Math 341 Exam 2 Preparation Sheet Supplement: Answers

1. (a) True, because $\sum 1 / n^{3 / 6}$ and $\sum 1 / n^{5 / 6}$ both diverge, and $\sum 1 / n^{3 / 6+5 / 6}$ converges. 1. (b) True. Proof by contradiciton: suppose $\sum a_{n}$ converges conditionally and $\sum n^{2} a_{n}$ converges. For the latter we have $\lim n^{2} a_{n}=0$, so for $\epsilon=1$ there is $N \in \mathbb{N}$ such that $\left|n^{2} a_{n}\right|<1$ for all $n \geq N$. This says that $\left|a_{n}\right| \leq 1 / n^{2}$, so by the comparison test, the series $\sum\left|a_{n}\right|$ converges. By the Absolute Convergence Test the series $\sum a_{n}$ converges absolutely, contradiction the conditional convergence of $\sum a_{n}$.
2. (a) True, because the isolated point does not contain an open interval.
3. (b) True, every singleton set $\{x\}$ is closed (the complement $(-\infty, x) \cup(x, \infty)$ is open), and a finite union of closed sets is closed.
4. (c) False, counterexample $O=(-\infty, \sqrt{2}) \cup(\sqrt{2}, \infty)$.
5. (a) False, counterexample $A=[0,1] \cup\{2\}$ where $2=\sup A$ but 2 is not a limit point but an isolated point of A.
6. (b) True, because for each point a in A is a positive distance away from its nearest neighbours, and so we can find $\epsilon>0$ such that $V_{\epsilon}(a) \cap A=\{a\}$.
7. (a) True, because \bar{A} is closed, so its complement is open.
8. (b) True, because \bar{A} is the union of A with its limit points, and a set is closed when it contains its limit points.
9. (a) True, because the intersection is a subset of A_{1} and so bounded, and the intersection of closed sets is closed.
10. (b) False, counterexample $A_{n}=(-\infty, 1+1 / n]$ where the intersection is $(\infty, 1]$ which is closed but not bounded.
11. (a) True, it is a theorem in the book that every perfect set is uncountable.
12. (b) True, because $C \cap[0,1 / 2]$ is nonempty, closed, and has no isolated points.
13. (c) False, because $C \cap \mathbb{Q}$ is countable, and hence can not be perfect.
14. (a) True, because in between any $x, y \in C$ with $x<y$ there is $z \notin C$ such that $x<z<y$.
15. (b) True, this is a theorem in the book.
16. (a) True, because for $\epsilon>0$ we choose $\delta=\min \{1, \epsilon / 4\}$ which gives $\left|x^{2}+x-(1+1)\right|<\epsilon$.
17. (b) False, because for $x_{n}=\exp (-n \pi / 2)$ we have $\sin \left(\ln \left(x_{n}\right)\right)$ oscillates between -1 and 1 as $n \rightarrow \infty$.
18. (a) False, because for $x \in C$, there are sequences $\left(x_{n}\right)$ in C and $\left(y_{n}\right) \in[0,1] \backslash C$ such that $g\left(x_{n}\right)=1$ and $g\left(y_{n}\right)=0$.
19. (b) True, this is a theorem in the book.
