
Math 341 Lecture #8
§2.3: The Algebraic and Order Limit Theorems

The point of having the logically tight definition of convergence of a sequence is so that
we can prove theorems about convergent sequences, not just rely on good guesses.

In a homework problem (Exercise 2.2.6), you will show that the limit of convergent
sequence is unique.

Boundedness is another property of convergent sequences.

Definition 2.3.1. A sequence (xn) is bounded if there is a number M > 0 such that
|xn| ≤M for all n ∈ N.

Theorem 2.3.2. Every convergent sequence is bounded.

Proof. Assume that (xn) is a convergent sequence: there is a unique number l such that

lim
n→∞

xn = l.

Thus for every ε > 0 there is an N ∈ N such that |xn − l| < ε for all n ≥ N .

As this is true for any ε, we can take ε = 1, and so there is an N ∈ N such that |xn−l| < 1
for all n ≥ N .

This means that l − 1 < xn < l + 1 for all n ≥ N .

When we think about these inequalities, we can conclude that |xn| < |l|+1 for all n ≥ N .

[This is starting to look like (xn) is bounded.]

But we have not yet accounted for xn when 1 ≤ n ≤ N − 1.

But as there are only finitely many of these, we define

M = max{|x1|, |x2|, . . . , |xN−1|, |l|+ 1}.

With this value of M we obtain |xn| ≤M for all n ∈ N. �

Convergent sequences behave well (as we would expect) when it comes to scalar multi-
plication, addition, multiplication, and division.

Theorem 2.3.3 (Algebraic Limit Theorem). If a = lim an and b = lim bn, then

(i) lim(can) = ca for all c ∈ R,

(ii) lim(an + bn) = a+ b,

(iii) lim(anbn) = ab,

(iv) lim(an/bn) = a/b provided b 6= 0.

Proof. (i) First consider the case where c 6= 0.

We want to show that for every ε > 0 there is an N ∈ N such that |can − ca| < ε when
n ≥ N .



By a rule of the absolute value we notice that

|can − ca| = |c(an − a)| = |c| |an − a|.

Here is where we make use of the “for every ε” in the definition of convergent sequence.

We take for this “ε” the quantity ε/|c| > 0, for which there is an N ∈ N such that

|an − a| <
ε

|c|
for all n ≥ N.

Now we put the pieces together to get

|can − ca| = |c| |an − a| < |c|
ε

|c|
= ε for all n ≥ N.

The case of c = 0 is nothing more than showing the constant zero sequence converges to
0.

(ii) We want to show that |(an + bn)− (a+ b)| is as small as we want for all large n.

To use the convergence of (an) and (bn) we need to separate an and bn and then use the
triangle inequality,

|(an + bn)− (a+ b)| = |(an − a) + (bn − b)|
≤ |an − a|+ |bn − b|.

For ε > 0 there exist N1, N2 ∈ N such that

|an − a| <
ε

2
for all n ≥ N1,

|bn − b| <
ε

2
for all n ≥ N2.

Notice that for the “ε” we took ε/2.

How do we choose the N that goes with ε? We take the larger of N1 and N2:

N = max{N1, N2}.

With this choose of N we have n ≥ N ≥ N1 and n ≥ N ≥ N2, and so for n ≥ N we
obtain

|(an + bn)− (a+ b)| ≤ |an − a|+ |bn − b| <
ε

2
+
ε

2
= ε.

(iii) We want to show that |anbn − ab| is as small as we want for all large n.

This one take some fancier algebra:

|anbn − ab| = |anbn − abn + abn − ab|
≤ |anbn − abn|+ |abn − ab|
= |bn| |an − a|+ |a| |bn − a|.



Let ε > 0.

If a 6= 0, then since (bn)→ b there is an N1 ∈ N such that for all n ≥ N1 we have

|bn − b| ≤
1

|a|
ε

2
.

The case of a = 0 is left to you.

For |bn| |an − a|, how do we handle the |bn|?
We know that (bn) converges, and so by Theorem 2.3.2, the sequence (bn) is bounded:
there is a number M > 0 such that |bn| ≤M for all n ≥ 1.

We can then write |bn| |an − a| ≤M |an − a| for all n ∈ N.

Because (an)→ a, there is an N2 ∈ N such that for all n ≥ N2 we have

|an − a| <
1

M

ε

2
.

Again, notice the clever choice of “ε” here.

We pick N = max{N1, N2}, so that for all n ≥ N , we have

|anbn − ab| ≤M |an − a|+ |a| |bn − b| < M
1

M

ε

2
+ |a| 1

|a|
ε

2
= ε.

The argument for (iv) is left to you to read in the text. It shows that 1/bn converges to
1/b and then calls upon (iii). �

Limits of convergent sequences also behave well with respect to the order of ≤.

Theorem 2.3.4 (Order Limit Theorem). Suppose that a = lim an and b = lim bn.

(i) If an ≥ 0 for all n ∈ N, then a ≥ 0.

(ii) If an ≤ bn for all n ∈ N, then a ≤ b.

(iii) If there exists c ∈ R for which c ≤ bn for all n ∈ N, then c ≤ b. Similiary, if an ≤ c
for all n ∈ N, then a ≤ c.

Proof. (i) This will be proved by contradiction: we suppose that a < 0 and we will show
that an < 0 for some n, a contradiction.

For ε = |a| there exists N ∈ N such that |an − a| < ε = |a| when n ≥ N .

Taking n = N , we have |aN − a| < |a|, or unwrapping the absolute value in the middle,

−|a|+ a < aN < |a|+ a = 0.

(ii) The Algebraic Limit Theorem implies that the sequence (bn− an) converges to b− a.
Because bn − an ≥ 0 for all n ∈ N, we apply part (i) to conclude that b− a ≥ 0.

(iii) Take an = c (or bn = c) and apply part (ii). �.


