Math 341 Exam 3 Preparation Sheet
Supplement

This is a supplement to the “You should be able to” section of the Exam 3 preparation
sheet. This details some of the basic techniques used in many of the proofs you have
seen. Some of the basic techniques are illustrated through examples. For the true/false
exercises, if a statement is true, justify why it is true or provide a proof, and if a statement
is false, justify why it is false or provide a counterexample.

1. Determine if a function if uniformly continuous and know the consequences.

e One shows that f : A — R is uniformly continuous on A by showing for each ¢ > 0 the
existence of § > 0 such that |f(z) — f(y)| < € whenever |x —y| < § with z,y € A.

Example. The function f(z) = 2 is uniformly continuous on R because the Tchoice of
d = €/2 is independent of the point ¢ at which continuity was being established.

e One shows that f : A — R is not uniformly continuous on A by the Sequential Criterion
for Nonuniform Continuity: there exists ¢g > 0 and two sequences (x,) and (y,) in A
with |z, —y,| = 0 and |f(z,) — f(yn)| > €o-

Example. The function g : (0,00) — R defined by g(z) = sin(1/z?) is continuous on
(0, 00) but not uniformly continuous on (0, 00) because for ¢y = 1 and the sequences
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we have |z, — y,| = 0 and |f(z,) — f(yn)| =1 > €.
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e Exercises. Decide which of the following statements are true or false.
(a) When A is compact for f: A — R, the function f is uniformly continuous on A.
(b) The function f(z) = z'/? is uniformly continuous on [0, 00).
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(c¢) The function z* is uniformly continuous on [0, c0).

2. Know and apply the Intermediate Value Theorem.

e One uses the Intermediate Value Theorem on a continuous function f : [a,b] — R to
find for any L between f(a) and f(b) a point ¢ € (a,b) such that f(c) = L.

Example. The function f(x) = sin(mz/2) is continuous on R. Since f(0) = 0 and
f(1) =1, there is ¢ € (0,1) such that f(c) = 1/x.

e Exercises. Decide which of the following statements are true or false.
(a) For f(x) =2 + x — 1 there exists ¢ € [0, 2] such that f(c) = 0.

(b) For g(z) = ¢! — z there exists ¢ € [0, 3] such that g(c) = 1.

3. Determine if a function is increasing or decreasing.




e One shows that a function f: A — R is increasing (decreasing) by showing that for all
z,y € A with x < y we have that f(z) < f(y) (f(x) > f(y)).

Example. The function f(z) = 2? — 2z + 1 is increasing on A = [1, 00) because for z < y
with z,y € A we have

fl@)=a®—20+1=(z-1<(y—12 =9 -2y +1=f(y).

e Exercises. Decide which of the following statements are true or false.
(a) The function f(x) = x® + z is increasing on [0, c0).
(b) The function f(z) = 23 — x is decreasing on [—1, 1].

4. Prove that a derivative exists for a function using the definition. Let f : A — R for
A an interval. The definition of the derivative of f a point ¢ € A is

0) — 1 F@) = 10

T—c T —cC

provided the limit exists.

e Example. Let f: R — R be defined by

22/ +1) ifx>0,
f@»_{o itz <0.

For « > 0 we have
?f(x+1)—0 =z

z—0 o+l
The function z/(x + 1) is continuous and so we have
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For z < 0 we have
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Since the two one-sided limits exist and are equal, we have that
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and so f is differentiable at ¢ = 0.

e Exercises. Decide which of the following statements are true or false.



r?sin(1/z) ifz#0
0 ite=0
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is differentiable at ¢ = 0.

(a) The function f(x) = {

(b) The function g(x) = { is differentiable at ¢ = 0.

(¢) The function h(z) = z'/3 is differentiable at ¢ = 0. [Do not use a differentiation
formula, but the definition of derivative to answer this.]

5. Know and apply the Mean Value Theorem. If f : [a,b] — R is continuous on [a, b]
and differentiable on (a, b), then there exists ¢ € (a, b) such that

Fo =101

e Example. Suppose that f: A — R is differentiable on an interval A. Prove that if f
is bounded on A, then f is uniformly continuous.

Proof. We have that there is M > 0 such that |f'(z)| < M for all z € A.

For € > 0 we choose 0 = ¢/M. [We will see why this choice for ¢ in a minute.]
Take x,y € A, and WLOG suppose = < y.
By the Mean Value Theorem there is a point ¢ € (x,y) such that
fy) — )
y—x
Taking the absolute value of both sides, multiplying by the denominator, and using the
bound on f’ gives us

= f'(c).

() = F)l = 1) |z =yl < Mz —y.
Then for |z — y| < 0 we have that
|[f(2) = fy)l < Mé <,

thus giving us uniform continuity of f on the interval A. U

e Exercises. Decide which of the following statements are true or false.

(a) If f: (a,b) — R is differentiable and f is increasing on (a,b), then f'(x) > 0 for all
x € (a,b).

(b) For f : [0,00) — R suppose f is continuous, differentiable on (0,00), f(0) = 0,
and f'(z) is increasing on (0,00). Then the function g(x) = f(x)/x on (0,00) is
increasing.

(¢) Suppose f :[0,10] — R is continuous with f differentiable on (0,10). If f(1) =5,
f(5) = 1, and f(9) = 4, then there exists ¢ € (0,10) such that f'(c) = 0. [In
addition to the Mean Value Theorem, you will need Darboux’s Theorem to answer
this.]



6. Prove pointwise convergence for a sequence of functions. A sequence of functions f, :
A — R converges pointwise to a function f : A — R if for each x € A we have convergence
of the real numbers f,(z) converging to f(z).

e Example. The poinwise limit of f,(x) = 2™ on [0, 1] is the piecewise defined function
LR R
e Exercises. Decide which of the following statements are true or false.
(a) Uniform convergence implies pointwise convergence.
(b) The pointwise limit function of

_ nx +sin(n)

fula) =

is f(z) = z/2.

7. Prove that a sequence of functions is uniformly convergent and know the consequences.
A sequence of functions f, : A — R converges uniformly to f : A — R if for every € > 0
there exists N € N such that |f,,(z) — f(z)| < e for all n > N and all x € A.

The Cauchy Criterion for Uniform Convergence is that f,, converges uniformly to f on
A if and only if for every ¢ > 0 there is N € N such that |f,(z) — fi.(x)| < € for all
n,m > N and all x € A.

Uniform convergence is needed to ensure that the limit function of continuous functions
1s continuous.

e Example. For n € N, let f, : (0,00) — R be defined by

n2x?
54+ n2x3’

fn(2)

The pointwise limit of f,, is the function f : (0,00) — R defined by

fla) =1

- .

To investigate the convergence of f, to f, we consider

n2x? 1 n?x® — (5 + n?a?) 5
’fn(x)_f<x)’:—23__: 2..3 - 2,.3"
5+ nx T 5+ nx 5+ nx
Because 5 + n?z3 > n?23, we have
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To get uniform convergence on (0, 00) would require that for € > 0 there is N € N such
that for all n > N and all £ > 0 we have
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As x — 0 we have that N — oo, thereby preventing uniform convergence on (0, 00).

< €.

This requires that N satisfy

However, if we restrict  to x > a where a > 0, then as 23 > a3, we get that
5 5
<
N2x3 — N2a3
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Thus we have uniform convergence of f,, to f on [a,c0) for any a > 0.

< €,

and so we can choose

e Exercises. Decide which of the following statements are true or false.
(a) The sequence f,(z) =1/(1 + n*z?) converges uniformly on [0, 1].

(b) The sequence g,(x) = nz(l — x)" converges uniformly on [0, 1]. [Hint: for each n
find the maximum value of g, (x).]

(c) The sequence hy,(z) = z*/(n? 4+ x) converges uniformly on [0, 1].

8. Know when the derivative of a limit functions exists. For a sequence of differentiable
functions f, : [a,b] — R, if we have uniform convergence of f/ to g and if there exists
xg € la, b] such that f,(x¢) converges, then f, converges uniformly, and the limit function
f is differentiable with f' = g.

e Example. The sequence of functions

sin(nx)
fn(l') = ng
converges pointwise on R to f(z) = 0.
The sequence of derivatives
;. cos(nw)
fn(l‘) - 7’L2
converges uniformly to g(z) = 0 on R because
, | cos(nx) 1
o) 01 = |23 <

Thus we have that f' =g

e Exercises. Decide which of the following statements are true or false.
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(a) The sequence of derivatives of f,(z) = (1/n)sin(nx) converges uniformly on R.
(b) The sequence of differentiable functions

2,2
fulz) = nT r €R,

nZ+n’

converges to a differentiable function f(z) for which f'(z) = 2z.



