Math 341 Lecture \#4
 §1.4: Consequences of Completeness

We are going to see how the Axiom of Completeness shows there are no "gaps" in \mathbb{R}.
Theorem 1.4.1 (Nested Interval Property). For each $n \in \mathbb{N}$, assume we are given a closed interval $I_{n}=\left[a_{n}, b_{n}\right] \subset \mathbb{R}$. Assume also that $I_{n} \supseteq I_{n+1}$. Then the resulting nested sequence of closed intervals

$$
I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq I_{4} \supseteq \cdots,
$$

has a nonempty intersection:

$$
\bigcap_{n=1}^{\infty} I_{n} \neq \emptyset .
$$

Proof. Consider the set of left endpoints of the intervals I_{n} :

$$
A=\left\{a_{n}: n \in \mathbb{N}\right\} .
$$

Because of the nesting of the intervals, every right endpoint b_{n} is an upper bound of A. By the Axiom of Completeness, we can set

$$
x=\sup A .
$$

Because x is an upper bound for A, then $a_{n} \leq x$ for all n.
Also, because each b_{n} is an upper bound for A, we have $x \leq b_{n}$.
These imply that $a_{n} \leq x \leq b_{n}$, i.e., $x \in I_{n}$, for all $n \in \mathbb{N}$.
Thus $x \in \cap_{n=1}^{\infty} I_{n}$ and the intersection is not empty.
How does \mathbb{N} sit inside \mathbb{R} ?
Theorem 1.4.2 (Archimedean Property). (i) Given any $x \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that $n>x$. (ii) Given any positive $y \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that $1 / n<y$.
Proof. (i) Assume, for a contradiction, that \mathbb{N} is bounded above.
Then by the Axiom of Completeness, the number $\alpha=\sup \mathbb{N}$ exists.
The number $\alpha-1$ is not an upper bound (by Lemma 1.3 .8 with $\epsilon=1$), and so there is an $n \in \mathbb{N}$ such that $\alpha-1<n$, or

$$
\alpha<n+1 .
$$

But $n+1 \in \mathbb{N}$, implying that α is not an upper bound for \mathbb{N}.
Part (ii) follows by letting $x=1 / y$.
How does \mathbb{Q} sit inside \mathbb{R} ?
Theorem 1.4.3 (Density of \mathbb{Q} in \mathbb{R}). For every two real numbers a and b with $a<b$, there exists an $r \in \mathbb{Q}$ such that $a<r<b$.

Proof. To keep things simple, assume that $0 \leq a<b$. [The case where $a<0$ is handed similarly.]
We want to find $m, n \in \mathbb{N}$ with $n \neq 0$ such that $a<m / n<b$.
By Theorem 1.4.2 (Archimedean Property), we may pick $n \in \mathbb{N}$ large enough (so $n \neq 0$) such that

$$
\frac{1}{n}<b-a
$$

This can be rewritten as

$$
a<b-\frac{1}{n} .
$$

Having chosen n we now choose $m \in \mathbb{N}$ so that

$$
m-1 \leq n a<m
$$

The second inequality yields

$$
a \leq \frac{m}{n}
$$

while the first inequality yields

$$
m \leq n a+1
$$

Our choice for n this implies that

$$
m \leq n\left(b-\frac{1}{n}\right)+1=n b-1+1=n b .
$$

This implies that $m / n<b$.
We will let $\mathbb{I}=\mathbb{R}-\mathbb{Q}$ denote the set of irrational numbers.
Corollary 1.4.4 (Density of \mathbb{I} in \mathbb{R}). Given $a, b \in \mathbb{R}$ with $a<b$, there exists an irrational number t satisfying $a<t<b$.
The proof of this a homework problem 1.4.5.
We showed in Theorem 1.1.1 that there is no rational number whose square is 2 , or equivalently, that $\sqrt{2}$ is not a rational number.
We will prove there is a real number whose square is 2 .
Theorem 1.4.5. There exists a real number $\alpha \in \mathbb{R}$ satisfying $\alpha^{2}=2$.
Proof. We consider the set

$$
T=\left\{t \in \mathbb{R}: t^{2}<2\right\}
$$

This is similar to what we saw in Example 1.3.6 (wherein we only considered rational numbers satisfying $t^{2}<2$ and showed that the set of such t does not have a least upper bound as a rational number).
Let $\alpha=\sup T$.
We will show that $\alpha^{2}=2$ by eliminating the possibilities $\alpha^{2}>2$ and $\alpha^{2}<2$ by way of contradiction.

We will see that we will violate one of the two properties of a supremum in each case.
Suppose $\alpha^{2}<2$.
For an integer $n \geq 2$ we have

$$
\begin{aligned}
\left(\alpha+\frac{1}{n}\right)^{2} & =\alpha^{2}+\frac{2 \alpha}{n}+\frac{1}{n^{2}} \\
& <\alpha^{2}+\frac{2 \alpha}{n}+\frac{1}{n} \\
& =\alpha^{2}+\frac{2 \alpha+1}{n}
\end{aligned}
$$

Because $\alpha^{2}<2$ we can make $\alpha^{2}+(2 \alpha+1) / n<2$ by choosing n large enough.
Specifically we choose $n_{0} \geq 2$ large enough so that

$$
\frac{1}{n_{0}}<\frac{2-\alpha^{2}}{2 \alpha+1}
$$

(We got this choice of n_{0} by solving $\alpha^{2}+(2 \alpha+1) / n<2$ for $1 / n$.)
This implies that

$$
\frac{2 \alpha+1}{n_{0}}<2-\alpha^{2}
$$

so that

$$
\left(\alpha+\frac{1}{n_{0}}\right)^{2}<\alpha^{2}+\left(2-\alpha^{2}\right)=2
$$

Thus the real number $\alpha+1 / n_{0}$ belongs to T but is bigger than its supremum α, a contradiction to α being an upper bound of T.
Thus $\alpha^{2}<2$ is impossible.
Now suppose $\alpha^{2}>2$, and this time for an integer $n \geq 1$ we have

$$
\begin{aligned}
\left(\alpha-\frac{1}{n}\right)^{2} & =\alpha^{2}-\frac{2 \alpha}{n}+\frac{1}{n^{2}} \\
& >\alpha^{2}-\frac{2 \alpha}{n} .
\end{aligned}
$$

The remainder of the proof is a homework problem 1.4.7.
(Reach a statement that contradicts that α is the least of the upper bounds of T.)

