
Math 341 Lecture #4
§1.4: Consequences of Completeness

We are going to see how the Axiom of Completeness shows there are no “gaps” in R.

Theorem 1.4.1 (Nested Interval Property). For each n ∈ N, assume we are given
a closed interval In = [an, bn] ⊂ R. Assume also that In ⊇ In+1. Then the resulting
nested sequence of closed intervals

I1 ⊇ I2 ⊇ I3 ⊇ I4 ⊇ · · ·,

has a nonempty intersection:
∞⋂
n=1

In 6= ∅.

Proof. Consider the set of left endpoints of the intervals In:

A = {an : n ∈ N}.

Because of the nesting of the intervals, every right endpoint bn is an upper bound of A.

By the Axiom of Completeness, we can set

x = supA.

Because x is an upper bound for A, then an ≤ x for all n.

Also, because each bn is an upper bound for A, we have x ≤ bn.

These imply that an ≤ x ≤ bn, i.e., x ∈ In, for all n ∈ N.

Thus x ∈ ∩∞n=1In and the intersection is not empty. �

How does N sit inside R?

Theorem 1.4.2 (Archimedean Property). (i) Given any x ∈ R, there exists n ∈ N
such that n > x. (ii) Given any positive y ∈ R, there exists n ∈ N such that 1/n < y.

Proof. (i) Assume, for a contradiction, that N is bounded above.

Then by the Axiom of Completeness, the number α = supN exists.

The number α − 1 is not an upper bound (by Lemma 1.3.8 with ε = 1), and so there is
an n ∈ N such that α− 1 < n, or

α < n+ 1.

But n+ 1 ∈ N, implying that α is not an upper bound for N.

Part (ii) follows by letting x = 1/y. �

How does Q sit inside R?

Theorem 1.4.3 (Density of Q in R). For every two real numbers a and b with
a < b, there exists an r ∈ Q such that a < r < b.



Proof. To keep things simple, assume that 0 ≤ a < b. [The case where a < 0 is handed
similarly.]

We want to find m,n ∈ N with n 6= 0 such that a < m/n < b.

By Theorem 1.4.2 (Archimedean Property), we may pick n ∈ N large enough (so n 6= 0)
such that

1

n
< b− a.

This can be rewritten as

a < b− 1

n
.

Having chosen n we now choose m ∈ N so that

m− 1 ≤ na < m.

The second inequality yields

a ≤ m

n
,

while the first inequality yields
m ≤ na+ 1.

Our choice for n this implies that

m ≤ n

(
b− 1

n

)
+ 1 = nb− 1 + 1 = nb.

This implies that m/n < b. �

We will let I = R−Q denote the set of irrational numbers.

Corollary 1.4.4 (Density of I in R). Given a, b ∈ R with a < b, there exists an
irrational number t satisfying a < t < b.

The proof of this a homework problem 1.4.5.

We showed in Theorem 1.1.1 that there is no rational number whose square is 2, or
equivalently, that

√
2 is not a rational number.

We will prove there is a real number whose square is 2.

Theorem 1.4.5. There exists a real number α ∈ R satisfying α2 = 2.

Proof. We consider the set
T = {t ∈ R : t2 < 2}.

This is similar to what we saw in Example 1.3.6 (wherein we only considered rational
numbers satisfying t2 < 2 and showed that the set of such t does not have a least upper
bound as a rational number).

Let α = supT .

We will show that α2 = 2 by eliminating the possibilities α2 > 2 and α2 < 2 by way of
contradiction.



We will see that we will violate one of the two properties of a supremum in each case.

Suppose α2 < 2.

For an integer n ≥ 2 we have (
α +

1

n

)2

= α2 +
2α

n
+

1

n2

< α2 +
2α

n
+

1

n

= α2 +
2α + 1

n
.

Because α2 < 2 we can make α2 + (2α + 1)/n < 2 by choosing n large enough.

Specifically we choose n0 ≥ 2 large enough so that

1

n0

<
2− α2

2α + 1
.

(We got this choice of n0 by solving α2 + (2α + 1)/n < 2 for 1/n.)

This implies that
2α + 1

n0

< 2− α2,

so that (
α +

1

n0

)2

< α2 + (2− α2) = 2.

Thus the real number α + 1/n0 belongs to T but is bigger than its supremum α, a
contradiction to α being an upper bound of T .

Thus α2 < 2 is impossible.

Now suppose α2 > 2, and this time for an integer n ≥ 1 we have(
α− 1

n

)2

= α2 − 2α

n
+

1

n2

> α2 − 2α

n
.

The remainder of the proof is a homework problem 1.4.7.

(Reach a statement that contradicts that α is the least of the upper bounds of T .) �


