Math 341 Lecture #4 §1.4: Consequences of Completeness

We are going to see how the Axiom of Completeness shows there are no "gaps" in \mathbb{R} . Theorem 1.4.1 (Nested Interval Property). For each $n \in \mathbb{N}$, assume we are given a closed interval $I_n = [a_n, b_n] \subset \mathbb{R}$. Assume also that $I_n \supseteq I_{n+1}$. Then the resulting nested sequence of closed intervals

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq I_4 \supseteq \cdots,$$

has a nonempty intersection:

$$\bigcap_{n=1}^{\infty} I_n \neq \emptyset.$$

Proof. Consider the set of left endpoints of the intervals I_n :

$$A = \{a_n : n \in \mathbb{N}\}.$$

Because of the nesting of the intervals, every right endpoint b_n is an upper bound of A. By the Axiom of Completeness, we can set

$$x = \sup A$$

Because x is an upper bound for A, then $a_n \leq x$ for all n.

Also, because each b_n is an upper bound for A, we have $x \leq b_n$.

These imply that $a_n \leq x \leq b_n$, i.e., $x \in I_n$, for all $n \in \mathbb{N}$.

Thus $x \in \bigcap_{n=1}^{\infty} I_n$ and the intersection is not empty.

How does \mathbb{N} sit inside \mathbb{R} ?

Theorem 1.4.2 (Archimedean Property). (i) Given any $x \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that n > x. (ii) Given any positive $y \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that 1/n < y.

Proof. (i) Assume, for a contradiction, that \mathbb{N} is bounded above.

Then by the Axiom of Completeness, the number $\alpha = \sup \mathbb{N}$ exists.

The number $\alpha - 1$ is not an upper bound (by Lemma 1.3.8 with $\epsilon = 1$), and so there is an $n \in \mathbb{N}$ such that $\alpha - 1 < n$, or

$$\alpha < n+1.$$

But $n + 1 \in \mathbb{N}$, implying that α is not an upper bound for \mathbb{N} .

Part (ii) follows by letting x = 1/y.

How does \mathbb{Q} sit inside \mathbb{R} ?

Theorem 1.4.3 (Density of \mathbb{Q} in \mathbb{R}). For every two real numbers a and b with a < b, there exists an $r \in \mathbb{Q}$ such that a < r < b.

Proof. To keep things simple, assume that $0 \le a < b$. [The case where a < 0 is handed similarly.]

We want to find $m, n \in \mathbb{N}$ with $n \neq 0$ such that a < m/n < b.

By Theorem 1.4.2 (Archimedean Property), we may pick $n \in \mathbb{N}$ large enough (so $n \neq 0$) such that

$$\frac{1}{n} < b - a.$$

This can be rewritten as

$$a < b - \frac{1}{n}$$

Having chosen n we now choose $m \in \mathbb{N}$ so that

$$m - 1 \le na < m.$$

The second inequality yields

$$a \le \frac{m}{n},$$

while the first inequality yields

$$m \le na+1.$$

Our choice for n this implies that

$$m \le n\left(b - \frac{1}{n}\right) + 1 = nb - 1 + 1 = nb.$$

This implies that m/n < b.

We will let $\mathbb{I} = \mathbb{R} - \mathbb{Q}$ denote the set of irrational numbers.

Corollary 1.4.4 (Density of I in \mathbb{R}). Given $a, b \in \mathbb{R}$ with a < b, there exists an irrational number t satisfying a < t < b.

The proof of this a homework problem 1.4.5.

We showed in Theorem 1.1.1 that there is no rational number whose square is 2, or equivalently, that $\sqrt{2}$ is not a rational number.

We will prove there is a real number whose square is 2.

Theorem 1.4.5. There exists a real number $\alpha \in \mathbb{R}$ satisfying $\alpha^2 = 2$.

Proof. We consider the set

$$T = \{ t \in \mathbb{R} : t^2 < 2 \}.$$

This is similar to what we saw in Example 1.3.6 (wherein we only considered rational numbers satisfying $t^2 < 2$ and showed that the set of such t does not have a least upper bound as a rational number).

Let $\alpha = \sup T$.

We will show that $\alpha^2 = 2$ by eliminating the possibilities $\alpha^2 > 2$ and $\alpha^2 < 2$ by way of contradiction.

We will see that we will violate one of the two properties of a supremum in each case. Suppose $\alpha^2 < 2$.

For an integer $n \geq 2$ we have

$$\left(\alpha + \frac{1}{n}\right)^2 = \alpha^2 + \frac{2\alpha}{n} + \frac{1}{n^2}$$
$$< \alpha^2 + \frac{2\alpha}{n} + \frac{1}{n}$$
$$= \alpha^2 + \frac{2\alpha + 1}{n}.$$

Because $\alpha^2 < 2$ we can make $\alpha^2 + (2\alpha + 1)/n < 2$ by choosing *n* large enough. Specifically we choose $n_0 \ge 2$ large enough so that

$$\frac{1}{n_0} < \frac{2 - \alpha^2}{2\alpha + 1}.$$

(We got this choice of n_0 by solving $\alpha^2 + (2\alpha + 1)/n < 2$ for 1/n.) This implies that

$$\frac{2\alpha+1}{n_0} < 2 - \alpha^2,$$

so that

$$\left(\alpha + \frac{1}{n_0}\right)^2 < \alpha^2 + (2 - \alpha^2) = 2.$$

Thus the real number $\alpha + 1/n_0$ belongs to T but is bigger than its supremum α , a contradiction to α being an upper bound of T.

Thus $\alpha^2 < 2$ is impossible.

Now suppose $\alpha^2 > 2$, and this time for an integer $n \ge 1$ we have

$$\left(\alpha - \frac{1}{n}\right)^2 = \alpha^2 - \frac{2\alpha}{n} + \frac{1}{n^2}$$
$$> \alpha^2 - \frac{2\alpha}{n}.$$

The remainder of the proof is a homework problem 1.4.7.

(Reach a statement that contradicts that α is the least of the upper bounds of T.) \Box