Math 341 Exam 2 Preparation Sheet
 Supplement

This is a supplement to the "You should be able to" section of the Exam 2 preparation sheet. This details some of the basic techniques used in many of the proofs you have seen. Some of the basic techniques are illustrated through examples. For the true/false exercises, if a statement is true, justify why it is true or provide a proof, and if a statement is false, justify why it is false or provide a counterexample.

1. Prove or disprove statements about convergence of infinite series.

- One way to show that a series $\sum_{n=1}^{\infty} a_{n}$ converges is by applying the Cauchy Criterion. Example. Prove that if $\sum_{n=1}^{\infty} a_{n}$ converges absolutely and $\left(b_{n}\right)$ is a bounded sequence, then $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges.
Let $M>0$ be a bound on the bounded sequence $\left(b_{n}\right)$, i.e., $\left|b_{n}\right| \leq M$ for all $n \in \mathbb{N}$.
By the Cauchy Criterion, we have for $\epsilon>0$ the existence of $N \in \mathbb{N}$ such that for all $n>m \geq N$ we have

$$
\left|a_{m+1}\right|+\left|a_{m+2}\right|+\cdots+\left|a_{n}\right|<\frac{\epsilon}{M} .
$$

Then

$$
\begin{aligned}
\left|a_{m+1} b_{m+1}\right|+\left|a_{m+2} b_{m+2}\right|+\cdots+\left|a_{n} b_{n}\right| & \leq\left|a_{m+1}\right| M+\left|a_{m+2}\right| M+\cdots+\left|a_{n}\right| M \\
& =M\left(\left|a_{m+1}\right|+\left|a_{m+2}\right|+\cdots+\left|a_{n}\right|\right) \\
& \leq M\left(\frac{\epsilon}{M}\right)=\epsilon
\end{aligned}
$$

By the Cauchy Criterion, the series $\sum_{n=1}^{\infty}\left|a_{n} b_{n}\right|$ converges.
Hence the series $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges absolutely.
By the Absolute Convergence Test, the series $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges.
Exercises. Decide which of the following statements are true or false.
(a) There exists two divergent series $\sum_{n=1}^{\infty} x_{n}, \sum_{n=1}^{\infty} y_{n}$ such that $\sum_{n=1}^{\infty} x_{n} y_{n}$ converges.
(b) If $\sum_{n=1}^{\infty} a_{n}$ converges conditionally, then $\sum_{n=1}^{\infty} n^{2} a_{n}$ diverges.
2. Prove or disprove sets are open and closed and know the consequences of both.

- One shows that a subset O of \mathbb{R} is open by (a) exhibiting for each $x \in O$ a $V_{\epsilon}(x) \subseteq O$, or (b) showing that O^{c} is closed.
Example. Show that $O=\bigcup_{n=3}^{\infty}\left[\frac{1}{n}, 1-\frac{1}{n}\right]$ is open.
For $x \in O$ there exists $m \geq 3$ such that

$$
x \in\left[\frac{1}{m}, 1-\frac{1}{m}\right] .
$$

Because $m+1>m$, we have

$$
x \in\left[\frac{1}{m}, 1-\frac{1}{m}\right] \subseteq\left(\frac{1}{m+1}, 1-\frac{1}{m+1}\right) \subseteq\left[\frac{1}{m+1}, 1-\frac{1}{m+1}\right] \subseteq O .
$$

Choose

$$
\epsilon=\min \left\{x-\frac{1}{m+1}, 1-\frac{1}{m+1}-x\right\} .
$$

Then

$$
V_{\epsilon}(x) \subseteq\left(\frac{1}{m+1}, 1-\frac{1}{m+1}\right) \subseteq O
$$

and so O is open. [Here of course $O=(0,1)$.]

- One shows that a subset C of \mathbb{R} is closed by (a) showing that C^{c} is open, or (b) that C contains all of its limit points.
For option (b) here, one starts with a limit point x of C and a convergent sequence (x_{n}) in C with $x=\lim x_{n}$ and $x \neq x_{n}$ for all $n \in \mathbb{N}$, and shows that $x \in C$.

Example. Show that $C=\bigcap_{m=1}^{\infty}\left[-\frac{1}{m}, 1+\frac{1}{m}\right]$ is closed.
Let x be a limit point C.
Then there is a sequence $\left(x_{n}\right)$ in C with $x_{n} \neq x$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow x$.
Because $x_{n} \in C$ we have

$$
-\frac{1}{m} \leq x_{n} \leq 1+\frac{1}{m} \text { for all } m \in \mathbb{N}
$$

By the Order Limit Theorem we have

$$
-\frac{1}{m} \leq x \leq 1+\frac{1}{m} \text { for all } m \in \mathbb{N}
$$

Thus $x \in C$ as well, so that C is closed. [Here of course $C=[0,1]$.]

- Exercises. Decide which of the following statements are true or false.
(a) If a subset A of \mathbb{R} has an isolated point, it cannot be open.
(b) Every finite set is closed.
(c) If O is an open subset of \mathbb{R} that contains \mathbb{Q}, then $O=\mathbb{R}$.

3. Determine if a point is a limit point or an isolated point of a given subset A of \mathbb{R}.

- One shows that a point x is a limit point of A by constructing a sequence $\left(x_{n}\right)$ in A with $x_{n} \neq x$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow x$.
Example. The middle thirds Cantor set C is the countable intersection of closed subsets C_{n} of $[0,1]$.

We show that each $x \in C$ is a limit point of C as follows.
For each $n \in \mathbb{N}$ the point x belongs to one of the distinct 2^{n} closed subintervals of C_{n}, each of length $1 / 3^{n}$.
We choose x_{n} to be an endpoint of a closed subinterval of C_{n} that is adjacent to the closed subinterval containing x.
In this way the sequence $\left(x_{n}\right)$ is in C with $x_{n} \neq x$ for all $n \in \mathbb{N}$.
We get convergence of $\left(x_{n}\right)$ to x because the distance between adjacent closed subintervals of C_{n} goes to 0 as $n \rightarrow \infty$.

- One shows that a point $a \in A$ is an isolated point of A by finding a $V_{\epsilon}(a)$ such that $A \cap V_{\epsilon}(a)=\{a\}$.
Example. Usually isolated points are easy to spot, as in the set $A=[0,1] \cup\{2\}$.
- Exercises. Decide which of the following statements are true or false.
(a) If A is a bounded subset of \mathbb{R}, then $s=\sup A$ is a limit point of A.
(b) Every point in the set

$$
A=\left\{\frac{(-1)^{n} n}{n+1}: n \in \mathbb{N}\right\}
$$

is isolated.
4. Find the closure of a given subset A of \mathbb{R}.

- This requires identifying the set of limit points L of A since the closure of A is $\bar{A}=A \cup L$.

Example. The closure of $A=\{1 / n: n \in \mathbb{N}\}$ is $A \cup\{0\}$ because 0 is the only limit point of A.

- Exercises. Decide which of the following statements are true or false.
(a) For any subset A of \mathbb{R}, the set \bar{A}^{c} is open.
(b) A subset A of \mathbb{R} is closed if and only if $\bar{A}=A$.

5. Know the properties of compact sets and how to determine if $A \subseteq \mathbb{R}$ is compact.

- One shows that A is compact by showing that A is closed and bounded (Heine-Borel Theorem).

Example. The middle thirds Cantor set C is bounded because it is a subset of the bounded set $[0,1]$.
It is closed because its complement is the union of open intervals, and hence open:

$$
C^{c}=(-\infty, 0) \cup(1, \infty) \cup\left(\bigcup_{n=1}^{\infty} C_{n}^{c}\right)
$$

- Exercises. Decide which of the following statements are true or false.
(a) If $A_{1}, A_{2}, A_{3}, \ldots$ are compact subsets of \mathbb{R}, then

$$
\bigcap_{n=1}^{\infty} A_{n}
$$

is compact as well.
(a) If closed subsets $A_{n}, n \in \mathbb{N}$ satisfy $A_{1} \supseteq A_{2} \supseteq A_{3} \supseteq \cdots$, then

$$
\bigcap_{n=1}^{\infty} A_{n}
$$

is compact as well.
6. Determine if a subset A of \mathbb{R} is perfect.

- One shows that A is perfect by showing it is nonempty, closed, and does not contain isolated point.
Example. The Cantor set C is perfect because it is nonempty (it contains the rational endpoints of every C_{n}), it is closed, and as reviewed earlier, it has no isolated points.
- Exercises. Decide which of the following statements are true or false.
(a) A perfect set is uncountable.
(b) If C is the middle thirds Cantor set, then $C \cap[0,1 / 2]$ is perfect.
(c) If C is the middle thirds Cantor set, then $C \cap \mathbb{Q}$ is perfect.

7. Determine if a set is disconnected or connected and know the consequences.

- One shows that a subset E of \mathbb{R} is disconnected if there are sets A and B with $E=A \cup B$ such that $\bar{A} \cap B=\emptyset$ and $A \cap \bar{B}=\emptyset$.
- One shows that a subset E of \mathbb{R} is connected if for every pair of sets A and B with $E=A \cup B$, we have that $\bar{A} \cap B \neq \emptyset$ or $A \cap \bar{B} \neq \emptyset$.
Example. The set \mathbb{Q} is disconnected because $A=\mathbb{Q} \cap(-\infty, \sqrt{2})$ and $B=\mathbb{Q} \cap(\sqrt{2}, \infty)$ satisfy $\mathbb{Q}=A \cup B$ with $\bar{A} \cap B=\emptyset$ and $A \cap \bar{B}=\emptyset$.
- Exercises. Decide which of the following statements are true or false.
(a) The middle thirds Cantor set C is disconnected.
(b) The only connected subsets of \mathbb{R} are the intervals.

8. Find the limit of a function if it exists or be able to prove one does not exist.

- One show for $f: A \rightarrow \mathbb{R}$ and c a limit point of A, that $f(x) \rightarrow L$ if for every $\epsilon>0$ there exists $\delta>0$ such that $|f(x)-L|<\epsilon$ whenever $0<|x-c|<\delta$ with $x \in A$.

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=2 x$, and let $c=1$.
We guess the limit of $f(x)$ as $x \rightarrow 1$ to be $L=2$.
To confirm this guess, we want to control $|f(x)-L|=|2 x-2|=2|x-1|$.
Choosing $\delta=\epsilon / 2$ we have $|f(x)-L|<2(\epsilon / 2)=\epsilon$ whenever $0<|x-1|<\delta$.

- One shows that a limit of a function $f(x)$ does not exist as $x \rightarrow c$ by finding two sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in A such that $x_{n} \rightarrow c, y_{n} \rightarrow c$, but that $\lim f\left(x_{n}\right) \neq \lim f\left(y_{n}\right)$.
Example. The function

$$
g(x)= \begin{cases}\sin \left(1 / x^{2}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

is not continuous at $c=0$ because the sequences

$$
x_{n}=\frac{1}{\sqrt{2 n \pi}}, y_{n}=\frac{1}{\sqrt{2 n \pi+\pi / 2}}
$$

both converge to 0 but $f\left(x_{n}\right)=0$ and $f\left(y_{n}\right)=1$ for all $n \in \mathbb{N}$.

- Exercises. Decide which of the following statements are true or false.
(a) $\lim _{x \rightarrow 1}\left(x^{2}+x\right)=2$.
(b) $\lim _{x \rightarrow 0} \sin (\ln x)=0$.

9. Determine if a function if continuous at a point and what this implies.

- One shows that $f: A \rightarrow \mathbb{R}$ is continuous at a limit point $c \in A$ by one of the four characterizations of continuity such as if $\left(x_{n}\right) \rightarrow c$ with $x_{n} \in A$ for all $n \in \mathbb{N}$, then $f\left(x_{n}\right) \rightarrow f(c)$.
Example. The function $g: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
g(x)= \begin{cases}x \sin \left(1 / x^{2}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

is continuous at $c=0$ because for any sequence $\left(x_{n}\right)$ with $x_{n} \neq 0$ for all \mathbb{N} and $x_{n} \rightarrow 0$ we have $\left|\sin \left(1 / x_{n}^{2}\right)\right|$ is bounded by 1 and $\left|x_{n}\right| \rightarrow 0$, so that $\left|x_{n} \sin \left(1 / x_{n}^{2}\right)\right| \rightarrow 0$.

- Exercises. Decide which of the following statements are true or false.
(a) Let C be the middle third Cantor set, and define $g:[0,1] \rightarrow \mathbb{R}$ by

$$
g(x)= \begin{cases}1 & \text { if } x \in C \\ 0 & \text { if } x \notin C\end{cases}
$$

The function g is continuous at every $c \in C$.
(b) If $f: A \rightarrow \mathbb{R}$ and $g: A \rightarrow \mathbb{R}$ are both continuous at $c \in A$, then $f+g$ is continuous at c.

