Math 341 Lecture \#6

§1.6: Cantor's Theorem
We give a less direct proof that \mathbb{R} is uncountable by showing that its subset $(0,1)$ is uncountable.
Before we do so, we recall some facts about decimal expansions of real numbers.
Every irrational number has a nonrepeating decimal expansion that is unique:

$$
\sqrt{2}=1.414 \ldots
$$

Every rational number has a repeating decimal expansion:

$$
\frac{1}{5}=0.2000 \ldots
$$

Some rational numbers have two repeating decimal expansions:

$$
\frac{1}{5}=0.1999 \ldots
$$

How do we know that this second decimal expansion equals $1 / 5$?
Well, we make use of the convergent geometric series

$$
\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}
$$

where $a \neq 0$ and $|r|<1$.
Since

$$
\begin{aligned}
0.1999 \ldots & =0.1+0.0999 \ldots \\
& =0.1+\frac{1}{100}(9.99 \ldots) \\
& =0.1+\frac{1}{100}\left(\frac{9}{10^{0}}+\frac{9}{10^{1}}+\frac{9}{10^{2}} \cdots\right) \\
& =0.1+\frac{1}{100} \sum_{n=0}^{\infty} 9\left(\frac{1}{10}\right)^{n} \\
& =0.1+\frac{1}{100}\left(\frac{9}{1-1 / 10}\right) \\
& =0.1+\frac{1}{100}\left(\frac{9}{9 / 10}\right) \\
& =0.1+\frac{1}{100}\left(\frac{10}{9 / 9}\right) \\
& =0.1+\frac{10}{100} \\
& =0.1+0.1 \\
& =0.2 .
\end{aligned}
$$

Fact: a rational number a / b in lowest terms has two decimal expansions if and only if the only primes that divide b are 2 or 5 .
If a rational number has two decimal expansions, as does $1 / 5$, the one expansion will repeat 0 from some point, while the other expansion will repeat 9 from some point.
Theorem 1.6.1. The open interval $(0,1)$ in \mathbb{R} is uncountable.
Proof. We argue by contradiction: suppose there is a bijection $f: \mathbb{N} \rightarrow(0,1)$.
This means that each $x \in(0,1)$ is the image $x=f(n)$ of a unique $n \in \mathbb{N}$.
Each $a_{n}=f(n) \in(0,1)$ has a decimal expansion

$$
a_{n}=0 . a_{n 1} a_{n 2} a_{n 3} \ldots
$$

were $a_{n j}$ belongs to set of digits $\{0,1,2, \ldots, 8,9\}$.
If a_{n} is irrational then its decimal expansion is unique.
If a_{n} is rational, its decimal expansion may be unique; if it is not unique then WLOG we assume that the digit 0 repeats from some point on.
We list the images of f starting with $f(1)$, then $f(2)$, etc.:

$$
\begin{aligned}
& a_{1}=f(1)=0 . a_{11} a_{12} a_{13} \ldots, \\
& a_{2}=f(2)=0 . a_{21} a_{22} a_{23} \ldots, \\
& a_{3}=f(3)=0 . a_{31} a_{32} a_{33} \ldots,
\end{aligned}
$$

Is every real number between $(0,1)$ really in this list?
We define the number $b=0 . b_{1} b_{2} b_{3} \ldots$ by

$$
b_{i}= \begin{cases}4 & \text { if } a_{i i}=5 \\ 5 & \text { if } a_{i i} \neq 5\end{cases}
$$

[This differs from the book which uses 2 and 3 instead of 4 and 5.]
By this choice of digits, the decimal expansion for b never has repeating 9's in it, and so b is not an alternative expansion of rational number.
By the choice of b_{1} we have that $a_{1} \neq b$; by the choice of b_{2} we have $a_{2} \neq b$; by the choice of b_{3} we have $a_{3} \neq b$, and on it goes, so that $a_{i} \neq b$ for all $i \in \mathbb{N}$.

Thus $b \notin f(\mathbb{N})$, and hence f is not surjective.
Recall that the power set of a set A is the collection of all subsets of A, and is denoted by $\mathcal{P}(A)$.
Theorem 1.6.2 (Cantor). For any set A, there does not exist a surjection $f: A \rightarrow$ $\mathcal{P}(A)$.
Proof. Suppose there is a surjection $f: A \rightarrow \mathcal{P}(A)$.

Thus for each $a \in A$ we get an element $f(a)$ of $\mathcal{P}(A)$, i.e., $f(a)$ is a subset of A.
We will achieve a contradiction by exhibiting a subset B of A such that $B \neq f(a)$ for all $a \in A$.
For each $a \in A$ the subset $f(a)$ of A has either $a \in f(a)$ or $a \notin f(a)$.
Consider the set

$$
B=\{a \in A: a \notin f(a)\} .
$$

Since by assumption the function f is a surjection, there is $a^{\prime} \in A$ such that $B=f\left(a^{\prime}\right)$.
When we consider the element a^{\prime} and the set B, we have two possibilities: $a^{\prime} \in B$ or $a^{\prime} \notin B$.
If $a^{\prime} \in B$, then $a^{\prime} \notin f\left(a^{\prime}\right)=B$, a contradiction.
If $a^{\prime} \notin B$, then $a^{\prime} \in f\left(a^{\prime}\right)=B$, a contradiction.
In both cases we have a contradiction, and so there is no surjection from A to $\mathcal{P}(A)$.
Corollary. The sets \mathcal{N} and $\mathcal{P}(\mathbb{N})$ do not have the same cardinality.
That raises a question: what other sets has the same cardinality as that of $\mathcal{P}(\mathbb{N})$?
The answer is $(0,1), \mathbb{R}$, etc.

