
Math 341 Lecture #7
§2.1, 2.2: Series, Sequences

For finite sums we have the commutative and associative properties holding, but what
about infinite sums?

Example. For positive integers i and j, consider the numbers

aij =


2i−j if j > i,

−1 if i = j,

0 if j < i.

We can visualize these numbers by a grid:

−1 1/2 1/4 1/8 1/16 . . .
0 −1 1/2 1/4 1/8 . . .
0 0 −1 1/2 1/4 . . .
0 0 0 −1 1/2 . . .
0 0 0 0 −1 . . .
...

...
...

...
...

. . .


.

What happens when we add the rows first? We get

∞∑
i=1

(
∞∑
j=1

aij

)
=
∞∑
i=1

0 = 0

because 1/2+1/4+1/8+ · · · = 1 (geometric series for r = 1/2 with first term 1 missing).

What happens when we add the columns first? We get

∞∑
j=1

(
∞∑
i=1

aij

)
= −1− 1/2− 1/4− 1/8− · · · = −2

because 1 + 1/2 + 1/4 + 1/8 + · · · = 2 (geometric series for r = 1/2).

This shows that commutativity of addition can fail for infinite sums.

Example. Consider the series

∞∑
n=1

(−1)n = −1 + 1− 1 + 1− 1 + 1− 1 + · · ·.

Associating the sum in one way gives

(−1 + 1) + (−1 + 1) + (−1 + 1) + · · · = 0 + 0 + 0 + · · · = 0,

while associating the sum in another way gives

−1 + (1− 1) + (1− 1) + (1− 1) + · · · = −1 + 0 + 0 + · · · = −1.



This shows that associativity of addition can fail for infinite sums.

An understanding of series depends heavily upon an understanding of sequences and
their convergence or divergence.

Definition 2.2.1. A sequence is a function whose domain is N.

We typically write a sequence as (an)∞n=1, or simply (an) where n ∈ N is implicitly
understood.

Examples.

(a) (2−n+1)∞n=1 =

(
1,

1

2
,
1

4
,
1

8
, · · ·

)
.

(b)

(
1 + n

n

)
=

(
2,

3

2
,
4

3
, · · ·

)
.

Definition 2.2.3. A sequence (an) converges to a real number a if, for every positive
ε > 0, there exists a positive integer N such that whenever n ≥ N it follows that
|an − a| < ε.

Some notations for a convergence sequence (an) are

lim
n→∞

an = a, lim an = a, (an)→ a.

The notion of |an − a| < ε requires some special attention.

Definition 2.2.4. Given a ∈ R and a positive ε > 0, the set

Vε(a) = {x ∈ R : |x− a| < ε}

is called the ε-neighbourhood of a.

This set Vε(a) is an open interval with a at its center and with a “radius” of ε.

This notion of a neighbourhood leads to a “topological” version of convergence.

Definition 2.2.3B. A sequence (an) converges to a if, given any ε-neighbourhood Vε(a),
there exists a point (a.k.a. N) in the sequence after which all of the terms of the sequence
are in Vε(a).

This says that only finitely many terms of the sequence are not in Vε(a).

The number N is the point where the sequence enters Vε(a) and never leaves.

You should recognize that the value of N will generally depend on the choice of ε: the
smaller ε, the bigger the value of N for which the sequence enters Vε(a) never to leave.

Usually the choice of N can be determined by how the terms in the sequence (an) are
defined by n.

Example 2.2.5. Consider (an) for an = 1/
√
n.



As n gets bigger (i.e., approaches ∞), the value of an approaches 0, and we “conclude”
that

lim
1√
n

= 0.

To prove this rigourously we need to understand the relationship between the choice of
ε and the value of N needed to have an ∈ Vε(0) for all n ≥ N .

If we take ε = 1/10, then we are seeking for a value of N such that∣∣∣∣ 1√
n
− 0

∣∣∣∣ < 1

10
.

We recognize that with n = 100 we get 1/
√
n = 1/10, and so we can pick N = 101 or

any larger integer.

If we take ε = 1/50, then we are seeking for a value of N such that∣∣∣∣ 1√
n
− 0

∣∣∣∣ < 1

50
.

That is we are solving
1√
n
<

1

50

for n which gives
n > 502 = 2500.

We can pick N = 2501 or any larger integer.

The whole point of this is that no matter small we choose ε to be, we can find a value of
N for which ∣∣∣∣ 1√

n
− 0

∣∣∣∣ < ε

for all n ≥ N :
1√
n
< ε⇒ n >

1

ε2
.

We then have a proof that the sequence converges to 0: for every ε > 0 choose N ∈ N by

N >
1

ε2
.

Then for all n ≥ N , we have ∣∣∣∣ 1√
n
− 0

∣∣∣∣ =
1√
n
≤ 1√

N
< ε.

The first inequality follows because n ≥ N , and the second inequality follows because
N > 1/ε2.

Not all sequences converge, like (an) = (−1)n = (−1, 1,−1, 1,−1, · · ·). Why does this
not converge?

Definition 2.2.9. A sequence that does not converge is said to diverge.


