Math 341 Lecture \#1
 §1.1-1.2: Irrationality of $\sqrt{2}$

1.1 Discussion: The Irrationality of $\sqrt{2}$. In 1940, G.H. Hardy said "Real mathematics must be justified as an art if it can be justified at all."
Showing the irrationality of $\sqrt{2}$ is an illustration of this "art."
Theorem 1.1.1. There is no rational number whose square is 2 .
Proof. We will argue by contradiction: suppose there is a rational number p / q for integers p and $q \neq 0$ such that

$$
\left(\frac{p}{q}\right)^{2}=2 .
$$

We may assume in addition that p and q have no common factor.
Now $(p / q)^{2}=2$ rewritten is

$$
p^{2}=2 q^{2} .
$$

This implies that the integer p^{2} is even, and hence p must be even as well because the square of an odd number is odd.
We can thus write $p=2 r$ for an integer r.
Substitution of $p=2 r$ into $p^{2}=2 q^{2}$ yields

$$
\begin{aligned}
(2 r)^{2} & =2 q^{2} \\
4 r^{2} & =2 q^{2} \\
2 r^{2} & =q^{2} .
\end{aligned}
$$

This implies q is even.
We have shown that both p and q are even integers, they had 2 as a common factor.
But this can not be since we assumed that p and q had no common factors.
This contradiction shows that our original assumption about the existence of a rational number whose square is 2 must be false.
The Problem with the Rational Numbers. Theorem 1.1.1 hints at what is lacking in the set of rational numbers \mathbb{Q}.
The number $\sqrt{2}$ represents a "gap" in \mathbb{Q}.
The actual construction of \mathbb{R} from \mathbb{Q} is rather quite complicated and we will not fully investigate this in class (but see Section 8.6 on Dedekind cuts).

