Math 341 Exam 3 Preparation Sheet
 Supplement

This is a supplement to the "You should be able to" section of the Exam 3 preparation sheet. This details some of the basic techniques used in many of the proofs you have seen. Some of the basic techniques are illustrated through examples. For the true/false exercises, if a statement is true, justify why it is true or provide a proof, and if a statement is false, justify why it is false or provide a counterexample.

1. Determine if a function if uniformly continuous and know the consequences.

- One shows that $f: A \rightarrow \mathbb{R}$ is uniformly continuous on A by showing for each $\epsilon>0$ the existence of $\delta>0$ such that $|f(x)-f(y)|<\epsilon$ whenever $|x-y|<\delta$ with $x, y \in A$.
Example. The function $f(x)=2 x$ is uniformly continuous on \mathbb{R} because the Tchoice of $\delta=\epsilon / 2$ is independent of the point c at which continuity was being established.
- One shows that $f: A \rightarrow \mathbb{R}$ is not uniformly continuous on A by the Sequential Criterion for Nonuniform Continuity: there exists $\epsilon_{0}>0$ and two sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in A with $\left|x_{n}-y_{n}\right| \rightarrow 0$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{0}$.
Example. The function $g:(0, \infty) \rightarrow \mathbb{R}$ defined by $g(x)=\sin \left(1 / x^{2}\right)$ is continuous on $(0, \infty)$ but not uniformly continuous on $(0, \infty)$ because for $\epsilon_{0}=1$ and the sequences

$$
x_{n}=\frac{1}{\sqrt{2 n \pi}}, y_{n}=\frac{1}{\sqrt{2 n \pi+\pi / 2}}
$$

we have $\left|x_{n}-y_{n}\right| \rightarrow 0$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|=1 \geq \epsilon_{0}$.

- Exercises. Decide which of the following statements are true or false.
(a) When A is compact for $f: A \rightarrow \mathbb{R}$, the function f is uniformly continuous on A.
(b) The function $f(x)=x^{1 / 3}$ is uniformly continuous on $[0, \infty)$.
(c) The function x^{2} is uniformly continuous on $[0, \infty)$.

2. Know and apply the Intermediate Value Theorem.

- One uses the Intermediate Value Theorem on a continuous function $f:[a, b] \rightarrow \mathbb{R}$ to find for any L between $f(a)$ and $f(b)$ a point $c \in(a, b)$ such that $f(c)=L$.
Example. The function $f(x)=\sin (\pi x / 2)$ is continuous on \mathbb{R}. Since $f(0)=0$ and $f(1)=1$, there is $c \in(0,1)$ such that $f(c)=1 / \pi$.
- Exercises. Decide which of the following statements are true or false.
(a) For $f(x)=x^{2}+x-1$ there exists $c \in[0,2]$ such that $f(c)=0$.
(b) For $g(x)=e^{x-1}-x$ there exists $c \in[0,3]$ such that $g(c)=1$.

3. Determine if a function is increasing or decreasing.

- One shows that a function $f: A \rightarrow \mathbb{R}$ is increasing (decreasing) by showing that for all $x, y \in A$ with $x<y$ we have that $f(x) \leq f(y)(f(x) \geq f(y))$.
Example. The function $f(x)=x^{2}-2 x+1$ is increasing on $A=[1, \infty)$ because for $x<y$ with $x, y \in A$ we have

$$
f(x)=x^{2}-2 x+1=(x-1)^{2} \leq(y-1)^{2}=y^{2}-2 y+1=f(y)
$$

- Exercises. Decide which of the following statements are true or false.
(a) The function $f(x)=x^{3}+x$ is increasing on $[0, \infty)$.
(b) The function $f(x)=x^{3}-x$ is decreasing on $[-1,1]$.

4. Prove that a derivative exists for a function using the definition. Let $f: A \rightarrow \mathbb{R}$ for A an interval. The definition of the derivative of f a point $c \in A$ is

$$
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

provided the limit exists.

- Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}x^{2} /(x+1) & \text { if } x>0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

For $x>0$ we have

$$
\frac{x^{2} /(x+1)-0}{x-0}=\frac{x}{x+1} .
$$

The function $x /(x+1)$ is continuous and so we have

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{x}{x+1}=0 .
$$

For $x<0$ we have

$$
\frac{f(x)-f(0)}{x-0}=\frac{0-0}{x-0}=0
$$

and so

$$
\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=0
$$

Since the two one-sided limits exist and are equal, we have that

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=0
$$

and so f is differentiable at $c=0$.

- Exercises. Decide which of the following statements are true or false.
(a) The function $f(x)=\left\{\begin{array}{ll}x^{2} \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$ is differentiable at $c=0$.
(b) The function $g(x)=\left\{\begin{array}{ll}\left(x^{2}+x\right) /\left(x^{2}-x\right) & \text { if } x \neq 0 \\ -1 & \text { if } x=0\end{array}\right.$ is differentiable at $c=0$.
(c) The function $h(x)=x^{1 / 3}$ is differentiable at $c=0$. [Do not use a differentiation formula, but the definition of derivative to answer this.]

5. Know and apply the Mean Value Theorem. If $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b), then there exists $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

- Example. Suppose that $f: A \rightarrow \mathbb{R}$ is differentiable on an interval A. Prove that if f^{\prime} is bounded on A, then f is uniformly continuous.

Proof. We have that there is $M>0$ such that $\left|f^{\prime}(x)\right| \leq M$ for all $x \in A$.
For $\epsilon>0$ we choose $\delta=\epsilon / M$. [We will see why this choice for δ in a minute.]
Take $x, y \in A$, and WLOG suppose $x<y$.
By the Mean Value Theorem there is a point $c \in(x, y)$ such that

$$
\frac{f(y)-f(x)}{y-x}=f^{\prime}(c) .
$$

Taking the absolute value of both sides, multiplying by the denominator, and using the bound on f^{\prime} gives us

$$
|f(x)-f(y)|=\left|f^{\prime}(c)\right||x-y| \leq M|x-y|
$$

Then for $|x-y|<\delta$ we have that

$$
|f(x)-f(y)|<M \delta<\epsilon
$$

thus giving us uniform continuity of f on the interval A.

- Exercises. Decide which of the following statements are true or false.
(a) If $f:(a, b) \rightarrow \mathbb{R}$ is differentiable and f is increasing on (a, b), then $f^{\prime}(x) \geq 0$ for all $x \in(a, b)$.
(b) For $f:[0, \infty) \rightarrow \mathbb{R}$ suppose f is continuous, differentiable on $(0, \infty), f(0)=0$, and $f^{\prime}(x)$ is increasing on $(0, \infty)$. Then the function $g(x)=f(x) / x$ on $(0, \infty)$ is increasing.
(c) Suppose $f:[0,10] \rightarrow \mathbb{R}$ is continuous with f differentiable on $(0,10)$. If $f(1)=5$, $f(5)=1$, and $f(9)=4$, then there exists $c \in(0,10)$ such that $f^{\prime}(c)=0$. [In addition to the Mean Value Theorem, you will need Darboux's Theorem to answer this.]

6. Prove pointwise convergence for a sequence of functions. A sequence of functions f_{n} : $A \rightarrow \mathbb{R}$ converges pointwise to a function $f: A \rightarrow \mathbb{R}$ if for each $x \in A$ we have convergence of the real numbers $f_{n}(x)$ converging to $f(x)$.

- Example. The poinwise limit of $f_{n}(x)=x^{n}$ on $[0,1]$ is the piecewise defined function

$$
f(x)= \begin{cases}0 & \text { if } x \in[0,1) \\ 1 & \text { if } x=1\end{cases}
$$

- Exercises. Decide which of the following statements are true or false.
(a) Uniform convergence implies pointwise convergence.
(b) The pointwise limit function of

$$
f_{n}(x)=\frac{n x+\sin (n x)}{2 n}
$$

is $f(x)=x / 2$.
7. Prove that a sequence of functions is uniformly convergent and know the consequences. A sequence of functions $f_{n}: A \rightarrow \mathbb{R}$ converges uniformly to $f: A \rightarrow \mathbb{R}$ if for every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|f_{n}(x)-f(x)\right|<\epsilon$ for all $n \geq N$ and all $x \in A$.
The Cauchy Criterion for Uniform Convergence is that f_{n} converges uniformly to f on A if and only if for every $\epsilon>0$ there is $N \in \mathbb{N}$ such that $\left|f_{n}(x)-f_{m}(x)\right|<\epsilon$ for all $n, m \geq N$ and all $x \in A$.
Uniform convergence is needed to ensure that the limit function of continuous functions is continuous.

- Example. For $n \in \mathbb{N}$, let $f_{n}:(0, \infty) \rightarrow \mathbb{R}$ be defined by

$$
f_{n}(x)=\frac{n^{2} x^{2}}{5+n^{2} x^{3}} .
$$

The pointwise limit of f_{n} is the function $f:(0, \infty) \rightarrow \mathbb{R}$ defined by

$$
f(x)=\frac{1}{x} .
$$

To investigate the convergence of f_{n} to f, we consider

$$
\left|f_{n}(x)-f(x)\right|=\left|\frac{n^{2} x^{2}}{5+n^{2} x^{3}}-\frac{1}{x}\right|=\left|\frac{n^{2} x^{3}-\left(5+n^{2} x^{3}\right)}{5+n^{2} x^{3}}\right|=\frac{5}{5+n^{2} x^{3}}
$$

Because $5+n^{2} x^{3}>n^{2} x^{3}$, we have

$$
\left|f_{n}(x)-f(x)\right|<\frac{5}{n^{2} x^{3}}
$$

To get uniform convergence on $(0, \infty)$ would require that for $\epsilon>0$ there is $N \in \mathbb{N}$ such that for all $n \geq N$ and all $x>0$ we have

$$
\frac{5}{n^{2} x^{3}} \leq \frac{5}{N^{2} x^{3}}<\epsilon
$$

This requires that N satisfy

$$
N>\left(\frac{5}{\epsilon x^{3}}\right)^{1 / 2}
$$

As $x \rightarrow 0$ we have that $N \rightarrow \infty$, thereby preventing uniform convergence on $(0, \infty)$.
However, if we restrict x to $x \geq a$ where $a>0$, then as $x^{3} \geq a^{3}$, we get that

$$
\frac{5}{N^{2} x^{3}} \leq \frac{5}{N^{2} a^{3}}<\epsilon
$$

and so we can choose

$$
N>\left(\frac{5}{\epsilon a^{3}}\right)^{1 / 2} .
$$

Thus we have uniform convergence of f_{n} to f on $[a, \infty)$ for any $a>0$.

- Exercises. Decide which of the following statements are true or false.
(a) The sequence $f_{n}(x)=1 /\left(1+n^{2} x^{2}\right)$ converges uniformly on $[0,1]$.
(b) The sequence $g_{n}(x)=n x(1-x)^{n}$ converges uniformly on $[0,1]$. [Hint: for each n find the maximum value of $g_{n}(x)$.]
(c) The sequence $h_{n}(x)=x^{2} /\left(n^{2}+x\right)$ converges uniformly on $[0,1]$.

8. Know when the derivative of a limit functions exists. For a sequence of differentiable functions $f_{n}:[a, b] \rightarrow \mathbb{R}$, if we have uniform convergence of f_{n}^{\prime} to g and if there exists $x_{0} \in[a, b]$ such that $f_{n}\left(x_{0}\right)$ converges, then f_{n} converges uniformly, and the limit function f is differentiable with $f^{\prime}=g$.

- Example. The sequence of functions

$$
f_{n}(x)=\frac{\sin (n x)}{n^{3}}
$$

converges pointwise on \mathbb{R} to $f(x)=0$.
The sequence of derivatives

$$
f_{n}^{\prime}(x)=\frac{\cos (n x)}{n^{2}}
$$

converges uniformly to $g(x)=0$ on \mathbb{R} because

$$
\left|f_{n}^{\prime}(x)-0\right|=\left|\frac{\cos (n x)}{n^{2}}\right| \leq \frac{1}{n^{2}}
$$

Thus we have that $f^{\prime}=g$

- Exercises. Decide which of the following statements are true or false.
(a) The sequence of derivatives of $f_{n}(x)=(1 / n) \sin (n x)$ converges uniformly on \mathbb{R}.
(b) The sequence of differentiable functions

$$
f_{n}(x)=\frac{n^{2} x^{2}}{n^{2}+n}, x \in \mathbb{R}
$$

converges to a differentiable function $f(x)$ for which $f^{\prime}(x)=2 x$.

