Math 341 Exam 1 Preparation Sheet Supplement

This is a supplement to the "You should be able to" section of the Exam 1 preparation sheet. For each true/false exercise, if a statement is true, justify why it is true or provide a proof, and if a statement is false, justify why it is false or provide a counterexample.

1. Find the least upper bound (supremum) and the greatest lower bound (infimum) of a bounded set.

(a)
$$\sup\left\{\frac{n+1}{2n+2}: n \in \mathbb{N}\right\} = 1$$

(b)
$$\inf\left\{\frac{1-n}{n}: n \in \mathbb{N}\right\} = -1.$$

2. Compute, compare, and prove results on cardinality.

- (a) The set of all functions from \mathbb{N} to \mathbb{N} is countable.
- (b) The power set $\mathcal{P}(A)$ of a finite set A satisfies $|\mathcal{P}(A)| > |A|$.
- 3. Prove that a sequence converges using the ϵ -N definition.

(a)
$$\lim_{n \to \infty} \frac{1}{n^2 + 1} = 0.$$

(b) $\lim_{n \to \infty} \frac{(-1)^n n}{n+3} = 1.$

(c)
$$\lim_{n \to \infty} \frac{2n+5}{n+2} = 2$$
.

(d) $\lim_{n \to \infty} \frac{(-1)^n}{2^n} = 0.$

4. Prove limit theorems for sequences.

- (a) If (a_n) converges to a and $c \in \mathbb{R}$, then (ca_n) converges to ca.
- (b) Let $c \in \mathbb{R}$. If (a_n) converges to a and satisfies $c \leq a_n$ for all n, then $c \leq a$.

5. Prove a sequence is monotone and bounded, and find its limit.

- (c) Let $x_1 = 1$ and define x_n recursively by $x_{n+1} = (1/4)x_n + 1$. Then (x_n) is monotone and bounded, with limit 4/3.
- (b) Let $a_1 = 1$ and define a_n recursively by $a_{n+1}^2 = a_n + 1$. Then (a_n) is monotone and bounded, with limit $(1 + \sqrt{5})/2$.
- (c) Let $w_1 = 1$ and define w_n recursively by $w_{n+1} = 2/w_n^2$. Then (w_n) is monotone and bounded with limit $2^{1/3}$.

- 6. Construct convergent subsequences and prove properties of subsequences.
 - (a) Let $x_1 = 1/2$ and define x_n recursively by $x_{n+1} = (1 x_n)/2$. The sequence (x_n) has a monotone decreasing subsequence whose limit is 1/3. [Hint: consider the subsequence x_1, x_3, x_5, \dots]
 - (b) If a sequence (x_n) has two convergent subsequences, then (x_n) converges.
- 7. Prove a sequence is Cauchy and know the consequences.
 - (a) If (x_n) is Cauchy, then for any constant c, the sequence (cx_n) is Cauchy.
 - (b) For a sequence (x_n) , if $|x_{n+1} x_n| < 2^{-n}$ for all $n \in \mathbb{N}$, then (x_n) is Cauchy.
 - (c) If a sequence is Cauchy, then it converges.
- 8. Prove convergence for a series using the Tests in Section 2.7.

(a) The series
$$\sum_{n=1}^{\infty} \frac{n}{n^4 + 1}$$
 converges.
(b) The series $\sum_{n=1}^{\infty} \frac{n+1}{2n-1}$ converges
(c) The series $\sum_{n=1}^{\infty} \frac{\sin(n)}{n^2}$ converges conditionally.
(d) The series $\sum_{n=1}^{\infty} \frac{(-1)^n (n^2 - 1)}{n^3}$ converges absolutely.

- 9. Prove basic properties for convergent series.
 - (a) A series $\sum a_n$ converges if and only if for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$|a_{m+1} + a_{m+2} + \dots + a_n| < \epsilon$$

for all $n > m \ge N$.

(b) If $\sum a_n$ converges, then for a constant c, the series $\sum ca_n$ converges as well.