
Math 341 Lecture #12
§2.7: Infinite Series

Recall that the convergence of an infinite series
∑∞

k=1 ak is defined in terms of the con-
vergence of the sequence of its partial sums (sm), where sm =

∑m
k=1 ak:

∞∑
k=1

ak = A means that lim
m→∞

sm = A.

Thus we can translate results about convergent sequences to convergent series.

Theorem 2.7.1 (Algebraic Limit Theorem for Series). If
∑∞

k=1 ak = A and∑∞
k=1 bk = B, then

(i)
∞∑
k=1

cak = cA for all c ∈ R, and

(ii)
∞∑
k=1

(ak + bk) = A+B.

The proof of this is in the Appendix.

Missing from Theorem 2.7.1 is any mention about the product of two series; see Section
2.8 for this.

Theorem 2.7.2 (Cauchy Criterion for Series). The series
∑∞

k=1 ak converges if
and only if, for given ε > 0, there exists an N ∈ N such that whenever n > m ≥ N it
follows that

|am+1 + am+2 + · · ·+ an| < ε.

Proof. Observe for positive integers n > m that

|sn − sm| = |am+1 + am+2 + · · ·+ an|.

Now apply the Cauchy Criterion for sequences. �

Theorem 2.7.3. If
∑∞

k=1 ak converges, then (ak)→ 0.

The proof of this is in the Appendix.

The converse of Theorem 2.7.3 is false because of the Harmonic series.

The contrapositive of Theorem 2.7.3 – if (ak) 6→ 0, then
∑∞

k=1 ak diverges – gives a
divergence test for series.

Theorem 2.7.4 (Comparison Test). Assume (ak) and (bk) satisfy 0 ≤ ak ≤ bk for
all k ∈ N.

(i) If
∑∞

k=1 bk converges, then
∑∞

k=1 ak converges.

(ii) If
∑∞

k=1 ak diverges, then
∑∞

k=1 bk diverges.



The proof of this is in the Appendix.

The usefulness of the Comparison Test depends on knowing series that converge or di-
verge.

Recall that we know
∑∞

n=1 1/np converges if and only if p > 1.

Example 2.7.5 (Geometric Series). When |r| < 1, we have that

∞∑
k=0

ark =
a

1− r
.

Theorem 2.7.6 (Absolute Convergence Test). If the series
∑∞

k=1 |ak| converges,
then

∑∞
k=1 ak converges.

Proof. Suppose
∑∞

k=1 |ak| converges.

By the Cauchy Criterion for Series, for ε > 0 there is an N ∈ N such that

|am+1|+ |am+2|+ · · ·+ |an| =
∣∣ |am+1|+ |am+2|+ · · ·+ |an|

∣∣ < ε

for all n > m ≥ N .

By the triangle inequality, we have

|am+1 + am+2 + · · ·+ an| ≤ |am+1|+ |am+2|+ · · ·+ |an|,

for all n > m ≥ N , and so by the Cauchy Criterion for Series, we have that
∑∞

k=1 ak
converges. �

The converse of the Absolute Convergence Test is false, as the alternating series

∞∑
k=1

(−1)k+1/k

demonstrates.

Theorem 2.7.7 (Alternating Series Test). Let (an) be a sequence satisfying

(i) a1 ≥ a2 ≥ a3 ≥ · · · ≥ an ≥ an+1 ≥ · · ·, and

(ii) (an)→ 0.

Then the alternating series
∑∞

k=1(−1)k+1ak converges.

The proof of this is a homework problem 2.7.1.

Definition 2.7.8. We say a series
∑∞

k=1 ak converges absolutely if
∑∞

k=1 |ak| converges.

We say a series
∑∞

k=1 ak converges conditionally if
∑∞

k=1 ak converges but
∑∞

k=1 |ak| di-
verges.

We can now address the issue of the order of addition in an infinite series.



Definition 2.7.9. A series
∑∞

k=1 bk is a rearrangement of a series
∑∞

k=1 ak if there is a
bijection f : N→ N such that bf(k) = ak for all k ∈ N.

Theorem 2.7.10. If
∑∞

k=1 ak converges absolutely, then any rearrangement of
∑∞

k=1 ak
converges to the same limit.

Proof. Assume
∑∞

k=1 ak converges absolutely to A, and let
∑∞

k=1 bk be a rearrangement
of
∑∞

k=1 ak.

For the partial sums set

sm = a1 + · · ·+ am, tm = b1 + · · ·+ bm.

We want to show that (tm)→ A.

By the convergence of
∑∞

k=1 ak, for ε > 0, there exists an N1 ∈ N such that

|sm − A| <
ε

2
for all m ≥ N1.

Applying the Cauchy Criterion to the convergent
∑∞

k=1 |ak|, there is an N2 ∈ N such that

n∑
k=m+1

|ak| <
ε

2
for all n > m ≥ N2.

Now we take N = max{N1, N2}.
The finite set of terms {a1, a2, . . . , aN} appears somewhere in the rearranged series∑∞

k=1 bk.

If f : N → N is the bijection satisfying bf(k) = ak, then we can move far enough out in
the series

∑∞
k=1 bk to account for {a1, . . . , aN} by choosing

M = max{f(k) : 1 ≤ k ≤ N}.

This choice of M satisfies M ≥ N because f(k) ≥ N for some 1 ≤ k ≤ N .

For m ≥M , the difference tm− sN consists of a finite number of the ak terms which, for
large enough n ≥ N , all appear in

∑n
k=N+1 ak.

Let g : N → {0, 1} be the function defined by g(k) = 1 if ak appears in tm − sN and
g(k) = 0 if ak does not appear in tm − sN .

Then

tm − sN =
n∑

k=N+1

g(k)ak,

and so

|tm − sN | =

∣∣∣∣∣
n∑

k=N+1

g(k)ak

∣∣∣∣∣ ≤
n∑

k=N+1

|g(k)ak| ≤
n∑

k=N+1

|ak|.



The choice of N2 guarantees that |tm − sN | < ε/2 when m ≥M ≥ N2, and so

|tm − A| = |tm − sN + sN − A|
≤ |tm − sN |+ |sN − A|

<
ε

2
+
ε

2
= ε

whenever m ≥M , and thus tm converges to A. �



Appendix: Some Proofs

Proof of Theorem 2.7.1. (i) A partial sum of
∑∞

k=1 cak is

tm = ca1 + · · ·+ cam.

A partial sum of
∑∞

k=1 ak is
sm = a1 + · · ·+ am.

Then tm = csm, and since sm → A, we obtain by the Algebraic Limit Theorem (for
sequences) that tm → cA.

(ii) A partial sum of
∑∞

k=1(ak + bk) is

wm = a1 + b1 + · · ·+ (am + bm) = a1 + · · ·+ am + b1 + · · ·+ bm.

Partial sums for
∑∞

k=1 ak and
∑∞

k=1 bk are

sm = a1 + · · ·+ am, tm = b1 + · · ·+ bm.

Then wm = sm + tm, and since sm → A and tm → B, we have by the Algebraic Limit
Theorem for sequences that wm → A+B. �

Proof of Theorem 2.7.3. For a convergent series, the sequence of partial sums (sm) is
Cauchy by Theorem 2.7.2.

Thus for every ε > 0 there exists an N ∈ N such that |sn − sm| < ε whenever n,m ≥ N .

Choosing n = m+ 1 gives |sm+1 − sm| < ε for all m ≥ N .

Here sm+1 − sm = am+1, so we have |am+1| < ε for all m ≥ N .

This says that (am)→ 0. �

Proof of Theorem 2.7.4. Both of the comparisons follow immediately from the Cauchy
Criterion for Series and the observation that

|am+1 + · · ·+ an| ≤ |bm+1 + · · ·+ bn|

for n > m. �

Proof of the convergence of the Geometric Series. A series is called geometric if it is of
the form

∞∑
k=0

ark = a+ ar + ar2 + · · ·.

If |r| ≥ 1 and a 6= 0, this series diverges because the terms do not go to zero.

For r 6= 1, the algebraic identity

(1− r)(1 + r + r2 + · · ·+ rm−1) = 1− rm

enables us to rewrite the partial sum term

sm = a+ ar + · · ·+ arm−1 =
a(1− rm)

1− r
.



By the Algebraic Limit Theorem we have

lim
m→∞

sm = lim
m→∞

a(1− rm)

1− r
=

a

1− r

(
1− lim

m→∞
rm
)
,

where the limit converges to 0 when |r| < 1 (which we saw in Lecture 7).

Thus, when |r| < 1 we conclude that

∞∑
k=0

ark =
a

1− r
.


