
Math 341 Lecture #14
§3.1, 3.2: The Cantor Set; Open and Closed Sets, Part I

§3.1: The Cantor Set. We are going to construct a “bizarre” nonempty subset of R
through an intersection of nested sets.

We start with the closed interval C0 = [0, 1].

We form a subset C1 by removing the open middle third interval (1/3, 2/3) from C0.

In other words,
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We form a set C2 by removing the open middle third interval from each part of C1:
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Continuing this process, we have for each n = 0, 1, 2, 3, . . . a set Cn consisting of 2n closed
intervals each having length 1/3n.

The middle thirds Cantor set is defined by

C =
∞⋂
n=0

Cn.

We can think of the Cantor set as what is left of C0 = [0, 1] after removing the middle
third open interval at each step:
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Can you identify some points that are in C?

The endpoints 0 and 1 of C0 are in all the Cn and they are in C too.

How about the endpoints 1/3 and 2/3 of C1? Yes, these are in all the Cn and so in C.

In fact for each k ∈ N, the endpoints of Ck are in all the Cn, and so are in C too.

The endpoints of Cn are the form m/3n for some integer m satisfying 0 ≤ m ≤ 3n, and
hence are rational.

If C were to just consist of the union of the endpoints of the Cn, then C would be a
subset of Q and hence C would be countable.

Or could C be uncountable? We shall see.

Another way to probe what is in C is to sum up the lengths of the open intervals that
are removed.

An interval of length 1/3 was removed from C0 to get C1.

Two intervals of length 1/9 were removed from C1 to get C2.

So in general there were 2n−1 intervals of length 1/3n removed from Cn−1 to get Cn.



All of the open intervals removed are disjoint, and so we can define the length of C to
be 1 minus the total removed:
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= 1.

[We used the geometric series here to get the sum.]

This says that the length of C is zero! That’s weird.

There is another way to assess the “size” of C, just to complicate things more.

Magnifying a point (a dimension 0 object) by a factor of 3 results in one copy of the
point.

Magnifying a line segment (a dimension 1 object) by a factor of 3 results in 3 copies of
the line segment.

Magnifying a square (a dimension 2 object) by a factor of 3 results in 9 copies of the
squares.

In each of these cases, the number of copies obtained is 3d where d is the dimension of
the original object.

Magnifying the Cantor set C by a factor of 3 results in two copies of C: the interval C0 =
[0, 1] becomes [0, 3], and removing the open middle third interval results in [0, 1] ∪ [2, 3]
in each of which will appear a copy of C.

The dimension d of C is the solution of 2 = 3d, which gives d = ln 2/ ln 3 which is not an
integer but 0 < d < 1.

The point of this is that C has a dimension bigger than that of a point and smaller than
that of a line segment.

§3.2: Open and Closed Sets. Recall for a ∈ R and ε > 0, that the ε-neighbourhood
of a is the set

Vε(a) = {x ∈ R : |x− a| < ε}.

This is nothing more than the open interval (a− ε, a+ ε) centered at a with “radius” ε.

Definition 3.2.1. A set O ⊆ R is open if for all points a ∈ O there exists an ε > 0 such
that Vε(a) ⊆ O.

Examples 3.2.2. (a) The set R is open because for any a ∈ R there is ε > 0 such that
Vε(a) ⊆ R.

(b) The empty set ∅ is open, as there is nothing to check.



(c) Every open interval (c, d) is open because for any x ∈ (c, d) we take

ε < min{x− c, d− x}

for which we have Vε(x) ∈ (c, d).

(d) The set O = (1, 2)∪ (3, 4) is open because in which ever of the two open intervals we
choose x, we use the method of (c) to show that Vε(x) ⊆ O for some ε > 0.

(e) The union of any number of open subintervals is open by the logic of (d).

In fact we can say even more.

Theorem 3.2.3. (i) The union of an arbitrary collection of open sets is open. (ii) The
intersection of a finite collection of open sets is open.

Proof. (i) Let {Oλ : λ ∈ Λ} be a collection of open sets, and let

O =
⋃
λ∈Λ

Oλ.

This set has the property that Oλ ⊆ O for all λ ∈ Λ.

For an a ∈ O we need to find a Vε(a) ⊆ O.

Because a ∈ O and O is a union, there is at least one λ′ ∈ Λ such that a ∈ Oλ′ .

Since Oλ′ is open, there is an ε > 0 such that Vε(a) ⊆ Oλ′ .

Since Oλ′ ⊆ O, we obtain Vε(a) ⊆ O, and so O is open.

(ii) Let {O1, . . . , ON} be a finite collection of open sets, and let

O =
N⋂
k=1

Ok.

This set has the property that O ⊆ Ok for all k = 1, . . . , N .

For an a ∈ O we need to find a Vε(a) ⊆ O.

Since O ⊂ Ok for all k = 1, . . . , N , we have that a ∈ Ok for all k = 1, . . . , N .

Since each Ok is open there is an εk > 0 such that Vεk(a) ⊆ Ok.

We want a Vε(a) that is in all of the Ok, and we do this by finding the smallest value of
εk:

ε = min{ε1, . . . , εN}.

Then Vε(a) ⊆ Ok for all k = 1, . . . , N , and so Vε(a) ⊆ O.

Thus O is open. �

Any thoughts about why (ii) is not true for the intersection of an infinite collection of
open sets?


