
Math 341 Lecture #6
§1.6: Cantor’s Theorem

We give a less direct proof that R is uncountable by showing that its subset (0, 1) is
uncountable.

Before we do so, we recall some facts about decimal expansions of real numbers.

Every irrational number has a nonrepeating decimal expansion that is unique:
√

2 = 1.414 . . . .

Every rational number has a repeating decimal expansion:

1

5
= 0.2000 . . . .

Some rational numbers have two repeating decimal expansions:

1

5
= 0.1999 . . . .

How do we know that this second decimal expansion equals 1/5?

Well, we make use of the convergent geometric series

∞∑
n=0

arn =
a

1− r

where a 6= 0 and |r| < 1.

Since

0.1999 . . . = 0.1 + 0.0999 . . .
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9/9

)
= 0.1 +
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100
= 0.1 + 0.1

= 0.2.



Fact: a rational number a/b in lowest terms has two decimal expansions if and only if
the only primes that divide b are 2 or 5.

If a rational number has two decimal expansions, as does 1/5, the one expansion will
repeat 0 from some point, while the other expansion will repeat 9 from some point.

Theorem 1.6.1. The open interval (0, 1) in R is uncountable.

Proof. We argue by contradiction: suppose there is a bijection f : N→ (0, 1).

This means that each x ∈ (0, 1) is the image x = f(n) of a unique n ∈ N.

Each an = f(n) ∈ (0, 1) has a decimal expansion

an = 0.an1an2an3 . . .

were anj belongs to set of digits {0, 1, 2, . . . , 8, 9}.
If an is irrational then its decimal expansion is unique.

If an is rational, its decimal expansion may be unique; if it is not unique then WLOG we
assume that the digit 0 repeats from some point on.

We list the images of f starting with f(1), then f(2), etc.:

a1 = f(1) = 0.a11a12a13 . . . ,

a2 = f(2) = 0.a21a22a23 . . . ,

a3 = f(3) = 0.a31a32a33 . . . ,

...

Is every real number between (0, 1) really in this list?

We define the number b = 0.b1b2b3 . . . by

bi =

{
4 if aii = 5,

5 if aii 6= 5.

[This differs from the book which uses 2 and 3 instead of 4 and 5.]

By this choice of digits, the decimal expansion for b never has repeating 9’s in it, and so
b is not an alternative expansion of rational number.

By the choice of b1 we have that a1 6= b; by the choice of b2 we have a2 6= b; by the choice
of b3 we have a3 6= b, and on it goes, so that ai 6= b for all i ∈ N.

Thus b 6∈ f(N), and hence f is not surjective. �

Recall that the power set of a set A is the collection of all subsets of A, and is denoted
by P(A).

Theorem 1.6.2 (Cantor). For any set A, there does not exist a surjection f : A →
P(A).

Proof. Suppose there is a surjection f : A→ P(A).



Thus for each a ∈ A we get an element f(a) of P(A), i.e., f(a) is a subset of A.

We will achieve a contradiction by exhibiting a subset B of A such that B 6= f(a) for all
a ∈ A.

For each a ∈ A the subset f(a) of A has either a ∈ f(a) or a 6∈ f(a).

Consider the set
B = {a ∈ A : a 6∈ f(a)}.

Since by assumption the function f is a surjection, there is a′ ∈ A such that B = f(a′).

When we consider the element a′ and the set B, we have two possibilities: a′ ∈ B or
a′ 6∈ B.

If a′ ∈ B, then a′ 6∈ f(a′) = B, a contradiction.

If a′ 6∈ B, then a′ ∈ f(a′) = B, a contradiction.

In both cases we have a contradiction, and so there is no surjection from A to P(A). �

Corollary. The sets N and P(N) do not have the same cardinality.

That raises a question: what other sets has the same cardinality as that of P(N)?

The answer is (0, 1), R, etc.


