbol{p}_{0}, \ell_{1} \boldsymbol{p}_{1}, \ldots, \ell_{j-1} \boldsymbol{p}_{j-1}, \ell(\boldsymbol{p}) \boldsymbol{p}, \ell_{j+1} \boldsymbol{p}_{j+1}, \ldots, \ell_{h-1} \boldsymbol{p}_{h-1}\right) \leq C \tag{2.5}
\end{equation*}
$$

for all \boldsymbol{p} in \mathcal{A}, by choice of $\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{h-1}$, while

$$
\begin{equation*}
\operatorname{det}\left(\ell(\boldsymbol{p}) \boldsymbol{p}, \ell_{1} \boldsymbol{p}_{1}, \ldots, \ell_{h-1} \boldsymbol{p}_{h-1}\right) \ll \frac{M}{\left|\boldsymbol{p}_{0}\right|} C \tag{2.6}
\end{equation*}
$$

by Lemma $1,(2.5),(1.3)$ and (1.4).
It follows from (2.5), (2.6) and Cramer's rule that if we write $\ell(\boldsymbol{p}) \boldsymbol{p}$ in the form

$$
\begin{equation*}
\ell(\boldsymbol{p}) \boldsymbol{p}=y_{0} \boldsymbol{p}_{0}+y_{1} \boldsymbol{p}_{1}+\cdots+y_{h-1} \boldsymbol{p}_{h-1}, \tag{2.7}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|y_{i}\right| \leq 1 \quad(i=1, \ldots, h-1),\left|y_{0}\right| \ll \frac{M}{\left|\boldsymbol{p}_{0}\right|} . \tag{2.8}
\end{equation*}
$$

Let $E(\boldsymbol{x})$ be the linear function on \mathbb{R}^{h} for which

$$
E\left(\boldsymbol{p}_{0}\right)=w_{0}, E\left(\ell_{j} \boldsymbol{p}_{j}\right)=w_{j} \quad(j=1, \ldots, h-1)
$$

Then E takes the form

$$
E(\boldsymbol{x})=\frac{1}{C} \boldsymbol{B} \boldsymbol{x}
$$

with $\boldsymbol{B}=\left(B_{1}, \ldots, B_{h}\right) \in \mathbb{Z}^{h}$. Let us write

$$
\operatorname{gcd}\left(B_{1}, \ldots, B_{h}, C\right)=D
$$

for the greatest common divisor of B_{1}, \ldots, B_{h} and C.
Now consider the linear function

$$
F=f-E
$$

We have

$$
\begin{aligned}
F\left(\boldsymbol{p}_{0}\right) & =f\left(\boldsymbol{p}_{0}\right)-w_{0} \ll R^{-h} \\
F\left(\ell_{j} \boldsymbol{p}_{j}\right) & =f\left(\ell_{j} \boldsymbol{p}_{j}\right)-w_{j} \ll V \quad(j=1, \ldots, h-1),
\end{aligned}
$$

from (2.4), (1.5). Taking into account (2.7), (2.8),

$$
\begin{align*}
F(\ell(\boldsymbol{p}) \boldsymbol{p}) & \ll \frac{M}{\left|\boldsymbol{p}_{0}\right|} R^{-h}+V \tag{2.9}\\
& \ll\left|\boldsymbol{p}_{0}\right|^{-1}\left(M R^{-h}+R V\right) \\
& \ll\left|\boldsymbol{p}_{0}\right|^{-1} M^{1 /(h+1)} V^{h /(h+1)}
\end{align*}
$$

for all \boldsymbol{p} in \mathcal{A}. It is convenient to define

$$
H=\left|\boldsymbol{p}_{0}\right|^{-1} M^{1 /(h+1)} V^{h /(h+1)} ;
$$

the above calculation gives $V \ll H$.
We can now give a bound for the integer

$$
\begin{equation*}
k(\boldsymbol{p})=C D^{-1}(E(\ell(\boldsymbol{p}) \boldsymbol{p})-w(\boldsymbol{p})) . \tag{2.10}
\end{equation*}
$$

We have

$$
\begin{aligned}
k(\boldsymbol{p}) & =C D^{-1}(-F(\ell(\boldsymbol{p}) \boldsymbol{p})+f(\ell(\boldsymbol{p}) \boldsymbol{p})-w(\boldsymbol{p})) \\
& \ll C D^{-1}(H+V) \ll C D^{-1} H
\end{aligned}
$$

from (2.9), (1.5).
Next we distinguish two subcases of Case 2.
Case 2(a). $C D^{-1} H<M^{-\epsilon^{2}}$. In this case $k(\boldsymbol{p})=0$ for all \boldsymbol{p} in \mathcal{A}. The points

$$
(\ell(\boldsymbol{p}) \boldsymbol{p}, w(\boldsymbol{p}))
$$

lie in an h-dimensional hyperplane in \mathbb{R}^{h+1}. If we fix any h linearly independent points $\boldsymbol{p}_{1}^{\prime}, \ldots, \boldsymbol{p}_{h}^{\prime}$ of \mathcal{A}, then for any \boldsymbol{p} in \mathcal{A},

$$
\operatorname{det}\left[\begin{array}{ll}
\ell(\boldsymbol{p}) \boldsymbol{p} & w(\boldsymbol{p}) \\
\ell\left(\boldsymbol{p}_{1}^{\prime}\right) \boldsymbol{p}_{1}^{\prime} & w\left(\boldsymbol{p}_{1}^{\prime}\right) \\
\vdots & \\
\ell\left(\boldsymbol{p}_{h}^{\prime}\right) \boldsymbol{p}_{h}^{\prime} & w\left(\boldsymbol{p}_{h}^{\prime}\right)
\end{array}\right]=0
$$

Expanding by the first row,

$$
0=\ell(\boldsymbol{p}) G \pm w(\boldsymbol{p}) \operatorname{det}\left(\ell\left(\boldsymbol{p}_{1}^{\prime}\right) \boldsymbol{p}_{1}^{\prime}, \ldots, \ell\left(\boldsymbol{p}_{h}^{\prime}\right) \boldsymbol{p}_{h}^{\prime}\right)
$$

for some integer G, so that $\ell(\boldsymbol{p})$ is a divisor of

$$
L=\operatorname{det}\left(\ell\left(\boldsymbol{p}_{1}^{\prime}\right) \boldsymbol{p}_{1}^{\prime}, \ldots, \ell\left(\boldsymbol{p}_{h}^{\prime}\right) \boldsymbol{p}_{h}^{\prime}\right) .
$$

Since $L \leq M^{h}, L$ has at most M^{ϵ} divisors, and there is a divisor ℓ of L such that

$$
\ell(\boldsymbol{p})=\ell
$$

for \boldsymbol{p} in a subset \mathcal{F} of \mathcal{A} with

$$
|\mathcal{F}|>|\mathcal{A}| M^{-\epsilon} .
$$

Case 2(b). $C D^{-1} H \geq M^{-\epsilon^{2}}$. In this case, there are

$$
\ll C D^{-1} H+1 \ll C D^{-1} H M^{\epsilon^{2}}
$$

possible values of $k(\boldsymbol{p})$. There is an integer k and a subset \mathcal{A}_{1} of \mathcal{A} with

$$
\begin{align*}
\left|\mathcal{A}_{1}\right| & \gg|\mathcal{A}| C^{-1} D H^{-1} M^{-\epsilon^{2}} \tag{2.11}\\
k(\boldsymbol{p}) & =k \text { for all } \boldsymbol{p} \text { in } \mathcal{A}_{1} \tag{2.12}
\end{align*}
$$

In particular, the subset S of \mathbb{Z}^{h} consisting of solutions of

$$
D^{-1} \boldsymbol{B} \boldsymbol{x} \equiv k \quad\left(\bmod C D^{-1}\right)
$$

contains $\left\{\ell(\boldsymbol{p}) \boldsymbol{p}: \boldsymbol{p} \in \mathcal{A}_{1}\right\}$. Now S is a translate $\Lambda_{0}+\boldsymbol{R}$ of the sublattice Λ_{0} of \mathbb{Z}^{h} consisting of solutions of

$$
D^{-1} \boldsymbol{B} \boldsymbol{x} \equiv 0 \quad\left(\bmod C D^{-1}\right)
$$

It is easy to see that $\operatorname{det} \Lambda_{0}=C D^{-1}$.
The lattice Λ_{1} generated by $\boldsymbol{p}_{0}, \ell_{1} \boldsymbol{p}, \ldots, \ell_{h-1} \boldsymbol{p}_{h-1}$ is contained in Λ_{0}, since

$$
D^{-1} \boldsymbol{B} \boldsymbol{p}_{0}=C D^{-1} w_{0}, D^{-1} B \ell_{j} \boldsymbol{p}_{j}=C D^{-1} w_{j} \quad(j=1, \ldots, h-1)
$$

The index of Λ_{1} in Λ_{0} is

$$
\frac{\operatorname{det} \Lambda_{1}}{\operatorname{det} \Lambda_{0}}=\frac{C}{C D^{-1}}=D
$$

Hence we can write Λ_{0} as a union of D translates of Λ_{1}. We conclude that there is a \boldsymbol{Q} in \mathbb{Z}^{h} and a subset \mathcal{A}_{2} of \mathcal{A}_{1} such that

$$
\begin{gather*}
\ell(\boldsymbol{p}) \boldsymbol{p} \in \boldsymbol{Q}+\Lambda_{1} \quad\left(\boldsymbol{p} \in \mathcal{A}_{2}\right) \tag{2.13}\\
\left|\mathcal{A}_{2}\right| \geq\left|\mathcal{A}_{1}\right| D^{-1} \gg|\mathcal{A}| C^{-1} H^{-1} M^{-\epsilon^{2}} \tag{2.14}
\end{gather*}
$$

from (2.11).
We now seek a hyperplane that contains many of the points $\ell(\boldsymbol{p}) \boldsymbol{p}$ with \boldsymbol{p} in \mathcal{A}_{2}. For $n \in \mathbb{Z}$, let

$$
L_{n}=\boldsymbol{Q}+n \ell_{h-1} \boldsymbol{p}_{h-1}+\operatorname{Span}\left\{\boldsymbol{p}_{0}, \ell_{1} \boldsymbol{p}_{1}, \ldots, \ell_{h-2} \boldsymbol{p}_{h-2}\right\} .
$$

If n_{0} and n_{1} are the smallest and largest integers for which L_{n} meets the ball $M K_{0}$, then

$$
n_{0}-n_{1} \ll \frac{M \operatorname{det}\left(\boldsymbol{p}_{0}, \ell_{1} \boldsymbol{p}_{1}, \ldots, \ell_{h-2} \boldsymbol{p}_{h-2}\right)}{C}
$$

(by Lemma 2)

$$
\ll \frac{M^{h-1}\left|\boldsymbol{p}_{0}\right|}{C} .
$$

Since $C \leq\left|\boldsymbol{p}_{0}\right| M^{h-1}$, it follows that there is an n for which

$$
\begin{aligned}
\left|\left\{\boldsymbol{p} \in \mathcal{A}_{2}: \ell(\boldsymbol{p}) \boldsymbol{p} \in L_{n}\right\}\right| & \gg\left|\mathcal{A}_{2}\right| C M^{-h+1}\left|\boldsymbol{p}_{0}\right|^{-1} \\
& \gg|\mathcal{A}| H^{-1} M^{-h+1-\delta}\left|\boldsymbol{p}_{0}\right|^{-1}
\end{aligned}
$$

(from (2.14))

$$
\gg|\mathcal{A}| V^{-h /(h+1)} M^{-h^{2} /(h+1)-\delta}
$$

from the definition of H. Let

$$
\mathcal{A}_{3}=\left\{\boldsymbol{p} \in \mathcal{A}_{2}: \ell(\boldsymbol{p}) \boldsymbol{p} \in L_{n}\right\} .
$$

Since we are in Case 2, $\operatorname{Span} \mathcal{A}_{3}$ is \mathbb{R}^{h}. We select linearly independent points $\boldsymbol{p}_{1}^{\prime}, \ldots, \boldsymbol{p}_{h}^{\prime}$ in \mathcal{A}_{3}.

Recalling Lemma 3 , for any \boldsymbol{p} in \mathcal{A}_{3}, there are real t_{1}, \ldots, t_{h} with

$$
\begin{gather*}
t_{1}+\cdots+t_{h}=1, \tag{2.15}\\
\ell(\boldsymbol{p}) \boldsymbol{p}=t_{1} \ell\left(\boldsymbol{p}_{1}^{\prime}\right) \boldsymbol{p}_{1}^{\prime}+\cdots+t_{h} \ell\left(\boldsymbol{p}_{h}^{\prime}\right) \boldsymbol{p}_{h}^{\prime} . \tag{2.16}
\end{gather*}
$$

Now

$$
\operatorname{det}\left[\begin{array}{cc}
\ell(\boldsymbol{p}) \boldsymbol{p} & w(\boldsymbol{p}) \\
\ell\left(\boldsymbol{p}_{1}^{\prime}\right) \boldsymbol{p}_{1}^{\prime} & w\left(\boldsymbol{p}_{1}^{\prime}\right) \\
\vdots & \\
\ell\left(\boldsymbol{p}_{h}^{\prime}\right) \boldsymbol{p}_{h}^{\prime} & w\left(\boldsymbol{p}_{h}^{\prime}\right)
\end{array}\right]=\operatorname{det}\left[\begin{array}{ll}
\ell(\boldsymbol{p}) \boldsymbol{p} & -k C^{-1} D \\
\ell\left(\boldsymbol{p}_{1}^{\prime}\right) \boldsymbol{p}_{1}^{\prime} & -k C^{-1} D \\
\vdots & \\
\ell\left(\boldsymbol{p}_{h}^{\prime}\right) \boldsymbol{p}_{h}^{\prime} & -k C^{-1} D
\end{array}\right]
$$

(subtract B_{j} / C times column j from column $h+1$ for $j=1, \ldots, h$ and use (2.10), (2.12))

$$
=\operatorname{det}\left[\begin{array}{cc}
0 & 0 \\
\ell\left(\boldsymbol{p}_{1}^{\prime}\right) \boldsymbol{p}_{1}^{\prime} & -k C^{-1} D \\
\vdots & \\
\ell\left(\boldsymbol{p}_{h}^{\prime}\right) \boldsymbol{p}_{h}^{\prime} & -k C^{-1} D
\end{array}\right]=0 .
$$

For the penultimate step, we subtract t_{1} times row $2, \ldots, t_{h}$ times row $h+1$ from row 1 and use (2.15), (2.16).

We can now argue as in Case 2 (a) to show that there is a subset \mathcal{C} of \mathcal{A}_{3}, on which $\ell(\boldsymbol{p})$ is constant, say $\ell(\boldsymbol{p})=\ell^{\prime}$, satisfying

$$
|\mathcal{C}| \geq\left|\mathcal{A}_{3}\right| M^{-\delta} \geq|\mathcal{A}| M^{-\epsilon}\left(M^{h} V\right)^{-h /(h+1)}
$$

Thus a subset \mathcal{C} of \mathcal{A} with the required properties exists in all cases.
Proof of Theorem 3. Let Γ denote the m-dimensional lattice $\mathbb{Z}^{h} \cap W$; let $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}$ be a basis of Γ. Let $\boldsymbol{p}_{n+1}, \ldots, \boldsymbol{p}_{m}$ be chosen in \mathcal{A} so that $\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{m}$ is a basis of W. Let us write $\ell\left(\boldsymbol{p}_{j}\right)=\ell_{j}, w\left(\boldsymbol{p}_{j}\right)=w_{j}(j=1, \ldots, m)$. Thus

$$
\begin{equation*}
\ell_{j}=\ell_{1} \quad(j=2, \ldots, n) \tag{2.17}
\end{equation*}
$$

We now write

$$
\boldsymbol{p}_{j}=p_{j 1} \boldsymbol{x}_{1}+\cdots+p_{j m} \boldsymbol{x}_{m} \quad(j=1, \ldots, m),
$$

so that the $p_{j k}$ are integers. Let P be the matrix $\left[\ell_{j} p_{j k}\right]_{1 \leq j, k \leq m}$. Then

$$
\begin{equation*}
\operatorname{det}\left(\ell_{1} \boldsymbol{p}_{1}, \ldots, \ell_{m} \boldsymbol{p}_{m}\right)=|\operatorname{det} P| \operatorname{det}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right) . \tag{2.18}
\end{equation*}
$$

We now imitate the construction in the previous proof. Define the linear function E_{1} on W by the conditions

$$
E_{1}\left(\ell_{j} \boldsymbol{p}_{j}\right)=w_{j} \quad(j=1, \ldots, m)
$$

Let $A_{j}=E_{1}\left(\boldsymbol{x}_{j}\right)$, so that

$$
E_{1}\left(\alpha_{1} \boldsymbol{x}_{1}+\cdots+\alpha_{m} \boldsymbol{x}_{m}\right)=A_{1} \alpha_{1}+\cdots+A_{m} \alpha_{m} .
$$

Since

$$
E_{1}\left(\ell_{j} p_{j 1} \boldsymbol{x}_{1}+\cdots+\ell_{j} p_{j m} \boldsymbol{x}_{m}\right)=E_{1}\left(\ell_{j} \boldsymbol{p}_{j}\right)=w_{j}
$$

we have

$$
A_{1} \ell_{j} p_{j 1}+\cdots+A_{m} \ell_{j} p_{j m}=w_{j} \quad(j=1, \ldots, m)
$$

If we solve for A_{i} by Cramer's rule, we obtain

$$
\begin{equation*}
\left|A_{i}\right|=\frac{\operatorname{det} P_{i}}{\operatorname{det} P} \tag{2.19}
\end{equation*}
$$

where P_{i} is obtained from P by replacing column i by a column with entries w_{1}, \ldots, w_{m}. Clearly we may cancel ℓ_{1}^{n-1} from numerator and denominator on the right side of (2.19). This gives

$$
A_{i}=\frac{B_{i}}{\ell_{1}^{-n+1} \operatorname{det} P} \quad\left(B_{i} \in \mathbb{Z}\right)
$$

so that

$$
\begin{equation*}
\ell_{1}^{-n+1}(\operatorname{det} P) E_{1}(\boldsymbol{p}) \in \mathbb{Z} \quad(\boldsymbol{p} \in \mathcal{A}) \tag{2.20}
\end{equation*}
$$

We observe that

$$
\begin{align*}
|\operatorname{det} P| & =\frac{\operatorname{det}\left(\ell_{1} \boldsymbol{p}_{1}, \ldots, \ell_{m} \boldsymbol{p}_{m}\right)}{\operatorname{det}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right)} \tag{2.21}\\
& \ll \operatorname{det}\left(\ell_{1} \boldsymbol{p}_{1}, \ldots, \ell_{m} \boldsymbol{p}_{m}\right)
\end{align*}
$$

from (2.18).
Now let $F_{1}=f-E_{1}$. If we write $\ell(\boldsymbol{p}) \boldsymbol{p}$ in the form

$$
\ell(\boldsymbol{p}) \boldsymbol{p}=\alpha_{1} \ell_{1} \boldsymbol{p}_{1}+\cdots+\alpha_{m} \ell_{m} \boldsymbol{p}_{m}
$$

then

$$
\begin{gathered}
\left|\alpha_{i}\right|=\frac{\operatorname{det}\left(\ell_{1} \boldsymbol{p}_{1}, \ldots, \ell_{i-1} \boldsymbol{p}_{i-1}, \ell(\boldsymbol{p}) \boldsymbol{p}, \ell_{i+1} \boldsymbol{p}_{i+1}, \ldots, \ell_{m} \boldsymbol{p}_{m}\right)}{\operatorname{det}\left(\ell_{1} \boldsymbol{p}_{1}, \ldots, \ell_{m} \boldsymbol{p}_{m}\right)} \\
\ll \frac{A^{m}}{\operatorname{det}\left(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{m}\right)}
\end{gathered}
$$

by (1.6), (1.7). Hence

$$
\begin{align*}
F_{1}(\ell(\boldsymbol{p}) \boldsymbol{p}) & \ll \frac{A^{m}}{\operatorname{det}\left(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{m}\right)} \max _{i}\left|F_{1}\left(\ell_{i} \boldsymbol{p}_{i}\right)\right| \tag{2.22}\\
& \ll \frac{A^{m}}{\operatorname{det}\left(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{m}\right)} V
\end{align*}
$$

for all \boldsymbol{p} in \mathcal{A}, by (1.8) and the definition of F_{1}.
Given \boldsymbol{p} in \mathcal{A}, we now estimate the integer

$$
k(\boldsymbol{p})=\ell_{1}^{-n+1} \operatorname{det} P\left(E_{1}(\ell(\boldsymbol{p}) \boldsymbol{p})-w(\boldsymbol{p})\right) .
$$

We have

$$
\begin{aligned}
|k(\boldsymbol{p})| \leq & \ell_{1}^{-n+1}|\operatorname{det} P|\left(\left|F_{1}(\ell(\boldsymbol{p}) \boldsymbol{p})\right|+|f(\ell(\boldsymbol{p}) \boldsymbol{p})-w(\boldsymbol{p})|\right) \\
& \ll \ell_{1}^{-n+1}|\operatorname{det} P| \frac{A^{m}}{\operatorname{det}\left(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{m}\right)} V
\end{aligned}
$$

(by (2.22), (1.8))

$$
\ll \ell_{1}^{-n+1} \ell_{1} \ldots \ell_{m} A^{m} V
$$

(by (2.21))

$$
\ll U^{m-n+1} A^{m} V
$$

by (1.7). Taking (1.9) into account, with $C(h)$ suitably chosen, we have $|k(\boldsymbol{p})|<1$, and indeed $k(\boldsymbol{p})=0$. We may now complete the proof by the argument in Case 2 (a) of the preceding proof. The points $(\ell(\boldsymbol{p}) \boldsymbol{p}, w(\boldsymbol{p}))$ lie in an m-dimensional subspace of \mathbb{R}^{h}. In the role of the determinant in Case 2(a), we use

$$
\operatorname{det}\left[\begin{array}{cc}
\ell(\boldsymbol{p}) \boldsymbol{p} & w(\boldsymbol{p}) \\
\ell\left(\boldsymbol{p}_{1}\right) \boldsymbol{p}_{1} & w\left(\boldsymbol{p}_{1}\right) \\
\vdots & \\
\ell\left(\boldsymbol{p}_{m}\right) \boldsymbol{p}_{m} & w\left(\boldsymbol{p}_{m}\right)
\end{array}\right] .
$$

3 A lemma with four alternatives.

In the present section we prove a lemma with four alternatives as a stage in the proof of Theorem 1. I have arranged the proof in this way for comparison with the 'three alternatives lemma' (Lemma 17B of [7]). The corresponding result in [3] (formulated a little differently) is Lemma 7.7.

Lemma 5 Let $h \geq 3, \epsilon>0$. Let $N \geq C(h, \epsilon)$. Let Δ satisfy

$$
\begin{equation*}
1 \leq \Delta^{h+1-(1 / 2 h)+\epsilon} \leq N \tag{3.1}
\end{equation*}
$$

Let $\Lambda=\Delta^{1 / h} \mathbb{Z}^{h}, \Pi=\Delta^{-1 / h} \mathbb{Z}^{h}$, and let $\boldsymbol{a}_{1}, \boldsymbol{a}_{2} \in \mathbb{R}^{h}$. Then either
(i) for every t, the set $K_{0}+\Lambda+t$ contains a point $n^{2} \boldsymbol{a}_{2}+n \boldsymbol{a}_{1}$ with $1 \leq n \leq N$; or
(ii) there is a primitive point \boldsymbol{p} in Π and a natural number q with

$$
\begin{equation*}
|\boldsymbol{p}|<N^{\delta}, q<N^{\delta}|\boldsymbol{p}|^{-2},\left\|q \boldsymbol{a}_{i} \boldsymbol{p}\right\|<N^{\delta-i}|\boldsymbol{p}|^{-1} \quad(i=1,2) ; \tag{3.2}
\end{equation*}
$$

or
(iii) there is a pair of linearly independent points $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$ of Π, a natural number q, and there are numbers $a, B, 0<a<N^{\delta}, 1<B<N$, such that

$$
\begin{gather*}
\left|\boldsymbol{p}_{1}\right|\left|\boldsymbol{p}_{2}\right| \ll a^{2} N^{\delta-1} B, \tag{3.3}\\
q \ll a^{-2} B^{-2} N^{2+\delta}, \tag{3.4}\\
\left|\boldsymbol{p}_{j}\right|\left\|q \boldsymbol{p}_{k} \boldsymbol{a}_{i}\right\| \ll a^{-1} B^{-1} N^{1-i+\delta} \quad(i=1,2 ; \quad(j, k)=(1,2),(2,1)) ; \tag{3.5}
\end{gather*}
$$

or
(iv) there are three linearly independent points $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \boldsymbol{p}_{3}$ in Π with $\left|\boldsymbol{p}_{j}\right|<$ $N^{\delta}(j=1,2,3)$ and a natural number q with

$$
\begin{equation*}
q<N^{\delta} \Delta^{2}, \quad\left\|q \boldsymbol{p}_{j} \boldsymbol{a}_{i}\right\|<N^{\delta-i} \Delta^{2} \quad(i=1,2 ; \quad j=1,2,3) \tag{3.6}
\end{equation*}
$$

For the proof of Lemma 5, we require the following variant of Lemma 5 of [6].

Lemma 6 Let W be a subspace of $\mathbb{R}^{h}, \operatorname{dim} W=2$, such that $\Gamma=W \cap \mathbb{Z}^{h}$ is a two-dimensional lattice. Let \mathcal{A} be a set of primitive points \boldsymbol{p} of $\Gamma,|\mathcal{A}| \geq 8$. Suppose that

$$
\begin{equation*}
A / 2<|\boldsymbol{p}| \leq A \quad(\boldsymbol{p} \in \mathcal{A}) \tag{3.7}
\end{equation*}
$$

and $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}$ in \mathbb{R}^{h} and V_{1}, V_{2} are such that

$$
\begin{align*}
9 A^{2} V_{j}<1 & (j=1,2), \tag{3.8}\\
\left|\boldsymbol{p e}_{j}-v_{j}(\boldsymbol{p})\right|<V_{j} & (j=1,2, \boldsymbol{p} \in \mathcal{A}) \tag{3.9}
\end{align*}
$$

where $v_{j}(\boldsymbol{p}) \in \mathbb{Z}$. Then there are linearly independent points $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$ of Γ for which

$$
\begin{align*}
& \left|\boldsymbol{p}_{1}\right|\left|\boldsymbol{p}_{2}\right| \ll A^{2}|\mathcal{A}|^{-1} \tag{3.10}\\
& \max \left(\left|\boldsymbol{p}_{1}\right|\left\|\boldsymbol{p}_{2} \boldsymbol{e}_{j}\right\|,\left|\boldsymbol{p}_{2}\right|\left\|\boldsymbol{p}_{1} \boldsymbol{e}_{j}\right\|\right) \ll V_{j} A|\mathcal{A}|^{-1} \quad(j=1,2) . \tag{3.11}
\end{align*}
$$

Proof. Let $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}$ be an orthonormal basis of W. We write each \boldsymbol{p} in \mathcal{A} as

$$
\boldsymbol{p}=(r \cos \alpha) \boldsymbol{w}_{1}+(r \sin \alpha) \boldsymbol{w}_{2}, r=r(\boldsymbol{p})>0, \alpha=\alpha(\boldsymbol{p}) \in[0,2 \pi) .
$$

Now for some $k, 0 \leq k \leq 3$, there is a subset \mathcal{A}^{\prime} of \mathcal{A} having

$$
\begin{aligned}
\left|\mathcal{A}^{\prime}\right| \geq|\mathcal{A}| / 4, \\
\alpha(\boldsymbol{p}) \in[k \pi / 2,(k+1) \pi / 2] \quad\left(\boldsymbol{p} \in \mathcal{A}^{\prime}\right) .
\end{aligned}
$$

Let $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \boldsymbol{r}_{1}, \boldsymbol{r}_{2}$ be chosen in \mathcal{A}^{\prime} so that $\alpha\left(\boldsymbol{q}_{1}\right)$ is least, $\alpha\left(\boldsymbol{q}_{2}\right)$ is greatest, and $\alpha\left(\boldsymbol{r}_{2}\right)-\alpha\left(\boldsymbol{r}_{1}\right)$ is positive and as small as possible. Clearly the $\alpha(\boldsymbol{p})\left(\boldsymbol{p} \in \mathcal{A}^{\prime}\right)$ are distinct, and

$$
\begin{align*}
0<\operatorname{det}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) & \ll A^{2}\left(\alpha\left(\boldsymbol{r}_{2}\right)-\alpha\left(\boldsymbol{r}_{1}\right)\right) \\
& \ll|\mathcal{A}|^{-1} A^{2}\left(\alpha\left(\boldsymbol{q}_{2}\right)-\alpha\left(\boldsymbol{q}_{1}\right)\right) \tag{3.12}\\
& \ll|\mathcal{A}|^{-1} \operatorname{det}\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) .
\end{align*}
$$

Let C be the index in Γ of the lattice Γ_{0} generated by $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}$. Then

$$
\begin{equation*}
C \Gamma \subset \Gamma_{0} \tag{3.13}
\end{equation*}
$$

We introduce the linear functions $E_{j}: W \rightarrow \mathbb{R}$ defined by

$$
E_{j}\left(\boldsymbol{q}_{1}\right)=v_{j}\left(\boldsymbol{q}_{1}\right), \quad E_{j}\left(\boldsymbol{q}_{2}\right)=v_{j}\left(\boldsymbol{q}_{2}\right)
$$

for $j=1,2$. We observe that

$$
\begin{equation*}
C E_{j}(\boldsymbol{x}) \in \mathbb{Z} \quad(\boldsymbol{x} \in \Gamma) \tag{3.14}
\end{equation*}
$$

from (3.13).
Let $f_{j}(\boldsymbol{x})=\boldsymbol{x} \boldsymbol{e}_{j}$ and $F_{j}=f_{j}-E_{j}$. Then

$$
\left|F_{j}\left(\boldsymbol{q}_{i}\right)\right|<V_{j} \quad(1 \leq i, j \leq 2)
$$

from (3.9). Moreover, given $\boldsymbol{p} \in \mathcal{A}^{\prime}, \boldsymbol{p}=x_{1} \boldsymbol{q}_{1}+x_{2} \boldsymbol{q}_{2}$, we have

$$
\left|x_{1}\right|=\frac{\operatorname{det}\left(\boldsymbol{p}, \boldsymbol{q}_{2}\right)}{\operatorname{det}\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right)} \leq 4, \quad\left|x_{2}\right|=\frac{\operatorname{det}\left(\boldsymbol{p}, \boldsymbol{q}_{1}\right)}{\operatorname{det}\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right)} \leq 4
$$

by (3.7) and the choice of $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}$. Hence

$$
\begin{equation*}
\left|F_{j}(\boldsymbol{p})\right|<8 V_{j} \tag{3.15}
\end{equation*}
$$

The integer

$$
k_{j}(\boldsymbol{p})=C\left(E_{j}(\boldsymbol{p})-v_{j}(\boldsymbol{p})\right)
$$

satisfies

$$
\left|k_{j}(\boldsymbol{p})\right| \leq C\left(\left|f_{j}(\boldsymbol{p})-v_{j}(\boldsymbol{p})\right|+\left|F_{j}(\boldsymbol{p})\right|\right)<9 C V_{j} \quad\left(\boldsymbol{p} \in \mathcal{A}^{\prime}\right)
$$

from (3.9), (3.15).
Taking $\boldsymbol{s}_{1}, s_{2}$ to be a basis of Γ, we see that

$$
C=\frac{\operatorname{det}\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right)}{\operatorname{det}\left(\boldsymbol{s}_{1}, s_{2}\right)} \leq \operatorname{det}\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \leq A^{2}
$$

and in view of (3.8),

$$
\left|k_{j}(\boldsymbol{p})\right|<9 A^{2} V_{j}<1
$$

Hence $k_{j}(\boldsymbol{p})=0$. In particular,

$$
\begin{equation*}
E_{j}(\boldsymbol{p}) \in \mathbb{Z} \quad(j=1,2) \tag{3.16}
\end{equation*}
$$

for all \boldsymbol{p} in \mathcal{A}^{\prime}.
The set Γ_{1} of \boldsymbol{p} in Γ satisfying (3.16) is clearly a two-dimensional lattice, and indeed

$$
\operatorname{det} \Gamma_{1} \leq \operatorname{det}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)
$$

By Minkowski's theorem, there are linearly independent points $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$ in Γ_{1} with

$$
\begin{align*}
\left|\boldsymbol{p}_{1}\right|\left|\boldsymbol{p}_{2}\right| & \ll \operatorname{det} \Gamma_{1} \leq \operatorname{det}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) \\
& \ll|\mathcal{A}|^{-1} \operatorname{det}\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \ll|\mathcal{A}|^{-1} A^{2} \tag{3.17}
\end{align*}
$$

on taking into account (3.12), (3.7).
Now let $u_{j, i}=E_{j}\left(\boldsymbol{p}_{i}\right)$. Then $u_{j, i}$ is an integer, and

$$
\begin{aligned}
\left|\boldsymbol{p}_{1}\right|\left|\boldsymbol{p}_{2} \boldsymbol{e}_{j}-u_{j, 2}\right| & =\left|\boldsymbol{p}_{1}\right|\left|F_{j}\left(\boldsymbol{p}_{2}\right)\right| \\
& \leq\left|\boldsymbol{p}_{1}\right|\left(\frac{\operatorname{det}\left(\boldsymbol{p}_{2}, \boldsymbol{q}_{2}\right)}{\operatorname{det}\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right)}\left|F_{j}\left(\boldsymbol{q}_{1}\right)\right|+\frac{\operatorname{det}\left(\boldsymbol{p}_{2}, \boldsymbol{q}_{1}\right)}{\operatorname{det}\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right)}\left|F_{j}\left(\boldsymbol{q}_{2}\right)\right|\right)
\end{aligned}
$$

(by the argument leading to (3.15))

$$
\begin{aligned}
& \leq \frac{\left|\boldsymbol{p}_{1}\right|\left|\boldsymbol{p}_{2}\right|\left(\left|\boldsymbol{q}_{2}\right|+\left|\boldsymbol{q}_{1}\right|\right) V_{j}}{\operatorname{det}\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right)} \\
& \ll|\mathcal{A}|^{-1} A V_{j}
\end{aligned}
$$

in view of (3.17). The same bound holds with $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$ interchanged. This completes the proof of Lemma 6.

Proof of Lemma 5. Suppose that alternative (i) does not hold. By a slight variant of the proof of [3], Lemma 7.5, there are numbers a and B such that

$$
\begin{gather*}
\Delta^{-1} \ll a \ll N^{\delta}, \tag{3.18}\\
B \gg N^{1-\delta} \Delta^{-1} a^{-1}, \tag{3.19}
\end{gather*}
$$

and there is a set \mathcal{B} of primitive points of Π with

$$
\begin{gather*}
a<|\boldsymbol{p}| \leq 2 a \quad(\boldsymbol{p} \in \mathcal{B}) \tag{3.20}\\
|\mathcal{B}| \gg N B^{-1}(\log N)^{-2} \tag{3.21}
\end{gather*}
$$

Further, for each \boldsymbol{p} in \mathcal{B} there are integers $q=q(\boldsymbol{p}), v_{1}=v_{1}(\boldsymbol{p}), v_{2}=v_{2}(\boldsymbol{p})$ satisfying

$$
\begin{gather*}
1 \leq q<a^{-2} B^{-2} N^{2+\delta} \tag{3.22}\\
\left(q, v_{1}, v_{2}\right)=1,\left(q, v_{2}\right)<N^{\delta} a^{-1} \tag{3.23}\\
\left|q \boldsymbol{a}_{i} \boldsymbol{p}-v_{i}\right|<a^{-1} B^{-2} N^{2-i+\delta} \quad(i=1,2) . \tag{3.24}
\end{gather*}
$$

Let us write $s=s(\boldsymbol{p})=\left(q, v_{2}\right), r=r(\boldsymbol{p})=q s^{-1}, v=v(\boldsymbol{p})=v_{2} s^{-1}$. Then we note that

$$
\begin{gather*}
r \geq 1, s \geq 1, r s<a^{-2} B^{-2} N^{2+\delta} \tag{3.25}\\
s\left|r \boldsymbol{a}_{2} \boldsymbol{p}-v\right|<a^{-1} B^{-2} N^{\delta},(r, v)=1 \tag{3.26}\\
\left|s r \boldsymbol{a}_{1} \boldsymbol{p}-v_{1}\right|<a^{-1} B^{-2} N^{1+\delta},\left(s, v_{1}\right)=1 \tag{3.27}\\
s<N^{\delta} a^{-1} \tag{3.28}
\end{gather*}
$$

There are now two cases to consider. Suppose first that

$$
\begin{equation*}
B \geq N^{1-3 \epsilon^{2}} \tag{3.29}
\end{equation*}
$$

Take any $\boldsymbol{p} \in \mathcal{B}$. Then alternative (ii) holds with this choice of \boldsymbol{p} and $q=q(\boldsymbol{p})$. For

$$
q<a^{-2} B^{-2} N^{2+\delta}<a^{-2} N^{\delta}<|\boldsymbol{p}|^{-2} N^{\delta}
$$

by (3.22), (3.29), (3.20), while

$$
\begin{aligned}
\left\|q \boldsymbol{a}_{i} \boldsymbol{p}\right\|<a^{-1} B^{-2} N^{2-i+\delta} & <a^{-1} N^{-i+\delta} \\
& <|\boldsymbol{p}|^{-1} N^{-i+\delta} \quad(i=1,2)
\end{aligned}
$$

by (3.24), (3.29), (3.20).
Now suppose that (3.29) is false. Clearly (3.21) yields a subset \mathcal{B}^{\prime} of \mathcal{B} with

$$
\left|\mathcal{B}^{\prime}\right| \geq|\mathcal{B}| N^{-\epsilon^{2}} \geq N^{2 \epsilon^{2}}, \quad U / 2<r(\boldsymbol{p}) \leq U<a^{-2} B^{-2} N^{2+\delta} \quad\left(\boldsymbol{p} \in \mathcal{B}^{\prime}\right)
$$

We apply Theorem 2 with ϵ^{2} in place of ϵ,

$$
\mathcal{A}=\Delta^{1 / h} \mathcal{B}^{\prime}, \boldsymbol{e}=\boldsymbol{a}_{2} \Delta^{-1 / h}, \ell(\boldsymbol{p})=r(\boldsymbol{p}), w(\boldsymbol{p})=v(\boldsymbol{p})
$$

Thus we may take

$$
\begin{array}{ll}
A=2 \Delta^{1 / h} a, & U<a^{-2} B^{-2} N^{2+\delta} \\
& V=a^{-1} B^{-2} N^{\delta}, M=U A
\end{array}
$$

in view of (3.20), (3.25), (3.26). We must verify (1.2), (1.3). We have

$$
\begin{align*}
M^{h-1+\epsilon^{2}} A V & \ll U^{h-1} A^{h} V N^{\delta} \tag{3.30}\\
& \ll a^{-h+1} B^{-2 h} N^{2 h-2+\delta} \Delta \\
& \ll \Delta^{2 h+1} N^{-2+\delta} \ll N^{-\delta}
\end{align*}
$$

from (3.19), (3.18), (3.1). Moreover,
$|\mathcal{A}| M^{-2 \epsilon^{2}}\left(M^{h} V\right)^{-h /(h+1)}$

$$
\begin{aligned}
& \gg N^{1-\delta} B^{-1}\left(a^{-h-1} B^{-2 h-2} N^{2 h} \Delta\right)^{-h /(h+1)} \\
& \gg N^{1-2 h^{2} /(h+1)-\delta} B^{2 h-1} a^{h} \Delta^{-h /(h+1)} \\
& \gg N^{2 h-2 h^{2} /(h+1)-\delta} \Delta^{-2 h+1-h /(h+1)} \gg M^{\delta}
\end{aligned}
$$

from (3.21), (3.19), (3.18), (3.1). This establishes that (1.2), (1.3) hold. Thus there is a subset \mathcal{A}_{1} of \mathcal{A} with

$$
\left|\mathcal{A}_{1}\right| \gg M^{2 \epsilon^{2}}
$$

and $r(\boldsymbol{p})=r$ for all \boldsymbol{p} in \mathcal{A}_{1}.
We now use Theorem 3 to find a subset \mathcal{A}_{2} of \mathcal{A} with

$$
\left|\mathcal{A}_{2}\right| \gg|\mathcal{A}| M^{-\delta} \gg N^{1-\delta} B^{-1}
$$

and $r(\boldsymbol{p})=r$ for all \boldsymbol{p} in \mathcal{A}_{2}. We take $\mathcal{A}, \boldsymbol{e}, \ell(\boldsymbol{p}), w(\boldsymbol{p}), A, U, V$ and M as above. We have $2 \leq m \leq h$. Since \mathcal{A}_{1} consists of primitive points, we can certainly take $n \geq 2$. It follows that

$$
U^{1+m-n} A^{m} V \ll M^{h-1} A V \ll N^{-\delta}
$$

Having 'fixed r ' on the set $\mathcal{B}_{1}=\Delta^{-1 / h} \mathcal{A}_{2}$ in (3.25)-(3.28), we now 'fix s '. In view of (3.20), (3.27), (3.28) we may apply Lemma 4 with \mathcal{B}_{1} in place of $\mathcal{A}, \boldsymbol{e}=r \boldsymbol{a}_{1}, \ell(\boldsymbol{p})=s(\boldsymbol{p}), w(\boldsymbol{p})=v_{1}(\boldsymbol{p})$, and with

$$
Z=(2 a)^{t}, \quad U=N^{\delta} a^{-1}, \quad V=a^{-1} B^{-2} N^{1+\delta}
$$

where t is the dimension of $\operatorname{Span} \mathcal{B}_{1}$. Now

$$
\begin{aligned}
Z U^{t} V \Delta N^{\delta} & \ll(2 a)^{t}\left(N^{\delta} a^{-1}\right)^{t} a^{-1} B^{-2} N^{1+\delta} \Delta \\
& \ll \Delta^{3} N^{-1+\delta} \ll N^{-\delta}
\end{aligned}
$$

from (3.19), (3.18), (3.1). Thus there is a subset \mathcal{B}_{2} of \mathcal{B}_{1} with

$$
\begin{equation*}
\left|\mathcal{B}_{2}\right| \gg\left|\mathcal{B}_{1}\right| N^{-\delta} \gg N^{1-\delta} B^{-1} \tag{3.31}
\end{equation*}
$$

with $s(\boldsymbol{p})$, and indeed $q(\boldsymbol{p})$, constant throughout \mathcal{B}_{2} :

$$
q(\boldsymbol{p})=q
$$

If \mathcal{B}_{2} contains three linearly independent points, it is clear that alternative (iv) of Lemma 5 holds. It remains to consider the case where $W=\operatorname{Span} \mathcal{B}_{2}$ has dimension 2. In that case, we apply Lemma 6 with ϵ^{2} in place of $\epsilon, \Delta^{1 / h} \mathcal{B}_{2}$ in place of \mathcal{A}, taking $\boldsymbol{e}_{j}=\Delta^{-1 / h} q \boldsymbol{a}_{j}(j=1,2)$, so that (3.7)-(3.9) hold with

$$
A=2 \Delta^{1 / h} a, \quad V_{j}=a^{-2} B^{-2} N^{2-j+\delta}
$$

The condition (3.8) is satisfied, since

$$
\Delta^{2 / h} a^{2} V_{j} \ll \Delta^{2 / h+2} N^{-1+\delta} \ll N^{-\delta} \quad(j=1,2)
$$

from (3.19), (3.18), (3.1). Let $\boldsymbol{p}_{1}^{\prime}, \boldsymbol{p}_{2}^{\prime}$ be the independent points of $W \cap \mathbb{Z}^{h}$ provided by Lemma 6 , and $\boldsymbol{p}_{i}=\Delta^{-1 / h} \boldsymbol{p}_{i}^{\prime}$. Then (3.3), (3.4), (3.5) follow from (3.10), (3.31), (3.22), (3.11). Thus alternative (iii) holds, and the proof of Lemma 5 is complete.

4 Proof of Theorem 1.

Lemma 7 Let $h \geq 1, \epsilon>0, N>C(h, \epsilon)$. Let Λ be an h-dimensional lattice in \mathbb{R}^{h} with

$$
\begin{gather*}
K_{0} \cap \Lambda=\{\mathbf{0}\} \\
d(\Lambda)^{h+1+\epsilon} \leq N \tag{4.1}
\end{gather*}
$$

For any $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}$ in \mathbb{R}^{h}, there is a natural number $n \leq N$ such that

$$
n^{2} \boldsymbol{a}_{2}+n \boldsymbol{a}_{1} \in K_{0}+\Lambda
$$

Proof. This is Theorem 7.2 of [3]. It contains the admissibility of $1 /\left(h^{2}+h\right)$ as a special case, as we see on taking $\Lambda=N^{1 /\left(h^{2}+h\right)-\epsilon} \mathbb{Z}^{h}$. (The methods of the present paper do not seem to be strong enough to sharpen Lemma 7 for a general lattice.)

The following lemma is a refinement of [3], Lemma 7.9. We give the proof in detail for the convenience of readers. The orthogonal complement of a subspace T in \mathbb{R}^{h} is denoted by T^{\perp}.

Lemma 8 Let Λ be an h-dimensional lattice in \mathbb{R}^{h} with polar latice Π. Let Π^{\prime} be a t-dimensional lattice contained in Π, let $T=\operatorname{Span} \Pi^{\prime}$, and let $\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{t}$ be a linearly independent set in Π^{\prime}. Then there is a natural number c,

$$
\begin{equation*}
c \ll \operatorname{det}\left(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{t}\right) / d\left(\Pi^{\prime}\right), \tag{4.2}
\end{equation*}
$$

having the following property. Given a in \mathbb{R}^{h}, ca may be written in the form

$$
\begin{equation*}
c \boldsymbol{a}=\boldsymbol{\ell}+\boldsymbol{s}+\boldsymbol{b} \tag{4.3}
\end{equation*}
$$

where $\ell \in \Lambda, s \in T^{\perp}$ and

$$
\begin{equation*}
|\boldsymbol{b}| \ll d\left(\Pi^{\prime}\right)^{-1} \max _{1 \leq i \leq t}\left|\boldsymbol{p}_{1}\right| \ldots\left|\boldsymbol{p}_{i-1}\right|\left\|\boldsymbol{p}_{i} \boldsymbol{a}\right\|\left|\boldsymbol{p}_{i+1}\right| \ldots\left|\boldsymbol{p}_{t}\right| . \tag{4.4}
\end{equation*}
$$

Proof. Let $\lambda_{1}, \ldots, \lambda_{t}$ be the successive minima of Π^{\prime} with respect to K_{0} and let $\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{t}$ be linearly independent points of Π^{\prime} with $\left|\boldsymbol{q}_{j}\right|=\lambda_{j}$. By Minkowski's theorem,

$$
\begin{equation*}
1 \leq v:=\frac{\operatorname{det}\left(\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{t}\right)}{d\left(\Pi^{\prime}\right)} \leq \frac{\left|\boldsymbol{q}_{1}\right| \ldots\left|\boldsymbol{q}_{t}\right|}{d\left(\Pi^{\prime}\right)} \ll 1 . \tag{4.5}
\end{equation*}
$$

Arguing as in the proof of Lemma 7.8 of [3], we find points $\boldsymbol{\ell}_{1}, \ldots, \boldsymbol{\ell}_{t}$ of $v^{-1} \Lambda$ such that

$$
\boldsymbol{\ell}_{i} \boldsymbol{q}_{j}=\left\{\begin{array}{l}
1 \text { if } i=j \tag{4.6}\\
0 \text { if } i \neq j
\end{array}\right.
$$

Let $\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{t}$ be an orthonormal basis of T, and write

$$
\boldsymbol{p}_{j}=p_{j 1} \boldsymbol{w}_{1}+\cdots+p_{j t} \boldsymbol{w}_{t}, \quad \boldsymbol{q}_{j}=q_{j 1} \boldsymbol{w}_{1}+\cdots+q_{j t} \boldsymbol{w}_{t}
$$

There are integers $c_{i j}$ such that

$$
v \boldsymbol{p}_{j}=c_{j 1} \boldsymbol{q}_{1}+\cdots+c_{j t} \boldsymbol{q}_{t} \quad(j=1, \ldots, t)
$$

Write $C=\left[c_{i j}\right], c=|\operatorname{det} C|$, and let $C_{i j}$ be the cofactor of $c_{i j}$ in C. Obviously

$$
v^{t} \operatorname{det}\left(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{t}\right)=c \operatorname{det}\left(\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{t}\right)
$$

Taking (4.5) into account, we obtain (4.2).
We now fix j and solve the t equations

$$
c_{j 1} q_{1 i}+\cdots+c_{j t} q_{t i}=v p_{j i} \quad(i=1, \ldots, t)
$$

for $c_{j s}$ by Cramer's rule. This yields

$$
\begin{aligned}
c_{j s} & \ll \frac{\left|\boldsymbol{q}_{1}\right| \ldots\left|\boldsymbol{q}_{s-1}\right|\left|\boldsymbol{p}_{j}\right|\left|\boldsymbol{q}_{s+1}\right| \ldots\left|\boldsymbol{q}_{t}\right|}{\operatorname{det}\left(\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{t}\right)} \\
& \ll\left|\boldsymbol{p}_{j}\right| /\left|\boldsymbol{q}_{s}\right|
\end{aligned}
$$

by (4.5). It follows that for $1 \leq i, r \leq t$,

$$
\begin{align*}
C_{i r} & \ll \frac{\left|\boldsymbol{p}_{1}\right| \ldots\left|\boldsymbol{p}_{i-1}\right|\left|\boldsymbol{p}_{i+1}\right| \ldots\left|\boldsymbol{p}_{t}\right|}{\left|\boldsymbol{q}_{1}\right| \ldots\left|\boldsymbol{q}_{r-1}\right|\left|\boldsymbol{q}_{r+1}\right| \ldots\left|\boldsymbol{q}_{t}\right|} \tag{4.7}\\
& \ll \frac{\left|\boldsymbol{p}_{1}\right| \ldots\left|\boldsymbol{p}_{i-1}\right|\left|\boldsymbol{p}_{i+1}\right| \ldots\left|\boldsymbol{p}_{t}\right|\left|\boldsymbol{q}_{r}\right|}{d\left(\Pi^{\prime}\right)} .
\end{align*}
$$

We are now ready to deduce the representation (4.3), (4.4). We have

$$
v \boldsymbol{p}_{j} \boldsymbol{a}=v x_{j}+P_{j},
$$

where $x_{j} \in \mathbb{Z}$ and $P_{j} \ll\left\|\boldsymbol{p}_{j} \boldsymbol{a}\right\|$. That is,

$$
c_{j 1} \boldsymbol{q}_{1} \boldsymbol{a}+\cdots+c_{j t} \boldsymbol{q}_{t} \boldsymbol{a}=v x_{j}+P_{j} \quad(j=1, \ldots, t)
$$

For a fixed i, we multiply the j-th equation by $C_{j i}$ and add to get

$$
c \boldsymbol{q}_{i} \boldsymbol{a}=v y_{i}+V_{i}
$$

where $y_{i} \in \mathbb{Z}$ and

$$
\begin{align*}
V_{i} & \ll \max _{j}\left|C_{j i} P_{j}\right| \\
& \ll \frac{\left|\boldsymbol{q}_{i}\right|}{d\left(\Pi^{\prime}\right)} \max _{j}\left|\boldsymbol{p}_{1}\right| \ldots\left|\boldsymbol{p}_{j-1}\right|\left\|\boldsymbol{p}_{j} \boldsymbol{a}\right\|\left|\boldsymbol{p}_{j+1}\right| \ldots\left|\boldsymbol{p}_{t}\right| \tag{4.8}
\end{align*}
$$

in view of (4.7).
Define $\boldsymbol{\ell}=v\left(y_{1} \boldsymbol{\ell}_{1}+\cdots+y_{t} \boldsymbol{\ell}_{t}\right)$; then $\boldsymbol{\ell} \in \Lambda$ and

$$
\boldsymbol{q}_{i}(c \boldsymbol{a}-\boldsymbol{\ell})=v y_{i}+V_{i}-v y_{i}=V_{i} \quad(i=1, \ldots, t)
$$

We now decompose $c \boldsymbol{a}-\boldsymbol{\ell}$ into

$$
c \boldsymbol{a}-\boldsymbol{\ell}=\boldsymbol{b}+\boldsymbol{s} \quad\left(\boldsymbol{b} \in T, \boldsymbol{s} \in T^{\perp}\right)
$$

and give a bound for $|\boldsymbol{b}|$. We have

$$
\boldsymbol{q}_{i} \boldsymbol{b}=\boldsymbol{q}_{i}(\boldsymbol{b}+\boldsymbol{s})=V_{i} \quad(i=1, \ldots, t)
$$

because $\boldsymbol{q}_{i} \in T$. Writing

$$
\boldsymbol{b}=b_{1} \boldsymbol{w}_{1}+\cdots+b_{t} \boldsymbol{w}_{t},
$$

we have the equations

$$
q_{i 1} b_{1}+\cdots+q_{i t} b_{t}=V_{i} \quad(i=1, \ldots, t)
$$

for b_{1}, \ldots, b_{t}. Solving by Cramer's rule,

$$
\begin{equation*}
\operatorname{det}\left(\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{t}\right) b_{j}= \pm\left(Q_{1 j} V_{1}+\cdots+Q_{t j} V_{t}\right) \tag{4.9}
\end{equation*}
$$

where $Q_{i j}$ is the cofactor of $q_{i j}$ in $\left[q_{r s}\right]$. Now

$$
\begin{equation*}
\left|Q_{i j}\right| \ll \prod_{\ell \neq i}\left|\boldsymbol{q}_{\ell}\right| \tag{4.10}
\end{equation*}
$$

We obtain
$\left|b_{j}\right| \ll d\left(\Pi^{\prime}\right)^{-1} \sum_{i=1}^{t}\left(\prod_{\ell \neq i}\left|\boldsymbol{q}_{\ell}\right|\right)\left|\boldsymbol{q}_{i}\right| d\left(\Pi^{\prime}\right)^{-1} \max _{k}\left|\boldsymbol{p}_{i}\right| \ldots\left|\boldsymbol{p}_{k-1}\right|\left\|\boldsymbol{p}_{k} \boldsymbol{a}\right\|\left|\boldsymbol{p}_{k+1}\right| \ldots\left|\boldsymbol{p}_{t}\right|$
on combining (4.8)-(4.10) and recalling (4.5). Now the lemma follows on a further application of (4.5).

Proof of Theorem 1. Let $\epsilon>0, h \geq 3, N>C(h, \epsilon)$. Take $\boldsymbol{\alpha}=$ $\left(\alpha_{1}, \ldots, \alpha_{h}\right), \boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{h}\right) \in \mathbb{R}^{h}$. Suppose that there is no natural number $n \leq N$ such that

$$
\begin{equation*}
\left\|\alpha_{i} n^{2}+\beta_{i} n\right\|<N^{\epsilon-\varphi} \quad(i=1, \ldots, h) \tag{4.11}
\end{equation*}
$$

where $\varphi^{-1}=h^{2}+h-1 / 2$. Write $\boldsymbol{a}_{2}=N^{\varphi-\epsilon} \boldsymbol{\alpha}, \boldsymbol{a}_{1}=N^{\varphi-\epsilon} \boldsymbol{\beta}, \Lambda=N^{\varphi-\epsilon} \mathbb{Z}^{h}$. Then there is no natural number $n \leq N$ such that

$$
n^{2} \boldsymbol{a}_{2}+n \boldsymbol{a}_{1} \in K_{0}+\Lambda
$$

Moreover, Λ satisfies the hypotheses of Lemma 5 with $\Delta=N^{h(\varphi-\epsilon)}$. Hence one of the cases (ii), (iii) or (iv) must hold. We apply Lemma 8, taking Π^{\prime} to be the lattice generated by \boldsymbol{p} in Case (ii); by $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}$ in Case (iii); and by $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \boldsymbol{p}_{3}$ in Case (iv). Let $\Lambda^{\prime}=\Lambda \cap T^{\perp}$. In each case, we have the inequality

$$
d\left(\Lambda^{\prime}\right) \ll d\left(\Pi^{\prime}\right) \Delta
$$

whenever $\operatorname{dim} T<h$ ([3], Lemma 7.8). Our choices of \boldsymbol{a} are $\boldsymbol{a}_{i}=q^{i} \boldsymbol{a}_{i}$ for $i=1,2$. We obtain the representation

$$
c q^{i} \boldsymbol{a}_{i}=\boldsymbol{\ell}_{i}+\boldsymbol{s}_{i}+\boldsymbol{b}_{i} \quad(i=1,2),
$$

where $\boldsymbol{\ell}_{i} \in \Lambda, \boldsymbol{s}_{i} \in T^{\perp}$ and

$$
\begin{equation*}
c \ll 1, \quad\left|\boldsymbol{b}_{i}\right| \ll|\boldsymbol{p}|^{-1}\left\|\boldsymbol{p}^{i} \boldsymbol{a}_{i}\right\| \tag{4.12}
\end{equation*}
$$

in Case (ii),

$$
\begin{equation*}
c \ll\left|\boldsymbol{p}_{1}\right|\left|\boldsymbol{p}_{2}\right| / d\left(\Pi^{\prime}\right),\left|\boldsymbol{b}_{i}\right| \ll d\left(\Pi^{\prime}\right)^{-1}\left|\boldsymbol{p}_{1}\right|\left\|\boldsymbol{p}_{2} q^{i} \boldsymbol{a}\right\| \tag{4.13}
\end{equation*}
$$

in Case (iii),

$$
\begin{equation*}
c \ll\left|\boldsymbol{p}_{1}\right|\left|\boldsymbol{p}_{2}\right|\left|\boldsymbol{p}_{3}\right| / d\left(\Pi^{\prime}\right),\left|\boldsymbol{b}_{i}\right| \ll d\left(\Pi^{\prime}\right)^{-1}\left|\boldsymbol{p}_{1}\right|\left|\boldsymbol{p}_{2}\right|\left\|\boldsymbol{p}_{3} q^{i} \boldsymbol{a}_{i}\right\| \tag{4.14}
\end{equation*}
$$

in Case (iv). (We permit renumbering of the \boldsymbol{p}_{i} in Cases (iii), (iv).)
We now apply Lemma 8 in the space T^{\perp}, whose dimension we denote by t. We replace ϵ by ϵ^{2}, Λ by $2 \Lambda^{\prime}, \boldsymbol{a}_{i}$ by $2 c^{i-1} \boldsymbol{s}_{i}$ and N by $d\left(2 \Lambda^{\prime}\right)^{t+1} N^{\delta}$. Thus if $t>0$ there is a natural number x,

$$
\begin{equation*}
x \leq d\left(2 \Lambda^{\prime}\right)^{t+1} N^{\delta} \ll d\left(\Pi^{\prime}\right)^{t+1} \Delta^{t+1} N^{\delta}, \tag{4.15}
\end{equation*}
$$

such that

$$
2 x^{2} c \boldsymbol{s}_{2}+2 x \boldsymbol{s}_{1} \in 2 \Lambda^{\prime}+K_{0} .
$$

This implies

$$
\begin{equation*}
x^{2} c \boldsymbol{s}_{2}+x \boldsymbol{s}_{1} \in \Lambda+\frac{1}{2} K_{0} . \tag{4.16}
\end{equation*}
$$

If $t=0$, we take $x=1$. Of course (4.16) holds, since $\boldsymbol{s}_{1}=\boldsymbol{s}_{2}=\mathbf{0}$.
Now let $n=x c q$. We shall show that

$$
\begin{align*}
n & \ll N^{1-\delta}, \tag{4.17}\\
x^{i} c^{i-1}\left|\boldsymbol{b}_{i}\right| & \ll N^{-\delta} \quad(i=1,2) . \tag{4.18}
\end{align*}
$$

Suppose for a moment that (4.17), (4.18) hold. We see that the natural number $n \leq N$ satisfies

$$
\begin{aligned}
n^{2} \boldsymbol{a}_{2}+n \boldsymbol{a}_{1} & =x^{2} c\left(\boldsymbol{\ell}_{2}+\boldsymbol{s}_{2}+\boldsymbol{b}_{2}\right)+x\left(\boldsymbol{\ell}_{1}+\boldsymbol{s}_{1}+\boldsymbol{b}_{1}\right) \\
& =\left(x^{2} c \boldsymbol{s}_{2}+x \boldsymbol{s}_{1}\right)+\left(x^{2} c \boldsymbol{b}_{2}+x \boldsymbol{b}_{1}\right)+\boldsymbol{\ell}
\end{aligned}
$$

where $\boldsymbol{\ell} \in \Lambda$. Taking (4.16)-(4.18) into account,

$$
n^{2} \boldsymbol{a}_{2}+n \boldsymbol{a}_{1} \in \Lambda+K_{0} .
$$

This contradicts our hypothesis. Hence there must be a solution of (4.11) after all, and the proof is complete.

It remains to prove (4.17), (4.18). Consider Case (ii) first. Here $t=h-1$,

$$
\begin{aligned}
n=x c q & \ll d\left(\Pi^{\prime}\right)^{h} \Delta^{h} q N^{\delta} \\
& \ll|\boldsymbol{p}|^{h} \Delta^{h}|\boldsymbol{p}|^{-2} N^{\delta} \ll \Delta^{h} N^{\delta} \ll N^{1-\delta}
\end{aligned}
$$

from (4.15), (4.12), (3.2), (3.1). Further

$$
\begin{aligned}
x^{i} c^{i-1}\left|\boldsymbol{b}_{i}\right| & \ll d\left(\Pi^{\prime}\right)^{h i} \Delta^{h i}|\boldsymbol{p}|^{-1} q^{i-1}\left\|q \boldsymbol{p} \boldsymbol{a}_{i}\right\| \\
& \ll|\boldsymbol{p}|^{h i-1} \Delta^{h i}|\boldsymbol{p}|^{-2 i+1} N^{\delta-i} \\
& \ll\left(\Delta^{h} N^{-1+\delta}\right)^{i} \ll N^{-\delta},
\end{aligned}
$$

again from (4.15), (4.12), (3.2), (3.1).
Now consider Case (iii). Here $t=h-2$,

$$
\begin{aligned}
n=x c q & \ll d\left(\Pi^{\prime}\right)^{h-1} \Delta^{h-1}\left|\boldsymbol{p}_{1}\right|\left|\boldsymbol{p}_{2}\right| d\left(\Pi^{\prime}\right)^{-1} a^{-2} B^{-2} N^{2+\delta} \\
& \ll\left(\left|\boldsymbol{p}_{1}\right|\left|\boldsymbol{p}_{2}\right|\right)^{h-1} \Delta^{h-1} a^{-2} B^{-2} N^{2+\delta}
\end{aligned}
$$

from (4.15), (4.13), (3.4), and since

$$
\begin{equation*}
d\left(\Pi^{\prime}\right) \leq\left|\boldsymbol{p}_{1}\right|\left|\boldsymbol{p}_{2}\right| . \tag{4.19}
\end{equation*}
$$

Recalling (3.3),

$$
\begin{aligned}
n & \ll\left(a^{2} N^{-1} B\right)^{h-1} \Delta^{h-1} a^{-2} B^{-2} N^{2+\delta} \\
& \ll a^{2 h-4} B^{h-3} N^{-h+3+\delta} \Delta^{h-1} \\
& \ll \Delta^{h-1} N^{\delta} \ll N^{1-\delta}
\end{aligned}
$$

since $a<N^{\delta}, B<N$. Similarly,

$$
x^{i} c^{i-1}\left|\boldsymbol{b}_{i}\right| \ll d\left(\Pi^{\prime}\right)^{(h-1) i} \Delta^{(h-1) i} N^{\delta}\left(\left|\boldsymbol{p}_{1}\right|\left|\boldsymbol{p}_{2}\right|\right)^{i-1} d\left(\Pi^{\prime}\right)^{-i}\left|\boldsymbol{p}_{1}\right| q^{i-1}\left\|q \boldsymbol{p}_{2} \boldsymbol{a}_{i}\right\|
$$

(from (4.15), (4.13))

$$
\ll\left(\left|\boldsymbol{p}_{1}\right|\left|\boldsymbol{p}_{2}\right|\right)^{(h-1) i-1} \Delta^{(h-1) i}\left(a^{-2} B^{-2} N^{2}\right)^{i-1} B^{-1} N^{1-i+\delta}
$$

(from (4.19), (3.4), (3.5))

$$
\begin{aligned}
& \ll \Delta^{(h-1) i}\left(a^{2} N^{-1} B\right)^{(h-1) i-1}\left(a^{-2} B^{-2} N^{2}\right)^{i-1} a^{-1} B^{-1} N^{1-i+\delta} \\
& \ll\left(\Delta^{h-1} a^{2 h-5} B^{h-3} N^{-h+2+\delta}\right)^{i} \ll\left(\Delta^{h-1} N^{-1+\delta}\right)^{i} \\
& \ll N^{-\delta}
\end{aligned}
$$

from (3.3), (3.1).
Finally, consider Case (iv). Here $t=h-3$. Suppose first that $t>0$. Then

$$
\begin{aligned}
n=x c q & \ll d\left(\Pi^{\prime}\right)^{h-2} \Delta^{h-2}\left|\boldsymbol{p}_{1}\right|\left|\boldsymbol{p}_{2}\right|\left|\boldsymbol{p}_{3}\right| d\left(\Pi^{\prime}\right)^{-1} N^{\delta} \Delta^{2} \\
& \ll \Delta^{h} N^{\delta} \ll N^{1-\delta}
\end{aligned}
$$

from (4.15), (4.14), (3.6) and the bounds

$$
\begin{equation*}
d\left(\Pi^{\prime}\right) \leq\left|\boldsymbol{p}_{1}\right|\left|\boldsymbol{p}_{2}\right|\left|\boldsymbol{p}_{3}\right|<N^{\delta} . \tag{4.20}
\end{equation*}
$$

Similarly,

$$
x^{i} c^{i-1}\left|\boldsymbol{b}_{i}\right| \ll d\left(\Pi^{\prime}\right)^{(h-2) i} \Delta^{(h-2) i} N^{\delta}\left(\left|\boldsymbol{p}_{1}\right|\left|\boldsymbol{p}_{2}\right|\left|\boldsymbol{p}_{3}\right|\right)^{i-1} d\left(\Pi^{\prime}\right)^{-i}\left|\boldsymbol{p}_{1}\right|\left|\boldsymbol{p}_{2}\right| q^{i-1}\left\|q \boldsymbol{p}_{3} \boldsymbol{a}_{i}\right\|
$$

(from (4.15), (4.14))

$$
\ll \Delta^{(h-2) i+2(i-1)+2} N^{\delta-i}
$$

(from (4.20), (3.6))

$$
\ll\left(\Delta^{h} N^{-1+\delta}\right)^{i} \ll N^{-\delta} .
$$

We argue a little differently in Case (iv) if $h=3, t=0$. We have $\Pi^{\prime}=\Pi$,

$$
\begin{aligned}
n=c q & \ll\left|\boldsymbol{p}_{1}\right|\left|\boldsymbol{p}_{2}\right|\left|\boldsymbol{p}_{3}\right| d\left(\Pi^{\prime}\right)^{-1} \Delta^{2} N^{\delta} \\
& \ll \Delta^{3} N^{\delta} \ll N^{1-\delta}
\end{aligned}
$$

from (4.14), (3.6), (4.20). Similarly,

$$
\begin{aligned}
c^{i-1}\left|\boldsymbol{b}_{i}\right| & \ll\left(\left|\boldsymbol{p}_{1}\right|\left|\boldsymbol{p}_{2}\right|\left|\boldsymbol{p}_{3}\right|\right)^{i-1} d\left(\Pi^{\prime}\right)^{-i}\left|\boldsymbol{p}_{1}\right|\left|\boldsymbol{p}_{2}\right| q^{i-1}\left\|q \boldsymbol{p}_{3} \boldsymbol{a}_{i}\right\| \\
& \ll \Delta^{i+2(i-1)+2} N^{-i+\delta} \ll N^{-\delta}
\end{aligned}
$$

from (4.14), (3.6), (4.20). We have now obtained (4.17), (4.18) in all cases, and the proof of Theorem 1 is complete.

References

[1] R. C. Baker, Fractional parts of several polynomials II. Mathematika 25 (1978), 76-93.
[2] R. C. Baker, Fractional parts of several polynomials III. Quart. J. Math. Oxford (2) 31 (1980), 19-36.
[3] R. C. Baker, Diophantine Inequalities, Oxford University Press, 1986.
[4] R. C. Baker, Correction to 'Weyl sums and Diophantine approximation', J. London Math. Soc. (2) 46 (1992), 202-204.
[5] I. Danicic, Contributions to number theory, Ph.D. thesis, University of London, 1957.
[6] S. Schäffer, Fractional parts of pairs of quadratic polynomials, J. London Math. Soc. (2) 51 (1995), 429-441.
[7] W. M. Schmidt, Small fractional parts of polynomials, Regional Conference Series 32, American Mathematical Society, 1977.
[8] W. M. Schmidt, Diophantine approximation and Diophantine equations, Lecture Notes in Mathematics 1467, Springer 1991.

Department of Mathematics
Brigham Young University
Provo, Utah 84602
U. S. A.
baker@math.byu.edu

