Math 341 Lecture #5
§1.5: Cardinality

The term “cardinality” is one way to assess the size of a set.

A set A has finite cardinality if A =0 or A= {ay,as,...,a,} for some n € N.
A set is called infinite if it is not finite.

Recall from Math 290 that we use functions to compare cardinalities of sets.

Definition 1.5.1. A function f : A — B is injective or one-to-one (1-1) if a; # ap in A
implies f(a1) # f(az2)) in B, i.e., if f(a;) = f(az) implies a; = as.

A function f is surjective or onto if for any given b € B there is an a € A such that
fla) =b.

A function f: A — B is a bijection (or a one-to-one correspondence) if f is one-to-one
and onto.

Definition 1.5.2. Two sets A and B have the same cardinality if there exists a bijection
f:+A— B, and we write A ~ B.

Example 1.5.3. (i) Does the set of positive odd integers have the same cardinality as
N?

The set of positive odd integers is
O={1,3,5,7,...}.
The function f : N — O defined by
f(n)=2n-1
is injective because
f(n)=f(m) = 2n—1=2m—-1 = 2n=2m = n=m,

and this function is surjective because each positive odd integer is of the form 2n — 1 for
some n € N.

Thus O ~ N (although O is only half of the set N, but this is what can happen with
infinite sets).

(ii) It is true that N ~ Z?
To show this we have to construct a bijection f: N — Z.

For this try the function

fn) = {(n— 1)/2 if nis odd,

—n/2 if n is even.

A careful investigation shows that f(1) =0, f(2) = =1, f(3) =1, f(4) = =2, f(5) = 2,
etc., so that f is a bijection.



Example 1.5.4. Is (=1,1) ~ R?
To show that is true we need to find a bijection f: (—1,1) — R.

Here is one such bijection:
x

T2

f(z)

Here is its graph.

By Calculus we know this function is injective (f'(x) > 0 for all x € (—1,1), and is
surjective (vertical asymptotes at © = —1 and = = 1).

Definition 1.5.5. A set A is countable (or countable infinite) if A ~ N.
An infinite set that is not countable is called an uncountable set.
Example 1.5.3 (ii) shows that Z is a countable set.

Theorem 1.5.6. (i) Q is countable. (ii) R is uncountable.

Proof. (i) Set A; = {0}, and for each integer n > 2 define

A, = {:I:B . where p,q € N are in lowest terms with p + ¢ = n} :
q

Then
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The crucial observations are that each A, is a finite set and each rational number appears
in exactly one of these sets.

We construct a bijection f: N — Q by associating the integer 1 with the single element
of Ay, the integers 2 and 3 with the two elements of As, the integers 4, 5, 6, and 7 with
the four elements of As, etc.

(ii) To show that R is uncountable, we assume to the contrary that there is a bijection
f N — R, and reach a contradiction.

(We will use the Nested Interval Property to reach a contradiction, and not Cantor’s
diagonalization argument which we will review next time.)

Then we can enumerate the real numbers; R = {x, 2o, x3, ... }.

Let I; be a closed interval that does not contain 1, and let I be a closed subinterval of
I, that does not contain x,.

The existence of I follows because I; certainly contains two disjoint closed subintervals
and x5 can only be in one of them.

Continuing choosing closed intervals [,, such that
(i) 1.1 € I, and

(ii) Ln+1 QI In+1-

For a real number z,,, in our enumerated list of R, we have that z,, & I,,, and so

Tny & ﬂ I,.
n=1

Since we have enumerated all the real numbers, then

(1. =0.
n=1

However, the Nested Interval Property (Theorem 1.4.1) guarantees that

(1. #0.
n=1

This contradiction implies that there is no bijection f : N — R, so R is uncountable. []
Theorem 1.5.7. If A C B and B is countable, then A is either countable or finite.
The proof of this is a homework problem 1.5.1.

Theorem 1.5.8. (i) If Ay, Ay, ..., A, are each countable sets, then A; U A, U---UA,,
is countable. (ii) If A, is a countable set for each n € N, then U® | A,, is countable.

The proofs of these are a homework problem 1.5.3.



