## Math 341 Lecture \#7 <br> §2.1, 2.2: Series, Sequences

For finite sums we have the commutative and associative properties holding, but what about infinite sums?
Example. For positive integers $i$ and $j$, consider the numbers

$$
a_{i j}=\left\{\begin{array}{lc}
2^{i-j} & \text { if } j>i \\
-1 & \text { if } i=j \\
0 & \text { if } j<i
\end{array}\right.
$$

We can visualize these numbers by a grid:

$$
\left[\begin{array}{cccccc}
-1 & 1 / 2 & 1 / 4 & 1 / 8 & 1 / 16 & \ldots \\
0 & -1 & 1 / 2 & 1 / 4 & 1 / 8 & \ldots \\
0 & 0 & -1 & 1 / 2 & 1 / 4 & \cdots \\
0 & 0 & 0 & -1 & 1 / 2 & \cdots \\
0 & 0 & 0 & 0 & -1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right] .
$$

What happens when we add the rows first? We get

$$
\sum_{i=1}^{\infty}\left(\sum_{j=1}^{\infty} a_{i j}\right)=\sum_{i=1}^{\infty} 0=0
$$

because $1 / 2+1 / 4+1 / 8+\cdots=1$ (geometric series for $r=1 / 2$ with first term 1 missing). What happens when we add the columns first? We get

$$
\sum_{j=1}^{\infty}\left(\sum_{i=1}^{\infty} a_{i j}\right)=-1-1 / 2-1 / 4-1 / 8-\cdots=-2
$$

because $1+1 / 2+1 / 4+1 / 8+\cdots=2$ (geometric series for $r=1 / 2$ ).
This shows that commutativity of addition can fail for infinite sums.
Example. Consider the series

$$
\sum_{n=1}^{\infty}(-1)^{n}=-1+1-1+1-1+1-1+\cdots .
$$

Associating the sum in one way gives

$$
(-1+1)+(-1+1)+(-1+1)+\cdots=0+0+0+\cdots=0,
$$

while associating the sum in another way gives

$$
-1+(1-1)+(1-1)+(1-1)+\cdots=-1+0+0+\cdots=-1 .
$$

This shows that associativity of addition can fail for infinite sums.
An understanding of series depends heavily upon an understanding of sequences and their convergence or divergence.
Definition 2.2.1. A sequence is a function whose domain is $\mathbb{N}$.
We typically write a sequence as $\left(a_{n}\right)_{n=1}^{\infty}$, or simply $\left(a_{n}\right)$ where $n \in \mathbb{N}$ is implicitly understood.

Examples.
(a) $\left(2^{-n+1}\right)_{n=1}^{\infty}=\left(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots\right)$.
(b) $\left(\frac{1+n}{n}\right)=\left(2, \frac{3}{2}, \frac{4}{3}, \cdots\right)$.

Definition 2.2.3. A sequence $\left(a_{n}\right)$ converges to a real number $a$ if, for every positive $\epsilon>0$, there exists a positive integer $N$ such that whenever $n \geq N$ it follows that $\left|a_{n}-a\right|<\epsilon$.
Some notations for a convergence sequence $\left(a_{n}\right)$ are

$$
\lim _{n \rightarrow \infty} a_{n}=a, \lim a_{n}=a,\left(a_{n}\right) \rightarrow a
$$

The notion of $\left|a_{n}-a\right|<\epsilon$ requires some special attention.
Definition 2.2.4. Given $a \in \mathbb{R}$ and a positive $\epsilon>0$, the set

$$
V_{\epsilon}(a)=\{x \in \mathbb{R}:|x-a|<\epsilon\}
$$

is called the $\epsilon$-neighbourhood of $a$.
This set $V_{\epsilon}(a)$ is an open interval with $a$ at its center and with a "radius" of $\epsilon$.
This notion of a neighbourhood leads to a "topological" version of convergence.
Definition 2.2.3B. A sequence $\left(a_{n}\right)$ converges to $a$ if, given any $\epsilon$-neighbourhood $V_{\epsilon}(a)$, there exists a point (a.k.a. $N$ ) in the sequence after which all of the terms of the sequence are in $V_{\epsilon}(a)$.
This says that only finitely many terms of the sequence are not in $V_{\epsilon}(a)$.
The number $N$ is the point where the sequence enters $V_{\epsilon}(a)$ and never leaves.
You should recognize that the value of $N$ will generally depend on the choice of $\epsilon$ : the smaller $\epsilon$, the bigger the value of $N$ for which the sequence enters $V_{\epsilon}(a)$ never to leave.
Usually the choice of $N$ can be determined by how the terms in the sequence $\left(a_{n}\right)$ are defined by $n$.
Example 2.2.5. Consider $\left(a_{n}\right)$ for $a_{n}=1 / \sqrt{n}$.

As $n$ gets bigger (i.e., approaches $\infty$ ), the value of $a_{n}$ approaches 0 , and we "conclude" that

$$
\lim \frac{1}{\sqrt{n}}=0
$$

To prove this rigourously we need to understand the relationship between the choice of $\epsilon$ and the value of $N$ needed to have $a_{n} \in V_{\epsilon}(0)$ for all $n \geq N$.
If we take $\epsilon=1 / 10$, then we are seeking for a value of $N$ such that

$$
\left|\frac{1}{\sqrt{n}}-0\right|<\frac{1}{10} .
$$

We recognize that with $n=100$ we get $1 / \sqrt{n}=1 / 10$, and so we can pick $N=101$ or any larger integer.
If we take $\epsilon=1 / 50$, then we are seeking for a value of $N$ such that

$$
\left|\frac{1}{\sqrt{n}}-0\right|<\frac{1}{50} .
$$

That is we are solving

$$
\frac{1}{\sqrt{n}}<\frac{1}{50}
$$

for $n$ which gives

$$
n>50^{2}=2500
$$

We can pick $N=2501$ or any larger integer.
The whole point of this is that no matter small we choose $\epsilon$ to be, we can find a value of $N$ for which

$$
\left|\frac{1}{\sqrt{n}}-0\right|<\epsilon
$$

for all $n \geq N$ :

$$
\frac{1}{\sqrt{n}}<\epsilon \Rightarrow n>\frac{1}{\epsilon^{2}} .
$$

We then have a proof that the sequence converges to 0 : for every $\epsilon>0$ choose $N \in \mathbb{N}$ by

$$
N>\frac{1}{\epsilon^{2}} .
$$

Then for all $n \geq N$, we have

$$
\left|\frac{1}{\sqrt{n}}-0\right|=\frac{1}{\sqrt{n}} \leq \frac{1}{\sqrt{N}}<\epsilon
$$

The first inequality follows because $n \geq N$, and the second inequality follows because $N>1 / \epsilon^{2}$.
Not all sequences converge, like $\left(a_{n}\right)=(-1)^{n}=(-1,1,-1,1,-1, \cdots)$. Why does this not converge?
Definition 2.2.9. A sequence that does not converge is said to diverge.

