Math 341 Lecture #8
§2.3: The Algebraic and Order Limit Theorems

The point of having the logically tight definition of convergence of a sequence is so that
we can prove theorems about convergent sequences, not just rely on good guesses.

In a homework problem (Exercise 2.2.6), you will show that the limit of convergent
sequence is unique.

Boundedness is another property of convergent sequences.

Definition 2.3.1. A sequence (z,) is bounded if there is a number M > 0 such that
|z,| < M for all n € N,

Theorem 2.3.2. Every convergent sequence is bounded.

Proof. Assume that (x,) is a convergent sequence: there is a unique number [ such that

lim z, = L.
n—oo

Thus for every € > 0 there is an N € N such that |z, — | < € for all n > N.

As this is true for any €, we can take e = 1, and so there is an N € N such that |z, —[| < 1
for all n > N.

This means that | —1 <z, <+ 1foralln > N.

When we think about these inequalities, we can conclude that |z,| < |I|+1 for all n > N.
[This is starting to look like () is bounded.]

But we have not yet accounted for z,, when 1 <n < N — 1.

But as there are only finitely many of these, we define
M = max{|x1]|, |zal, ..., |xy_1|, [I| + 1}.

With this value of M we obtain |z,,| < M for all n € N. O

Convergent sequences behave well (as we would expect) when it comes to scalar multi-
plication, addition, multiplication, and division.

Theorem 2.3.3 (Algebraic Limit Theorem). If a = lima,, and b = lim b,,, then

Proof. (i) First consider the case where ¢ # 0.

We want to show that for every € > 0 there is an N € N such that |ca, — ca| < € when
n>N.



By a rule of the absolute value we notice that

|ca, — ca| = |c(a, —a)| = || |a, — al.
Here is where we make use of the “for every €’ in the definition of convergent sequence.
We take for this “¢” the quantity €/|c| > 0, for which there is an N € N such that

|an—a\<|—€|foralln2N.
c

Now we put the pieces together to get

|ca,, — ca| = |c| |a, — a|] < |¢] ﬁ:(—:for all n > N.
c

The case of ¢ = 0 is nothing more than showing the constant zero sequence converges to
0.

(ii) We want to show that |(a, + b,) — (a + b)] is as small as we want for all large n.

To use the convergence of (a,) and (b,) we need to separate a, and b, and then use the

triangle inequality,

|(an + bn) = (a +b)| = |(an — a) + (bn — D)

= |
<lan —al + |b, — b].
For € > 0 there exist Ny, N € N such that

la, —al| < % for all n > Ny,

b, — b| < % for all n > Ny,

Notice that for the “€” we took €/2.
How do we choose the N that goes with €7 We take the larger of N; and Ns:

N = max{Ny, No}.

With this choose of N we have n > N > Ny and n > N > N,, and so for n > N we

obtain
€

2

|(an+bn)—(a+b)\gyan—a|+|bn—by<§+ =e

(iii) We want to show that |a,b, — ab| is as small as we want for all large n.

This one take some fancier algebra:

|ayb, — ab| = |a,b, — ab, + ab, — ab|
< |apb, — ab,| + |ab, — ab|

= |bn| |an — al + |a| b, — al.



Let ¢ > 0.
If a # 0, then since (b,) — b there is an N; € N such that for all n > N; we have

1 e
b, — b < ——.
| l_]a\Q

The case of a = 0 is left to you.

For |b,| |a, — a|, how do we handle the |b,|?

We know that (b,) converges, and so by Theorem 2.3.2, the sequence (b,,) is bounded:
there is a number M > 0 such that |b,| < M for all n > 1.

We can then write |b,| |a, — a| < M|a,, — a| for all n € N.

Because (a,) — a, there is an Ny € N such that for all n > N, we have

| |< 1 e
p — @ —_——
M2

Again, notice the clever choice of “¢” here.

We pick N = max{Ny, Ny}, so that for all n > N, we have
1€

b = ab] < Mlan =l +lal b —b] < M-S

1
+ |a|m

The argument for (iv) is left to you to read in the text. It shows that 1/b, converges to
1/b and then calls upon (iii). O

€
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Limits of convergent sequences also behave well with respect to the order of <.

Theorem 2.3.4 (Order Limit Theorem). Suppose that a = lima,, and b = lim b,,.
(i) If a, > 0 for all n € N, then a > 0.

(i) If a,, < b, for all n € N, then a < b.

(iii) If there exists ¢ € R for which ¢ < b, for all n € N, then ¢ < b. Similiary, if a,, < ¢
for all n € N, then a < c.

Proof. (i) This will be proved by contradiction: we suppose that a < 0 and we will show
that a,, < 0 for some n, a contradiction.

For € = |al| there exists N € N such that |a, —a| < € = |a| when n > N.

Taking n = N, we have |ay — a| < |a|, or unwrapping the absolute value in the middle,
—la|+a <ay < |a|+a=0.

(ii) The Algebraic Limit Theorem implies that the sequence (b, — a,) converges to b — a.
Because b, — a, > 0 for all n € N, we apply part (i) to conclude that b —a > 0.

(iii) Take a, = ¢ (or b, = ¢) and apply part (ii). 0.



