Math 341 Lecture \#12

§2.7: Infinite Series

Recall that the convergence of an infinite series $\sum_{k=1}^{\infty} a_{k}$ is defined in terms of the convergence of the sequence of its partial sums $\left(s_{m}\right)$, where $s_{m}=\sum_{k=1}^{m} a_{k}$:

$$
\sum_{k=1}^{\infty} a_{k}=A \text { means that } \lim _{m \rightarrow \infty} s_{m}=A
$$

Thus we can translate results about convergent sequences to convergent series.
Theorem 2.7.1 (Algebraic Limit Theorem for Series). If $\sum_{k=1}^{\infty} a_{k}=A$ and $\sum_{k=1}^{\infty} b_{k}=B$, then
(i) $\sum_{k=1}^{\infty} c a_{k}=c A$ for all $c \in \mathbb{R}$, and
(ii) $\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right)=A+B$.

The proof of this is in the Appendix.
Missing from Theorem 2.7.1 is any mention about the product of two series; see Section 2.8 for this.

Theorem 2.7.2 (Cauchy Criterion for Series). The series $\sum_{k=1}^{\infty} a_{k}$ converges if and only if, for given $\epsilon>0$, there exists an $N \in \mathbb{N}$ such that whenever $n>m \geq N$ it follows that

$$
\left|a_{m+1}+a_{m+2}+\cdots+a_{n}\right|<\epsilon
$$

Proof. Observe for positive integers $n>m$ that

$$
\left|s_{n}-s_{m}\right|=\left|a_{m+1}+a_{m+2}+\cdots+a_{n}\right| .
$$

Now apply the Cauchy Criterion for sequences.
Theorem 2.7.3. If $\sum_{k=1}^{\infty} a_{k}$ converges, then $\left(a_{k}\right) \rightarrow 0$.
The proof of this is in the Appendix.
The converse of Theorem 2.7.3 is false because of the Harmonic series.
The contrapositive of Theorem 2.7.3 - if $\left(a_{k}\right) \nrightarrow 0$, then $\sum_{k=1}^{\infty} a_{k}$ diverges - gives a divergence test for series.
Theorem 2.7.4 (Comparison Test). Assume $\left(a_{k}\right)$ and $\left(b_{k}\right)$ satisfy $0 \leq a_{k} \leq b_{k}$ for all $k \in \mathbb{N}$.
(i) If $\sum_{k=1}^{\infty} b_{k}$ converges, then $\sum_{k=1}^{\infty} a_{k}$ converges.
(ii) If $\sum_{k=1}^{\infty} a_{k}$ diverges, then $\sum_{k=1}^{\infty} b_{k}$ diverges.

The proof of this is in the Appendix.
The usefulness of the Comparison Test depends on knowing series that converge or diverge.
Recall that we know $\sum_{n=1}^{\infty} 1 / n^{p}$ converges if and only if $p>1$.
Example 2.7.5 (Geometric Series). When $|r|<1$, we have that

$$
\sum_{k=0}^{\infty} a r^{k}=\frac{a}{1-r}
$$

Theorem 2.7.6 (Absolute Convergence Test). If the series $\sum_{k=1}^{\infty}\left|a_{k}\right|$ converges, then $\sum_{k=1}^{\infty} a_{k}$ converges.
Proof. Suppose $\sum_{k=1}^{\infty}\left|a_{k}\right|$ converges.
By the Cauchy Criterion for Series, for $\epsilon>0$ there is an $N \in \mathbb{N}$ such that

$$
\left|a_{m+1}\right|+\left|a_{m+2}\right|+\cdots+\left|a_{n}\right|=\left|\left|a_{m+1}\right|+\left|a_{m+2}\right|+\cdots+\left|a_{n}\right|\right|<\epsilon
$$

for all $n>m \geq N$.
By the triangle inequality, we have

$$
\left|a_{m+1}+a_{m+2}+\cdots+a_{n}\right| \leq\left|a_{m+1}\right|+\left|a_{m+2}\right|+\cdots+\left|a_{n}\right|,
$$

for all $n>m \geq N$, and so by the Cauchy Criterion for Series, we have that $\sum_{k=1}^{\infty} a_{k}$ converges.
The converse of the Absolute Convergence Test is false, as the alternating series

$$
\sum_{k=1}^{\infty}(-1)^{k+1} / k
$$

demonstrates.
Theorem 2.7.7 (Alternating Series Test). Let $\left(a_{n}\right)$ be a sequence satisfying
(i) $a_{1} \geq a_{2} \geq a_{3} \geq \cdots \geq a_{n} \geq a_{n+1} \geq \cdots$, and
(ii) $\left(a_{n}\right) \rightarrow 0$.

Then the alternating series $\sum_{k=1}^{\infty}(-1)^{k+1} a_{k}$ converges.
The proof of this is a homework problem 2.7.1.
Definition 2.7.8. We say a series $\sum_{k=1}^{\infty} a_{k}$ converges absolutely if $\sum_{k=1}^{\infty}\left|a_{k}\right|$ converges. We say a series $\sum_{k=1}^{\infty} a_{k}$ converges conditionally if $\sum_{k=1}^{\infty} a_{k}$ converges but $\sum_{k=1}^{\infty}\left|a_{k}\right|$ diverges.
We can now address the issue of the order of addition in an infinite series.

Definition 2.7.9. A series $\sum_{k=1}^{\infty} b_{k}$ is a rearrangement of a series $\sum_{k=1}^{\infty} a_{k}$ if there is a bijection $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $b_{f(k)}=a_{k}$ for all $k \in \mathbb{N}$.
Theorem 2.7.10. If $\sum_{k=1}^{\infty} a_{k}$ converges absolutely, then any rearrangement of $\sum_{k=1}^{\infty} a_{k}$ converges to the same limit.
Proof. Assume $\sum_{k=1}^{\infty} a_{k}$ converges absolutely to A, and let $\sum_{k=1}^{\infty} b_{k}$ be a rearrangement of $\sum_{k=1}^{\infty} a_{k}$.
For the partial sums set

$$
s_{m}=a_{1}+\cdots+a_{m}, t_{m}=b_{1}+\cdots+b_{m}
$$

We want to show that $\left(t_{m}\right) \rightarrow A$.
By the convergence of $\sum_{k=1}^{\infty} a_{k}$, for $\epsilon>0$, there exists an $N_{1} \in \mathbb{N}$ such that

$$
\left|s_{m}-A\right|<\frac{\epsilon}{2} \text { for all } m \geq N_{1}
$$

Applying the Cauchy Criterion to the convergent $\sum_{k=1}^{\infty}\left|a_{k}\right|$, there is an $N_{2} \in \mathbb{N}$ such that

$$
\sum_{k=m+1}^{n}\left|a_{k}\right|<\frac{\epsilon}{2} \text { for all } n>m \geq N_{2}
$$

Now we take $N=\max \left\{N_{1}, N_{2}\right\}$.
The finite set of terms $\left\{a_{1}, a_{2}, \ldots, a_{N}\right\}$ appears somewhere in the rearranged series $\sum_{k=1}^{\infty} b_{k}$.
If $f: \mathbb{N} \rightarrow \mathbb{N}$ is the bijection satisfying $b_{f(k)}=a_{k}$, then we can move far enough out in the series $\sum_{k=1}^{\infty} b_{k}$ to account for $\left\{a_{1}, \ldots, a_{N}\right\}$ by choosing

$$
M=\max \{f(k): 1 \leq k \leq N\}
$$

This choice of M satisfies $M \geq N$ because $f(k) \geq N$ for some $1 \leq k \leq N$.
For $m \geq M$, the difference $t_{m}-s_{N}$ consists of a finite number of the a_{k} terms which, for large enough $n \geq N$, all appear in $\sum_{k=N+1}^{n} a_{k}$.
Let $g: \mathbb{N} \rightarrow\{0,1\}$ be the function defined by $g(k)=1$ if a_{k} appears in $t_{m}-s_{N}$ and $g(k)=0$ if a_{k} does not appear in $t_{m}-s_{N}$.
Then

$$
t_{m}-s_{N}=\sum_{k=N+1}^{n} g(k) a_{k}
$$

and so

$$
\left|t_{m}-s_{N}\right|=\left|\sum_{k=N+1}^{n} g(k) a_{k}\right| \leq \sum_{k=N+1}^{n}\left|g(k) a_{k}\right| \leq \sum_{k=N+1}^{n}\left|a_{k}\right|
$$

The choice of N_{2} guarantees that $\left|t_{m}-s_{N}\right|<\epsilon / 2$ when $m \geq M \geq N_{2}$, and so

$$
\begin{aligned}
\left|t_{m}-A\right| & =\left|t_{m}-s_{N}+s_{N}-A\right| \\
& \leq\left|t_{m}-s_{N}\right|+\left|s_{N}-A\right| \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon
\end{aligned}
$$

whenever $m \geq M$, and thus t_{m} converges to A.

Appendix: Some Proofs

Proof of Theorem 2.7.1. (i) A partial sum of $\sum_{k=1}^{\infty} c a_{k}$ is

$$
t_{m}=c a_{1}+\cdots+c a_{m}
$$

A partial sum of $\sum_{k=1}^{\infty} a_{k}$ is

$$
s_{m}=a_{1}+\cdots+a_{m} .
$$

Then $t_{m}=c s_{m}$, and since $s_{m} \rightarrow A$, we obtain by the Algebraic Limit Theorem (for sequences) that $t_{m} \rightarrow c A$.
(ii) A partial sum of $\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right)$ is

$$
w_{m}=a_{1}+b_{1}+\cdots+\left(a_{m}+b_{m}\right)=a_{1}+\cdots+a_{m}+b_{1}+\cdots+b_{m}
$$

Partial sums for $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ are

$$
s_{m}=a_{1}+\cdots+a_{m}, t_{m}=b_{1}+\cdots+b_{m} .
$$

Then $w_{m}=s_{m}+t_{m}$, and since $s_{m} \rightarrow A$ and $t_{m} \rightarrow B$, we have by the Algebraic Limit Theorem for sequences that $w_{m} \rightarrow A+B$.
Proof of Theorem 2.7.3. For a convergent series, the sequence of partial sums $\left(s_{m}\right)$ is Cauchy by Theorem 2.7.2.

Thus for every $\epsilon>0$ there exists an $N \in \mathbb{N}$ such that $\left|s_{n}-s_{m}\right|<\epsilon$ whenever $n, m \geq N$. Choosing $n=m+1$ gives $\left|s_{m+1}-s_{m}\right|<\epsilon$ for all $m \geq N$.
Here $s_{m+1}-s_{m}=a_{m+1}$, so we have $\left|a_{m+1}\right|<\epsilon$ for all $m \geq N$.
This says that $\left(a_{m}\right) \rightarrow 0$.
Proof of Theorem 2.7.4. Both of the comparisons follow immediately from the Cauchy Criterion for Series and the observation that

$$
\left|a_{m+1}+\cdots+a_{n}\right| \leq\left|b_{m+1}+\cdots+b_{n}\right|
$$

for $n>m$.
Proof of the convergence of the Geometric Series. A series is called geometric if it is of the form

$$
\sum_{k=0}^{\infty} a r^{k}=a+a r+a r^{2}+\cdots
$$

If $|r| \geq 1$ and $a \neq 0$, this series diverges because the terms do not go to zero. For $r \neq 1$, the algebraic identity

$$
(1-r)\left(1+r+r^{2}+\cdots+r^{m-1}\right)=1-r^{m}
$$

enables us to rewrite the partial sum term

$$
s_{m}=a+a r+\cdots+a r^{m-1}=\frac{a\left(1-r^{m}\right)}{1-r} .
$$

By the Algebraic Limit Theorem we have

$$
\lim _{m \rightarrow \infty} s_{m}=\lim _{m \rightarrow \infty} \frac{a\left(1-r^{m}\right)}{1-r}=\frac{a}{1-r}\left(1-\lim _{m \rightarrow \infty} r^{m}\right),
$$

where the limit converges to 0 when $|r|<1$ (which we saw in Lecture 7).
Thus, when $|r|<1$ we conclude that

$$
\sum_{k=0}^{\infty} a r^{k}=\frac{a}{1-r}
$$

