Math 341 Lecture \#8
 §2.3: The Algebraic and Order Limit Theorems

The point of having the logically tight definition of convergence of a sequence is so that we can prove theorems about convergent sequences, not just rely on good guesses.
In a homework problem (Exercise 2.2.6), you will show that the limit of convergent sequence is unique.
Boundedness is another property of convergent sequences.
Definition 2.3.1. A sequence $\left(x_{n}\right)$ is bounded if there is a number $M>0$ such that $\left|x_{n}\right| \leq M$ for all $n \in \mathbb{N}$.
Theorem 2.3.2. Every convergent sequence is bounded.
Proof. Assume that $\left(x_{n}\right)$ is a convergent sequence: there is a unique number l such that

$$
\lim _{n \rightarrow \infty} x_{n}=l .
$$

Thus for every $\epsilon>0$ there is an $N \in \mathbb{N}$ such that $\left|x_{n}-l\right|<\epsilon$ for all $n \geq N$.
As this is true for any ϵ, we can take $\epsilon=1$, and so there is an $N \in \mathbb{N}$ such that $\left|x_{n}-l\right|<1$ for all $n \geq N$.
This means that $l-1<x_{n}<l+1$ for all $n \geq N$.
When we think about these inequalities, we can conclude that $\left|x_{n}\right|<|l|+1$ for all $n \geq N$. [This is starting to look like $\left(x_{n}\right)$ is bounded.]
But we have not yet accounted for x_{n} when $1 \leq n \leq N-1$.
But as there are only finitely many of these, we define

$$
M=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{N-1}\right|,|l|+1\right\} .
$$

With this value of M we obtain $\left|x_{n}\right| \leq M$ for all $n \in \mathbb{N}$.
Convergent sequences behave well (as we would expect) when it comes to scalar multiplication, addition, multiplication, and division.
Theorem 2.3.3 (Algebraic Limit Theorem). If $a=\lim a_{n}$ and $b=\lim b_{n}$, then
(i) $\lim \left(c a_{n}\right)=c a$ for all $c \in \mathbb{R}$,
(ii) $\lim \left(a_{n}+b_{n}\right)=a+b$,
(iii) $\lim \left(a_{n} b_{n}\right)=a b$,
(iv) $\lim \left(a_{n} / b_{n}\right)=a / b$ provided $b \neq 0$.

Proof. (i) First consider the case where $c \neq 0$.
We want to show that for every $\epsilon>0$ there is an $N \in \mathbb{N}$ such that $\left|c a_{n}-c a\right|<\epsilon$ when $n \geq N$.

By a rule of the absolute value we notice that

$$
\left|c a_{n}-c a\right|=\left|c\left(a_{n}-a\right)\right|=|c|\left|a_{n}-a\right| .
$$

Here is where we make use of the "for every ϵ " in the definition of convergent sequence. We take for this " ϵ " the quantity $\epsilon /|c|>0$, for which there is an $N \in \mathbb{N}$ such that

$$
\left|a_{n}-a\right|<\frac{\epsilon}{|c|} \text { for all } n \geq N
$$

Now we put the pieces together to get

$$
\left|c a_{n}-c a\right|=|c|\left|a_{n}-a\right|<|c| \frac{\epsilon}{|c|}=\epsilon \text { for all } n \geq N .
$$

The case of $c=0$ is nothing more than showing the constant zero sequence converges to 0 .
(ii) We want to show that $\left|\left(a_{n}+b_{n}\right)-(a+b)\right|$ is as small as we want for all large n.

To use the convergence of $\left(a_{n}\right)$ and $\left(b_{n}\right)$ we need to separate a_{n} and b_{n} and then use the triangle inequality,

$$
\begin{aligned}
\left|\left(a_{n}+b_{n}\right)-(a+b)\right| & =\left|\left(a_{n}-a\right)+\left(b_{n}-b\right)\right| \\
& \leq\left|a_{n}-a\right|+\left|b_{n}-b\right| .
\end{aligned}
$$

For $\epsilon>0$ there exist $N_{1}, N_{2} \in \mathbb{N}$ such that

$$
\begin{aligned}
& \left|a_{n}-a\right|<\frac{\epsilon}{2} \text { for all } n \geq N_{1} \\
& \left|b_{n}-b\right|<\frac{\epsilon}{2} \text { for all } n \geq N_{2}
\end{aligned}
$$

Notice that for the " ϵ " we took $\epsilon / 2$.
How do we choose the N that goes with ϵ ? We take the larger of N_{1} and N_{2} :

$$
N=\max \left\{N_{1}, N_{2}\right\} .
$$

With this choose of N we have $n \geq N \geq N_{1}$ and $n \geq N \geq N_{2}$, and so for $n \geq N$ we obtain

$$
\left|\left(a_{n}+b_{n}\right)-(a+b)\right| \leq\left|a_{n}-a\right|+\left|b_{n}-b\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

(iii) We want to show that $\left|a_{n} b_{n}-a b\right|$ is as small as we want for all large n.

This one take some fancier algebra:

$$
\begin{aligned}
\left|a_{n} b_{n}-a b\right| & =\left|a_{n} b_{n}-a b_{n}+a b_{n}-a b\right| \\
& \leq\left|a_{n} b_{n}-a b_{n}\right|+\left|a b_{n}-a b\right| \\
& =\left|b_{n}\right|\left|a_{n}-a\right|+|a|\left|b_{n}-a\right| .
\end{aligned}
$$

Let $\epsilon>0$.
If $a \neq 0$, then since $\left(b_{n}\right) \rightarrow b$ there is an $N_{1} \in \mathbb{N}$ such that for all $n \geq N_{1}$ we have

$$
\left|b_{n}-b\right| \leq \frac{1}{|a|} \frac{\epsilon}{2}
$$

The case of $a=0$ is left to you.
For $\left|b_{n}\right|\left|a_{n}-a\right|$, how do we handle the $\left|b_{n}\right|$?
We know that $\left(b_{n}\right)$ converges, and so by Theorem 2.3.2, the sequence $\left(b_{n}\right)$ is bounded: there is a number $M>0$ such that $\left|b_{n}\right| \leq M$ for all $n \geq 1$.
We can then write $\left|b_{n}\right|\left|a_{n}-a\right| \leq M\left|a_{n}-a\right|$ for all $n \in \mathbb{N}$.
Because $\left(a_{n}\right) \rightarrow a$, there is an $N_{2} \in \mathbb{N}$ such that for all $n \geq N_{2}$ we have

$$
\left|a_{n}-a\right|<\frac{1}{M} \frac{\epsilon}{2}
$$

Again, notice the clever choice of " ϵ " here.
We pick $N=\max \left\{N_{1}, N_{2}\right\}$, so that for all $n \geq N$, we have

$$
\left|a_{n} b_{n}-a b\right| \leq M\left|a_{n}-a\right|+|a|\left|b_{n}-b\right|<M \frac{1}{M} \frac{\epsilon}{2}+|a| \frac{1}{|a|} \frac{\epsilon}{2}=\epsilon
$$

The argument for (iv) is left to you to read in the text. It shows that $1 / b_{n}$ converges to $1 / b$ and then calls upon (iii).
Limits of convergent sequences also behave well with respect to the order of \leq.
Theorem 2.3.4 (Order Limit Theorem). Suppose that $a=\lim a_{n}$ and $b=\lim b_{n}$.
(i) If $a_{n} \geq 0$ for all $n \in \mathbb{N}$, then $a \geq 0$.
(ii) If $a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$, then $a \leq b$.
(iii) If there exists $c \in \mathbb{R}$ for which $c \leq b_{n}$ for all $n \in \mathbb{N}$, then $c \leq b$. Similiary, if $a_{n} \leq c$ for all $n \in \mathbb{N}$, then $a \leq c$.

Proof. (i) This will be proved by contradiction: we suppose that $a<0$ and we will show that $a_{n}<0$ for some n, a contradiction.
For $\epsilon=|a|$ there exists $N \in \mathbb{N}$ such that $\left|a_{n}-a\right|<\epsilon=|a|$ when $n \geq N$.
Taking $n=N$, we have $\left|a_{N}-a\right|<|a|$, or unwrapping the absolute value in the middle,

$$
-|a|+a<a_{N}<|a|+a=0 .
$$

(ii) The Algebraic Limit Theorem implies that the sequence $\left(b_{n}-a_{n}\right)$ converges to $b-a$. Because $b_{n}-a_{n} \geq 0$ for all $n \in \mathbb{N}$, we apply part (i) to conclude that $b-a \geq 0$.
(iii) Take $a_{n}=c$ (or $b_{n}=c$) and apply part (ii).

