Math 341 Lecture #7
§2.1, 2.2: Series, Sequences

For finite sums we have the commutative and associative properties holding, but what
about infinite sums?

Example. For positive integers i and j, consider the numbers
21 if j > i,
Q5 = —1 if i = j,
0 ifj<i.
We can visualize these numbers by a grid:

(1 1/2 1/4 1/8 1/16
0 -1 1/2 1/4 1/8
0 0 -1 1/2 1/4
0o 0 0 -1 1/2
o 0 0 0 -1

What happens when we add the rows first? We get

i=1 \j=1
because 1/2+1/4+1/8+--- = 1 (geometric series for r = 1/2 with first term 1 missing).
What happens when we add the columns first? We get

> <Zaj> =—1-1/2-1/4—1/8—--. = =2

j=1 \i=1
because 1 +1/2+4+1/4+1/8+ - - - = 2 (geometric series for r = 1/2).

This shows that commutativity of addition can fail for infinite sums.

Example. Consider the series

() =—141—1+1—1+1—1+---

n=1

Associating the sum in one way gives
(-1+1)+(-1+1)+(-1+1)+---=04+04+0+---=0,
while associating the sum in another way gives

-1+1-H)+1-H+1-1)+---=—-140+0+---=—1.



This shows that associativity of addition can fail for infinite sums.

An understanding of series depends heavily upon an understanding of sequences and
their convergence or divergence.

Definition 2.2.1. A sequence is a function whose domain is N.

oo
n=1»

We typically write a sequence as (ay,) or simply (a,) where n € N is implicitly

understood.

Examples.
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o ()= (2
Definition 2.2.3. A sequence (a,) converges to a real number a if, for every positive

€ > 0, there exists a positive integer N such that whenever n > N it follows that
la, —a] < e.

Some notations for a convergence sequence (a,) are

lim a, = a, lima, = a, (a,) — a.
n—oo

The notion of |a, — a|] < € requires some special attention.

Definition 2.2.4. Given a € R and a positive € > 0, the set
Vi(a) ={z eR: |x—a| <€}

is called the e-neighbourhood of a.
This set Vi(a) is an open interval with a at its center and with a “radius” of e.
This notion of a neighbourhood leads to a “topological” version of convergence.

Definition 2.2.3B. A sequence (a,) converges to a if, given any e-neighbourhood V,(a),

there exists a point (a.k.a. V) in the sequence after which all of the terms of the sequence
are in V (a).

This says that only finitely many terms of the sequence are not in V,(a).
The number N is the point where the sequence enters V,(a) and never leaves.

You should recognize that the value of N will generally depend on the choice of e: the
smaller €, the bigger the value of N for which the sequence enters V,(a) never to leave.

Usually the choice of N can be determined by how the terms in the sequence (a,) are
defined by n.

Example 2.2.5. Consider (a,) for a, = 1//n.



As n gets bigger (i.e., approaches c0), the value of a, approaches 0, and we “conclude”

that 1
To prove this rigourously we need to understand the relationship between the choice of
e and the value of N needed to have a,, € V,(0) for all n > N.

If we take e = 1/10, then we are seeking for a value of NV such that

1 ol < 1
vn 10
We recognize that with n = 100 we get 1/y/n = 1/10, and so we can pick N = 101 or
any larger integer.

If we take € = 1/50, then we are seeking for a value of N such that

That is we are solving
1 1

—_ < —_
vn 50
for n which gives
n > 50% = 2500.

We can pick N = 2501 or any larger integer.

The whole point of this is that no matter small we choose € to be, we can find a value of
N for which
e
for all n > N: .
— < EeE=Nn>—
2

\/ﬁ
We then have a proof that the sequence converges to 0: for every € > 0 choose N € N by
1
N > =
Then for all n > N, we have
1

1 O‘ 1.1

- mE
The first inequality follows because n > N, and the second inequality follows because
N > 1/é.

Not all sequences converge, like (a,) = (—=1)" = (=1,1,—-1,1,—1,- - -). Why does this
not converge?

Definition 2.2.9. A sequence that does not converge is said to diverge.



