Math 341 Lecture \#10

§2.5: Subsequences and The Bolzano-Weierstrass Theorem

Definition 2.5.1. Let $\left(a_{n}\right)$ be a sequence of real numbers, and let $n_{1}<n_{2}<n_{3}<\cdots$ be a strictly increasing sequence of natural numbers. Then the sequence

$$
a_{n_{1}}, a_{n_{2}}, a_{n_{3}}, \ldots,
$$

is called a subsequence of $\left(a_{n}\right)$ and is denoted by $\left(a_{n_{j}}\right)$, where $j \in \mathbb{N}$ indexes the subsequence.

Notice that the order of the terms in a subsequence $\left(a_{n_{j}}\right)$ is the same as in the original sequence (a_{n}).
Example. If $a_{n}=1 / n^{2}$, then

$$
\left(1, \frac{1}{9}, \frac{1}{25}, \frac{1}{49}, \ldots\right)
$$

and

$$
\left(\frac{1}{4}, \frac{1}{16}, \frac{1}{64}, \frac{1}{256}, \ldots\right)
$$

are subsequences of $\left(a_{n}\right)$.
For the first of these we have $\left(a_{n_{j}}\right)$ where

$$
n_{j}=2 j-1
$$

and for the second of these we have

$$
n_{j}=2^{j}
$$

Both of these forms of n_{j} give strictly increasing sequences of positive integers.
Theorem 2.5.2. All subsequences of a convergent sequence converge to the same limit as the original sequence.
Proof. Let $\left(a_{n}\right)$ be a convergence sequence with limit l.
Suppose $\left(a_{n_{j}}\right)$ is a subsequence of $\left(a_{n}\right)$.
For $\epsilon>0$ we must find $J \in \mathbb{N}$ such that $\left|a_{n_{j}}-l\right|<\epsilon$ for all $j \geq J$.
Since $a_{n} \rightarrow l$ as $n \rightarrow \infty$, there is $N \in \mathbb{N}$ such that $\left|a_{n}-l\right|<\epsilon$ for all $n \geq N$.
By the nature of n_{j}, there is a $J \in \mathbb{N}$ such that $n_{j} \geq N$ for all $j \geq J$.
Then because $\left|a_{n}-l\right|<\epsilon$ for all $n \geq N$, and because $n_{j} \geq N$ for all $j \geq J$, we have that $\left|a_{n_{j}}-l\right|<\epsilon$ for all $j \geq J$.
Example 2.5.3. For $0<b<1$ we have

$$
b>b^{2}>b^{3}>b^{4}>\cdots>b^{n}>\cdots>0
$$

Thus the sequence $\left(b^{n}\right)$ is decreasing and bounded below, and so it converges by the Monotone Convergence Theorem.

A reasonable guess for the limit is 0 , but we can confirm that by the Algebraic Limit Theorem and a strategic choice of a subsequence.
If l is the limit of $\left(b^{n}\right)$, then l is the limit of the subsequence $\left(b^{2 n}\right)$.
But $b^{2 n}=b^{n} b^{n}$ and so we have $l=l^{2}$, and thus $l=0$ (why not 1?).
Can you extend this to $-1<b<0$? It is true.
Divergence Criterion for Sequences 2.5.4. Since all subsequences of a convergence sequence converge to the same limit as the original, then we can detect a divergence sequence if we can produce two subsequences that converge to different limits.
The sequence $(-1)^{n}$ is not convergent because it has two subsequences $(-1)^{2 n}$ and $(-1)^{2 n+1}$ which converge to 1 and -1 respectively.
Recall that a convergence sequence is bounded, but that a bounded sequence is not necessarily convergent: think about about $(-1)^{n}$.
But as we have seen, a bounded sequence might have a convergent subsequence, like $(-1)^{n}$ does.

It is an amazing result that every bounded sequence has a convergent subsequence.
The Bolzano-Weierstrass Theorem 2.5.5. Every bounded sequence contains a convergent subsequence.
Proof. Let $\left(a_{n}\right)$ be a bounded sequence.
Then there is $M \in \mathbb{R}$ such that $\left|a_{n}\right| \leq M$ for all $n \in \mathbb{N}$.
We will construct a convergent subsequence of $\left(a_{n}\right)$ through a bisection technique.
Bisect the closed interval $[-M, M]$ into the closed subintervals $[-M, 0]$ and $[0, M]$.
Notice the midpoint is included in both subintervals, but as we shall see, this does not complicate things.
Since there are infinitely many a_{n}, one of the two subintervals must contain infinitely many of them; label this closed interval I_{1} and choose n_{1} so that $a_{n_{1}} \in I_{1}$.

Now bisect the closed interval I_{1} into two closed subintervals that overlap at the midpoint.
Since there are infinitely many a_{n} for $n>n_{1}$, one of the two closed subintervals must contain infinitely many of them; label this closed interval I_{2}, and choose $n_{2}>n_{1}$ so that $a_{n_{2}} \in I_{2}$.

Notice that $I_{1} \supseteq I_{2}$.
We can repeat this step countably many times to obtain a nested sequence of closed intervals

$$
I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq I_{4} \supseteq \cdots
$$

and positive integers $n_{1}<n_{2}<n_{3}<n_{4}<\cdots$ such that $a_{n_{j}} \in I_{j}$ for all $j \in \mathbb{N}$.
By the Nested Interval Property (Theorem 1.4.1) there is at least one $x \in \mathbb{R}$ contained in every I_{j}.
Now the suspicion is that this x is the limit of the subsequence $\left(a_{n_{j}}\right)$.

Let $\epsilon>0$.
By the bisection technique, the length of I_{j} is $M(1 / 2)^{j-1}$ which converges to 0 . Choose J so that $j \geq J$ implies that the length of I_{j} is less than ϵ.
Then as $a_{n_{j}}$ and x are both in the closed interval I_{j} of length less than ϵ, we have

$$
\left|a_{n_{j}}-x\right|<\epsilon
$$

for all $j \geq J$.
This holds for all $j \geq J$ because of the nested property of I_{j} and because $a_{n_{j}} \in I_{j}$. Thus we have that $\left(a_{n_{j}}\right)$ converges to x.

