
Math 341 Exam 2 Preparation Sheet
Supplement

This is a supplement to the “You should be able to” section of the Exam 2 preparation
sheet. This details some of the basic techniques used in many of the proofs you have
seen. Some of the basic techniques are illustrated through examples. For the true/false
exercises, if a statement is true, justify why it is true or provide a proof, and if a statement
is false, justify why it is false or provide a counterexample.

1. Prove or disprove statements about convergence of infinite series.

• One way to show that a series
∑∞

n=1 an converges is by applying the Cauchy Criterion.

Example. Prove that if
∑∞

n=1 an converges absolutely and (bn) is a bounded sequence,
then

∑∞
n=1 anbn converges.

Let M > 0 be a bound on the bounded sequence (bn), i.e., |bn| ≤M for all n ∈ N.

By the Cauchy Criterion, we have for ε > 0 the existence of N ∈ N such that for all
n > m ≥ N we have

|am+1|+ |am+2|+ · · ·+ |an| <
ε

M
.

Then

|am+1bm+1|+ |am+2bm+2|+ · · ·+ |anbn| ≤ |am+1|M + |am+2|M + · · ·+ |an|M
= M(|am+1|+ |am+2|+ · · ·+ |an|)

≤M
( ε

M

)
= ε.

By the Cauchy Criterion, the series
∑∞

n=1 |anbn| converges.

Hence the series
∑∞

n=1 anbn converges absolutely.

By the Absolute Convergence Test, the series
∑∞

n=1 anbn converges.

Exercises. Decide which of the following statements are true or false.

(a) There exists two divergent series
∑∞

n=1 xn,
∑∞

n=1 yn such that
∑∞

n=1 xnyn converges.

(b) If
∑∞

n=1 an converges conditionally, then
∑∞

n=1 n
2an diverges.

2. Prove or disprove sets are open and closed and know the consequences of both.

• One shows that a subset O of R is open by (a) exhibiting for each x ∈ O a Vε(x) ⊆ O,
or (b) showing that Oc is closed.

Example. Show that O =
∞⋃
n=3

[
1

n
, 1− 1

n

]
is open.

For x ∈ O there exists m ≥ 3 such that

x ∈
[

1

m
, 1− 1

m

]
.
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Because m+ 1 > m, we have

x ∈
[

1

m
, 1− 1

m

]
⊆
(

1

m+ 1
, 1− 1

m+ 1

)
⊆
[

1

m+ 1
, 1− 1

m+ 1

]
⊆ O.

Choose

ε = min

{
x− 1

m+ 1
, 1− 1

m+ 1
− x
}
.

Then

Vε(x) ⊆
(

1

m+ 1
, 1− 1

m+ 1

)
⊆ O

and so O is open. [Here of course O = (0, 1).]

• One shows that a subset C of R is closed by (a) showing that Cc is open, or (b) that
C contains all of its limit points.

For option (b) here, one starts with a limit point x of C and a convergent sequence (xn)
in C with x = limxn and x 6= xn for all n ∈ N, and shows that x ∈ C.

Example. Show that C =
∞⋂
m=1

[
− 1

m
, 1 +

1

m

]
is closed.

Let x be a limit point C.

Then there is a sequence (xn) in C with xn 6= x for all n ∈ N and xn → x.

Because xn ∈ C we have

− 1

m
≤ xn ≤ 1 +

1

m
for all m ∈ N.

By the Order Limit Theorem we have

− 1

m
≤ x ≤ 1 +

1

m
for all m ∈ N.

Thus x ∈ C as well, so that C is closed. [Here of course C = [0, 1].]

• Exercises. Decide which of the following statements are true or false.

(a) If a subset A of R has an isolated point, it cannot be open.

(b) Every finite set is closed.

(c) If O is an open subset of R that contains Q, then O = R.

3. Determine if a point is a limit point or an isolated point of a given subset A of R.

• One shows that a point x is a limit point of A by constructing a sequence (xn) in A
with xn 6= x for all n ∈ N and xn → x.

Example. The middle thirds Cantor set C is the countable intersection of closed subsets
Cn of [0, 1].
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We show that each x ∈ C is a limit point of C as follows.

For each n ∈ N the point x belongs to one of the distinct 2n closed subintervals of Cn,
each of length 1/3n.

We choose xn to be an endpoint of a closed subinterval of Cn that is adjacent to the
closed subinterval containing x.

In this way the sequence (xn) is in C with xn 6= x for all n ∈ N.

We get convergence of (xn) to x because the distance between adjacent closed subintervals
of Cn goes to 0 as n→∞.

• One shows that a point a ∈ A is an isolated point of A by finding a Vε(a) such that
A ∩ Vε(a) = {a}.
Example. Usually isolated points are easy to spot, as in the set A = [0, 1] ∪ {2}.
• Exercises. Decide which of the following statements are true or false.

(a) If A is a bounded subset of R, then s = supA is a limit point of A.

(b) Every point in the set

A =

{
(−1)nn

n+ 1
: n ∈ N

}
is isolated.

4. Find the closure of a given subset A of R.

• This requires identifying the set of limit points L of A since the closure of A is A = A∪L.

Example. The closure of A = {1/n : n ∈ N} is A ∪ {0} because 0 is the only limit point
of A.

• Exercises. Decide which of the following statements are true or false.

(a) For any subset A of R, the set A
c

is open.

(b) A subset A of R is closed if and only if A = A.

5. Know the properties of compact sets and how to determine if A ⊆ R is compact.

• One shows that A is compact by showing that A is closed and bounded (Heine-Borel
Theorem).

Example. The middle thirds Cantor set C is bounded because it is a subset of the
bounded set [0, 1].

It is closed because its complement is the union of open intervals, and hence open:

Cc = (−∞, 0) ∪ (1,∞) ∪

(
∞⋃
n=1

Cc
n

)
.

• Exercises. Decide which of the following statements are true or false.
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(a) If A1, A2, A3, . . . are compact subsets of R, then

∞⋂
n=1

An

is compact as well.

(a) If closed subsets An, n ∈ N satisfy A1 ⊇ A2 ⊇ A3 ⊇ · · ·, then

∞⋂
n=1

An

is compact as well.

6. Determine if a subset A of R is perfect.

• One shows that A is perfect by showing it is nonempty, closed, and does not contain
isolated point.

Example. The Cantor set C is perfect because it is nonempty (it contains the rational
endpoints of every Cn), it is closed, and as reviewed earlier, it has no isolated points.

• Exercises. Decide which of the following statements are true or false.

(a) A perfect set is uncountable.

(b) If C is the middle thirds Cantor set, then C ∩ [0, 1/2] is perfect.

(c) If C is the middle thirds Cantor set, then C ∩Q is perfect.

7. Determine if a set is disconnected or connected and know the consequences.

• One shows that a subset E of R is disconnected if there are sets A and B with E = A∪B
such that A ∩B = ∅ and A ∩B = ∅.
• One shows that a subset E of R is connected if for every pair of sets A and B with
E = A ∪B, we have that A ∩B 6= ∅ or A ∩B 6= ∅.
Example. The set Q is disconnected because A = Q ∩ (−∞,

√
2) and B = Q ∩ (

√
2,∞)

satisfy Q = A ∪B with A ∩B = ∅ and A ∩B = ∅.
• Exercises. Decide which of the following statements are true or false.

(a) The middle thirds Cantor set C is disconnected.

(b) The only connected subsets of R are the intervals.

8. Find the limit of a function if it exists or be able to prove one does not exist.

• One show for f : A → R and c a limit point of A, that f(x) → L if for every ε > 0
there exists δ > 0 such that |f(x)− L| < ε whenever 0 < |x− c| < δ with x ∈ A.
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Example. Let f : R→ R be defined by f(x) = 2x, and let c = 1.

We guess the limit of f(x) as x→ 1 to be L = 2.

To confirm this guess, we want to control |f(x)− L| = |2x− 2| = 2|x− 1|.
Choosing δ = ε/2 we have |f(x)− L| < 2(ε/2) = ε whenever 0 < |x− 1| < δ.

• One shows that a limit of a function f(x) does not exist as x → c by finding two
sequences (xn) and (yn) in A such that xn → c, yn → c, but that lim f(xn) 6= lim f(yn).

Example. The function

g(x) =

{
sin(1/x2) if x 6= 0,

0 if x = 0,

is not continuous at c = 0 because the sequences

xn =
1√
2nπ

, yn =
1√

2nπ + π/2

both converge to 0 but f(xn) = 0 and f(yn) = 1 for all n ∈ N.

• Exercises. Decide which of the following statements are true or false.

(a) lim
x→1

(x2 + x) = 2.

(b) lim
x→0

sin(lnx) = 0.

9. Determine if a function if continuous at a point and what this implies.

• One shows that f : A → R is continuous at a limit point c ∈ A by one of the four
characterizations of continuity such as if (xn) → c with xn ∈ A for all n ∈ N, then
f(xn)→ f(c).

Example. The function g : R→ R defined by

g(x) =

{
x sin(1/x2) if x 6= 0,

0 if x = 0,

is continuous at c = 0 because for any sequence (xn) with xn 6= 0 for all N and xn → 0
we have | sin(1/x2n)| is bounded by 1 and |xn| → 0, so that |xn sin(1/x2n)| → 0.

• Exercises. Decide which of the following statements are true or false.

(a) Let C be the middle third Cantor set, and define g : [0, 1]→ R by

g(x) =

{
1 if x ∈ C,
0 if x 6∈ C.

The function g is continuous at every c ∈ C.

(b) If f : A→ R and g : A→ R are both continuous at c ∈ A, then f + g is continuous
at c.
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