Math 341 Lecture \#5
 §1.5: Cardinality

The term "cardinality" is one way to assess the size of a set.
A set A has finite cardinality if $A=\emptyset$ or $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ for some $n \in \mathbb{N}$.
A set is called infinite if it is not finite.
Recall from Math 290 that we use functions to compare cardinalities of sets.
Definition 1.5.1. A function $f: A \rightarrow B$ is injective or one-to-one (1-1) if $a_{1} \neq a_{2}$ in A implies $\left.f\left(a_{1}\right) \neq f\left(a_{2}\right)\right)$ in B, i.e., if $f\left(a_{1}\right)=f\left(a_{2}\right)$ implies $a_{1}=a_{2}$.
A function f is surjective or onto if for any given $b \in B$ there is an $a \in A$ such that $f(a)=b$.
A function $f: A \rightarrow B$ is a bijection (or a one-to-one correspondence) if f is one-to-one and onto.
Definition 1.5.2. Two sets A and B have the same cardinality if there exists a bijection $f: A \rightarrow B$, and we write $A \sim B$.
Example 1.5.3. (i) Does the set of positive odd integers have the same cardinality as \mathbb{N} ?

The set of positive odd integers is

$$
O=\{1,3,5,7, \ldots\}
$$

The function $f: \mathbb{N} \rightarrow O$ defined by

$$
f(n)=2 n-1
$$

is injective because

$$
f(n)=f(m) \Rightarrow 2 n-1=2 m-1 \Rightarrow 2 n=2 m \Rightarrow n=m
$$

and this function is surjective because each positive odd integer is of the form $2 n-1$ for some $n \in \mathbb{N}$.
Thus $O \sim \mathbb{N}$ (although O is only half of the set \mathbb{N}, but this is what can happen with infinite sets).
(ii) It is true that $\mathbb{N} \sim \mathbb{Z}$?

To show this we have to construct a bijection $f: \mathbb{N} \rightarrow \mathbb{Z}$.
For this try the function

$$
f(n)= \begin{cases}(n-1) / 2 & \text { if } n \text { is odd } \\ -n / 2 & \text { if } n \text { is even }\end{cases}
$$

A careful investigation shows that $f(1)=0, f(2)=-1, f(3)=1, f(4)=-2, f(5)=2$, etc., so that f is a bijection.

Example 1.5.4. Is $(-1,1) \sim \mathbb{R}$?
To show that is true we need to find a bijection $f:(-1,1) \rightarrow \mathbb{R}$.
Here is one such bijection:

$$
f(x)=\frac{x}{1-x^{2}} .
$$

Here is its graph.

By Calculus we know this function is injective $\left(f^{\prime}(x)>0\right.$ for all $x \in(-1,1)$, and is surjective (vertical asymptotes at $x=-1$ and $x=1$).
Definition 1.5.5. A set A is countable (or countable infinite) if $A \sim \mathbb{N}$.
An infinite set that is not countable is called an uncountable set.
Example 1.5.3 (ii) shows that \mathbb{Z} is a countable set.
Theorem 1.5.6. (i) \mathbb{Q} is countable. (ii) \mathbb{R} is uncountable.
Proof. (i) Set $A_{1}=\{0\}$, and for each integer $n \geq 2$ define

$$
A_{n}=\left\{ \pm \frac{p}{q}: \text { where } p, q \in \mathbb{N} \text { are in lowest terms with } p+q=n\right\} .
$$

Then

$$
\begin{aligned}
& A_{2}=\left\{ \pm \frac{1}{1}\right\}, \\
& A_{3}=\left\{ \pm \frac{1}{2}, \pm \frac{2}{1}\right\}, \\
& A_{4}=\left\{ \pm \frac{1}{3}, \pm \frac{3}{1}\right\}, \\
& A_{5}=\left\{ \pm \frac{1}{4}, \pm \frac{2}{3}, \pm \frac{3}{2}, \pm \frac{4}{1}\right\}, \\
& \text { etc. }
\end{aligned}
$$

The crucial observations are that each A_{n} is a finite set and each rational number appears in exactly one of these sets.
We construct a bijection $f: \mathbb{N} \rightarrow \mathbb{Q}$ by associating the integer 1 with the single element of A_{1}, the integers 2 and 3 with the two elements of A_{2}, the integers $4,5,6$, and 7 with the four elements of A_{3}, etc.
(ii) To show that \mathbb{R} is uncountable, we assume to the contrary that there is a bijection $f: \mathbb{N} \rightarrow \mathbb{R}$, and reach a contradiction.
(We will use the Nested Interval Property to reach a contradiction, and not Cantor's diagonalization argument which we will review next time.)

Then we can enumerate the real numbers; $\mathbb{R}=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$.
Let I_{1} be a closed interval that does not contain x_{1}, and let I_{2} be a closed subinterval of I_{1} that does not contain x_{2}.
The existence of I_{2} follows because I_{1} certainly contains two disjoint closed subintervals and x_{2} can only be in one of them.
Continuing choosing closed intervals I_{n} such that
(i) $I_{n_{+} 1} \subseteq I_{n}$, and
(ii) $x_{n+1} \notin I_{n+1}$.

For a real number $x_{n_{0}}$ in our enumerated list of \mathbb{R}, we have that $x_{n_{0}} \notin I_{n_{0}}$, and so

$$
x_{n_{0}} \notin \bigcap_{n=1}^{\infty} I_{n} .
$$

Since we have enumerated all the real numbers, then

$$
\bigcap_{n=1}^{\infty} I_{n}=\emptyset .
$$

However, the Nested Interval Property (Theorem 1.4.1) guarantees that

$$
\bigcap_{n=1}^{\infty} I_{n} \neq \emptyset .
$$

This contradiction implies that there is no bijection $f: \mathbb{N} \rightarrow \mathbb{R}$, so \mathbb{R} is uncountable.
Theorem 1.5.7. If $A \subseteq B$ and B is countable, then A is either countable or finite.
The proof of this is a homework problem 1.5.1.
Theorem 1.5.8. (i) If $A_{1}, A_{2}, \ldots, A_{m}$ are each countable sets, then $A_{1} \cup A_{2} \cup \cdots \cup A_{m}$ is countable. (ii) If A_{n} is a countable set for each $n \in \mathbb{N}$, then $\cup_{n=1}^{\infty} A_{n}$ is countable.
The proofs of these are a homework problem 1.5.3.

