
Math 341 Lecture #10
§2.5: Subsequences and The Bolzano-Weierstrass Theorem

Definition 2.5.1. Let (an) be a sequence of real numbers, and let n1 < n2 < n3 < · · ·
be a strictly increasing sequence of natural numbers. Then the sequence

an1 , an2 , an3 , . . . ,

is called a subsequence of (an) and is denoted by (anj
), where j ∈ N indexes the subse-

quence.

Notice that the order of the terms in a subsequence (anj
) is the same as in the original

sequence (an).

Example. If an = 1/n2, then (
1,

1

9
,

1

25
,

1

49
, . . .

)
and (

1

4
,

1

16
,

1

64
,

1

256
, . . .

)
are subsequences of (an).

For the first of these we have (anj
) where

nj = 2j − 1

and for the second of these we have

nj = 2j.

Both of these forms of nj give strictly increasing sequences of positive integers.

Theorem 2.5.2. All subsequences of a convergent sequence converge to the same limit
as the original sequence.

Proof. Let (an) be a convergence sequence with limit l.

Suppose (anj
) is a subsequence of (an).

For ε > 0 we must find J ∈ N such that |anj
− l| < ε for all j ≥ J .

Since an → l as n→∞, there is N ∈ N such that |an − l| < ε for all n ≥ N .

By the nature of nj, there is a J ∈ N such that nj ≥ N for all j ≥ J .

Then because |an− l| < ε for all n ≥ N , and because nj ≥ N for all j ≥ J , we have that
|anj
− l| < ε for all j ≥ J . �

Example 2.5.3. For 0 < b < 1 we have

b > b2 > b3 > b4 > · · · > bn > · · · > 0.

Thus the sequence (bn) is decreasing and bounded below, and so it converges by the
Monotone Convergence Theorem.



A reasonable guess for the limit is 0, but we can confirm that by the Algebraic Limit
Theorem and a strategic choice of a subsequence.

If l is the limit of (bn), then l is the limit of the subsequence (b2n).

But b2n = bnbn and so we have l = l2, and thus l = 0 (why not 1?).

Can you extend this to −1 < b < 0? It is true.

Divergence Criterion for Sequences 2.5.4. Since all subsequences of a convergence
sequence converge to the same limit as the original, then we can detect a divergence
sequence if we can produce two subsequences that converge to different limits.

The sequence (−1)n is not convergent because it has two subsequences (−1)2n and
(−1)2n+1 which converge to 1 and −1 respectively.

Recall that a convergence sequence is bounded, but that a bounded sequence is not
necessarily convergent: think about about (−1)n.

But as we have seen, a bounded sequence might have a convergent subsequence, like
(−1)n does.

It is an amazing result that every bounded sequence has a convergent subsequence.

The Bolzano-Weierstrass Theorem 2.5.5. Every bounded sequence contains a
convergent subsequence.

Proof. Let (an) be a bounded sequence.

Then there is M ∈ R such that |an| ≤M for all n ∈ N.

We will construct a convergent subsequence of (an) through a bisection technique.

Bisect the closed interval [−M,M ] into the closed subintervals [−M, 0] and [0,M ].

Notice the midpoint is included in both subintervals, but as we shall see, this does not
complicate things.

Since there are infinitely many an, one of the two subintervals must contain infinitely
many of them; label this closed interval I1 and choose n1 so that an1 ∈ I1.
Now bisect the closed interval I1 into two closed subintervals that overlap at the midpoint.

Since there are infinitely many an for n > n1, one of the two closed subintervals must
contain infinitely many of them; label this closed interval I2, and choose n2 > n1 so that
an2 ∈ I2.
Notice that I1 ⊇ I2.

We can repeat this step countably many times to obtain a nested sequence of closed
intervals

I1 ⊇ I2 ⊇ I3 ⊇ I4 ⊇ · · ·

and positive integers n1 < n2 < n3 < n4 < · · · such that anj
∈ Ij for all j ∈ N.

By the Nested Interval Property (Theorem 1.4.1) there is at least one x ∈ R contained
in every Ij.

Now the suspicion is that this x is the limit of the subsequence (anj
).



Let ε > 0.

By the bisection technique, the length of Ij is M(1/2)j−1 which converges to 0.

Choose J so that j ≥ J implies that the length of Ij is less than ε.

Then as anj
and x are both in the closed interval Ij of length less than ε, we have

|anj
− x| < ε

for all j ≥ J .

This holds for all j ≥ J because of the nested property of Ij and because anj
∈ Ij.

Thus we have that (anj
) converges to x. �


