
Math 341 Exam 3 Preparation Sheet
Supplement

This is a supplement to the “You should be able to” section of the Exam 3 preparation
sheet. This details some of the basic techniques used in many of the proofs you have
seen. Some of the basic techniques are illustrated through examples. For the true/false
exercises, if a statement is true, justify why it is true or provide a proof, and if a statement
is false, justify why it is false or provide a counterexample.

1. Determine if a function if uniformly continuous and know the consequences.

• One shows that f : A→ R is uniformly continuous on A by showing for each ε > 0 the
existence of δ > 0 such that |f(x)− f(y)| < ε whenever |x− y| < δ with x, y ∈ A.

Example. The function f(x) = 2x is uniformly continuous on R because the Tchoice of
δ = ε/2 is independent of the point c at which continuity was being established.

• One shows that f : A→ R is not uniformly continuous on A by the Sequential Criterion
for Nonuniform Continuity: there exists ε0 > 0 and two sequences (xn) and (yn) in A
with |xn − yn| → 0 and |f(xn)− f(yn)| ≥ ε0.

Example. The function g : (0,∞) → R defined by g(x) = sin(1/x2) is continuous on
(0,∞) but not uniformly continuous on (0,∞) because for ε0 = 1 and the sequences

xn =
1√
2nπ

, yn =
1√

2nπ + π/2

we have |xn − yn| → 0 and |f(xn)− f(yn)| = 1 ≥ ε0.

• Exercises. Decide which of the following statements are true or false.

(a) When A is compact for f : A→ R, the function f is uniformly continuous on A.

(b) The function f(x) = x1/3 is uniformly continuous on [0,∞).

(c) The function x2 is uniformly continuous on [0,∞).

2. Know and apply the Intermediate Value Theorem.

• One uses the Intermediate Value Theorem on a continuous function f : [a, b] → R to
find for any L between f(a) and f(b) a point c ∈ (a, b) such that f(c) = L.

Example. The function f(x) = sin(πx/2) is continuous on R. Since f(0) = 0 and
f(1) = 1, there is c ∈ (0, 1) such that f(c) = 1/π.

• Exercises. Decide which of the following statements are true or false.

(a) For f(x) = x2 + x− 1 there exists c ∈ [0, 2] such that f(c) = 0.

(b) For g(x) = ex−1 − x there exists c ∈ [0, 3] such that g(c) = 1.

3. Determine if a function is increasing or decreasing.
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• One shows that a function f : A→ R is increasing (decreasing) by showing that for all
x, y ∈ A with x < y we have that f(x) ≤ f(y) (f(x) ≥ f(y)).

Example. The function f(x) = x2− 2x+ 1 is increasing on A = [1,∞) because for x < y
with x, y ∈ A we have

f(x) = x2 − 2x+ 1 = (x− 1)2 ≤ (y − 1)2 = y2 − 2y + 1 = f(y).

• Exercises. Decide which of the following statements are true or false.

(a) The function f(x) = x3 + x is increasing on [0,∞).

(b) The function f(x) = x3 − x is decreasing on [−1, 1].

4. Prove that a derivative exists for a function using the definition. Let f : A → R for
A an interval. The definition of the derivative of f a point c ∈ A is

f ′(c) = lim
x→c

f(x)− f(c)

x− c

provided the limit exists.

• Example. Let f : R→ R be defined by

f(x) =

{
x2/(x+ 1) if x > 0,

0 if x ≤ 0.

For x > 0 we have
x2/(x+ 1)− 0

x− 0
=

x

x+ 1
.

The function x/(x+ 1) is continuous and so we have

lim
x→0+

f(x)− f(0)

x− 0
= lim

x→0+

x

x+ 1
= 0.

For x < 0 we have
f(x)− f(0)

x− 0
=

0− 0

x− 0
= 0

and so

lim
x→0−

f(x)− f(0)

x− 0
= 0.

Since the two one-sided limits exist and are equal, we have that

lim
x→0

f(x)− f(0)

x− 0
= 0

and so f is differentiable at c = 0.

• Exercises. Decide which of the following statements are true or false.
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(a) The function f(x) =

{
x2 sin(1/x) if x 6= 0

0 if x = 0
is differentiable at c = 0.

(b) The function g(x) =

{
(x2 + x)/(x2 − x) if x 6= 0

−1 if x = 0
is differentiable at c = 0.

(c) The function h(x) = x1/3 is differentiable at c = 0. [Do not use a differentiation
formula, but the definition of derivative to answer this.]

5. Know and apply the Mean Value Theorem. If f : [a, b] → R is continuous on [a, b]
and differentiable on (a, b), then there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

• Example. Suppose that f : A → R is differentiable on an interval A. Prove that if f ′

is bounded on A, then f is uniformly continuous.

Proof. We have that there is M > 0 such that |f ′(x)| ≤M for all x ∈ A.

For ε > 0 we choose δ = ε/M . [We will see why this choice for δ in a minute.]

Take x, y ∈ A, and WLOG suppose x < y.

By the Mean Value Theorem there is a point c ∈ (x, y) such that

f(y)− f(x)

y − x
= f ′(c).

Taking the absolute value of both sides, multiplying by the denominator, and using the
bound on f ′ gives us

|f(x)− f(y)| = |f ′(c)| |x− y| ≤M |x− y|.

Then for |x− y| < δ we have that

|f(x)− f(y)| < Mδ < ε,

thus giving us uniform continuity of f on the interval A. �

• Exercises. Decide which of the following statements are true or false.

(a) If f : (a, b)→ R is differentiable and f is increasing on (a, b), then f ′(x) ≥ 0 for all
x ∈ (a, b).

(b) For f : [0,∞) → R suppose f is continuous, differentiable on (0,∞), f(0) = 0,
and f ′(x) is increasing on (0,∞). Then the function g(x) = f(x)/x on (0,∞) is
increasing.

(c) Suppose f : [0, 10] → R is continuous with f differentiable on (0, 10). If f(1) = 5,
f(5) = 1, and f(9) = 4, then there exists c ∈ (0, 10) such that f ′(c) = 0. [In
addition to the Mean Value Theorem, you will need Darboux’s Theorem to answer
this.]
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6. Prove pointwise convergence for a sequence of functions. A sequence of functions fn :
A→ R converges pointwise to a function f : A→ R if for each x ∈ A we have convergence
of the real numbers fn(x) converging to f(x).

• Example. The poinwise limit of fn(x) = xn on [0, 1] is the piecewise defined function

f(x) =

{
0 if x ∈ [0, 1),

1 if x = 1.

• Exercises. Decide which of the following statements are true or false.

(a) Uniform convergence implies pointwise convergence.

(b) The pointwise limit function of

fn(x) =
nx+ sin(nx)

2n

is f(x) = x/2.

7. Prove that a sequence of functions is uniformly convergent and know the consequences.
A sequence of functions fn : A→ R converges uniformly to f : A→ R if for every ε > 0
there exists N ∈ N such that |fn(x)− f(x)| < ε for all n ≥ N and all x ∈ A.

The Cauchy Criterion for Uniform Convergence is that fn converges uniformly to f on
A if and only if for every ε > 0 there is N ∈ N such that |fn(x) − fm(x)| < ε for all
n,m ≥ N and all x ∈ A.

Uniform convergence is needed to ensure that the limit function of continuous functions
is continuous.

• Example. For n ∈ N, let fn : (0,∞)→ R be defined by

fn(x) =
n2x2

5 + n2x3
.

The pointwise limit of fn is the function f : (0,∞)→ R defined by

f(x) =
1

x
.

To investigate the convergence of fn to f , we consider

|fn(x)− f(x)| =
∣∣∣∣ n2x2

5 + n2x3
− 1

x

∣∣∣∣ =

∣∣∣∣n2x3 − (5 + n2x3)

5 + n2x3

∣∣∣∣ =
5

5 + n2x3
.

Because 5 + n2x3 > n2x3, we have

|fn(x)− f(x)| < 5

n2x3
.
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To get uniform convergence on (0,∞) would require that for ε > 0 there is N ∈ N such
that for all n ≥ N and all x > 0 we have

5

n2x3
≤ 5

N2x3
< ε.

This requires that N satisfy

N >

(
5

εx3

)1/2

.

As x→ 0 we have that N →∞, thereby preventing uniform convergence on (0,∞).

However, if we restrict x to x ≥ a where a > 0, then as x3 ≥ a3, we get that

5

N2x3
≤ 5

N2a3
< ε,

and so we can choose

N >

(
5

εa3

)1/2

.

Thus we have uniform convergence of fn to f on [a,∞) for any a > 0.

• Exercises. Decide which of the following statements are true or false.

(a) The sequence fn(x) = 1/(1 + n2x2) converges uniformly on [0, 1].

(b) The sequence gn(x) = nx(1 − x)n converges uniformly on [0, 1]. [Hint: for each n
find the maximum value of gn(x).]

(c) The sequence hn(x) = x2/(n2 + x) converges uniformly on [0, 1].

8. Know when the derivative of a limit functions exists. For a sequence of differentiable
functions fn : [a, b] → R, if we have uniform convergence of f ′n to g and if there exists
x0 ∈ [a, b] such that fn(x0) converges, then fn converges uniformly, and the limit function
f is differentiable with f ′ = g.

• Example. The sequence of functions

fn(x) =
sin(nx)

n3

converges pointwise on R to f(x) = 0.

The sequence of derivatives

f ′n(x) =
cos(nx)

n2

converges uniformly to g(x) = 0 on R because

|f ′n(x)− 0| =
∣∣∣∣cos(nx)

n2

∣∣∣∣ ≤ 1

n2
.

Thus we have that f ′ = g

• Exercises. Decide which of the following statements are true or false.
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(a) The sequence of derivatives of fn(x) = (1/n) sin(nx) converges uniformly on R.

(b) The sequence of differentiable functions

fn(x) =
n2x2

n2 + n
, x ∈ R,

converges to a differentiable function f(x) for which f ′(x) = 2x.
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