Math 341 Lecture #12
§2.7: Infinite Series

Recall that the convergence of an infinite series >, ay is defined in terms of the con-
vergence of the sequence of its partial sums (s,,), where s, = > ;" | ay:

(o]
Z a; = A means that lim s, = A.
k::l m—o0

Thus we can translate results about convergent sequences to convergent series.

Theorem 2.7.1 (Algebraic Limit Theorem for Series). If 3>°3° a; = A and
> re by = B, then

[e.9]

(i) ank = cA for all c € R, and

k=1

(i) ) (ar+bp) = A+ B.
k=1
The proof of this is in the Appendix.

Missing from Theorem 2.7.1 is any mention about the product of two series; see Section
2.8 for this.

Theorem 2.7.2 (Cauchy Criterion for Series). The series Y .-, ax converges if
and only if, for given € > 0, there exists an N € N such that whenever n > m > N it
follows that

|1 + Gy + -0+ an] < e

Proof. Observe for positive integers n > m that

’5n - Sm‘ = ’aerl + apyo £+ _'_anl

Now apply the Cauchy Criterion for sequences. O
Theorem 2.7.3. If Y77, ai. converges, then (az) — 0.

The proof of this is in the Appendix.

The converse of Theorem 2.7.3 is false because of the Harmonic series.

The contrapositive of Theorem 2.7.3 — if (a;) # 0, then Y a5 diverges — gives a
divergence test for series.

Theorem 2.7.4 (Comparison Test). Assume (a),) and (by) satisfy 0 < a; < by for
all £ € N.

(i) If >°22, by converges, then Y. | aj converges.

(i) If Y702, ax diverges, then Y oo by diverges.



The proof of this is in the Appendix.

The usefulness of the Comparison Test depends on knowing series that converge or di-
verge.

Recall that we know Y7 1/n” converges if and only if p > 1.
Example 2.7.5 (Geometric Series). When |r| < 1, we have that

> a

g ar® = .
1—r

k=0

Theorem 2.7.6 (Absolute Convergence Test). If the series Y ¢, |ax| converges,
then - | aj converges.

Proof. Suppose > -, |ax| converges.

By the Cauchy Criterion for Series, for € > 0 there is an N € N such that
[ama] + lamz| + -+ lan] = [ Jamea] + [amial + -+ lan| [ <€

foralln >m > N.
By the triangle inequality, we have

@1 + Gy + -+ ] < ampr] + |ampa] + -+ lanl,
for all n > m > N, and so by the Cauchy Criterion for Series, we have that > >~ aj

converges. ]

The converse of the Absolute Convergence Test is false, as the alternating series

Z(—l)k+1//€

oo
k=1
demonstrates.

Theorem 2.7.7 (Alternating Series Test). Let (a,) be a sequence satisfying

(i) a1 >2a>a3>->ap > a1 > -+, and

(ii) (an) — 0.

Then the alternating series Y ;- (—1)*"a; converges.
The proof of this is a homework problem 2.7.1.
Definition 2.7.8. We say a series Y, | aj converges absolutely if > oo | |ax| converges.

We say a series > -, aj converges conditionally if Y, | ax converges but > 7~ |ax| di-
verges.

We can now address the issue of the order of addition in an infinite series.



Definition 2.7.9. A series Y o, by, is a rearrangement of a series Y oo | ay, if there is a
bijection f : N — N such that by;) = a;, for all £ € N.

Theorem 2.7.10. If 77 | ax converges absolutely, then any rearrangement of Y ;- | ax
converges to the same limit.

Proof. Assume ), a; converges absolutely to A, and let >~/ by, be a rearrangement
of 2211 Q.

For the partial sums set

Sm=a1+ -+ Ay, tm:b1++bm

We want to show that (¢,,) — A.
By the convergence of ). | a, for € > 0, there exists an N; € N such that

lsm — Al < % for all m > Nj.

Applying the Cauchy Criterion to the convergent >, |ax/|, there is an N, € N such that

Z |ak|<§ for all n > m > Ns.
k=m+1
Now we take N = max{Ny, No}.

The finite set of terms {aj,as,...,an} appears somewhere in the rearranged series
oo
Zk:l b

If f:N — Nis the bijection satisfying bsx) = ay, then we can move far enough out in
the series Y ;- by to account for {ay,...,ay} by choosing

M =max{f(k): 1<k <N}

This choice of M satisfies M > N because f(k) > N for some 1 < k < N.

For m > M, the difference t,, — sy consists of a finite number of the a; terms which, for
large enough n > N, all appear in ZZ:NH Q.

Let g : N — {0, 1} be the function defined by g(k) = 1 if a; appears in t,, — sy and
g(k) = 0 if a; does not appear in t,, — sy.

Then .
tm — SN = Z g(k?)(lk,
k=N-+1
and so
tm — sn| = Z g(k)ay| < Z |g(k)ax| < Z ||
k=N-+1 E=N+1 k=N+1




The choice of Ny guarantees that |t,, — sy| < €/2 when m > M > N,, and so
|tm—A‘ = |tm—8N+SN—A|
< tm = sn| + |sw — Al
cELE
2 2

= €

whenever m > M, and thus t,, converges to A.



Appendix: Some Proofs
Proof of Theorem 2.7.1. (i) A partial sum of )7 cay is

tm, =caq + -+ capy,.
A partial sum of Y ;- | ay is
S = Q1+ -+ Q-

Then t,, = ¢S, and since s,, — A, we obtain by the Algebraic Limit Theorem (for
sequences) that ¢, — cA.

(ii) A partial sum of > 2 (ay + by) is
Wy = a1+ b1+ + (A +bp) =ar + -+ + 01+ + by
Partial sums for > 7, a, and Y ;- | by are
Sm=a1+ -+ anp, typy =01+ 4 by,.
Then w,, = s,, + t,,, and since s,, — A and t,, — B, we have by the Algebraic Limit

Theorem for sequences that w,, -+ A + B. O

Proof of Theorem 2.7.3. For a convergent series, the sequence of partial sums (s,,) is
Cauchy by Theorem 2.7.2.

Thus for every € > 0 there exists an N € N such that |s,, — $,,,| < € whenever n,m > N.
Choosing n = m + 1 gives |Sy41 — Sm| < € for all m > N.

Here $,,41 — Sm = @my1, S0 we have |a,,11| < € for all m > N.

This says that (a,,) — 0. O
Proof of Theorem 2.7.4. Both of the comparisons follow immediately from the Cauchy
Criterion for Series and the observation that

g1 + -+ an| < |bpgr + - -+ by

for n > m. O

Proof of the convergence of the Geometric Series. A series is called geometric if it is of
the form

o0
dart=a+artar’+---
k=0
If |r| > 1 and a # 0, this series diverges because the terms do not go to zero.

For r # 1, the algebraic identity
I=r)A4r+r+--+rmH)=1—1y"
enables us to rewrite the partial sum term

m—1

a(l —r™)
Sm=a+ar—+---+ar = ——.

1—7r



By the Algebraic Limit Theorem we have

1 __ m
lim s, = lim o ) ¢ (1 — lim rm>,
m—so0 m—so0 1—17r 1—7r m—so00

where the limit converges to 0 when |r| < 1 (which we saw in Lecture 7).

Thus, when |r| < 1 we conclude that

> a

E ar® = .
1—7r

k=0




