
Math 341 Lecture #15
§3.2: Open and Closed Sets, Part II

Closed Sets. We develop the concepts needed to define what a closed subset of R is.

Definition 3.2.4. A point x ∈ R is a limit point of a nonempty A ⊆ R if every ε > 0
we have (A ∩ Vε(x))− {x} 6= ∅, i.e, Vε(x) intersects A in some point other than x.

Examples. The endpoint x = 1 of the A = (0, 1] is a limit point because every Vε(1)
contains points of (0, 1] other than 1.

The point x = 1/3 is a limit point of A = (0, 1] because every Vε(1/3) contains points of
A other than 1/3.

The endpoint 0 of A = (0, 1] is not in A but is a limit point because (A∩Vε(0))−{0} 6= ∅
for every ε > 0.

However the point −1/4 is not a limit point of A = (0, 1] because not every Vε(−1/4)
contains points of A.

Theorem 3.2.5. A point x is a limit point of a nonempty subset A of R if and only if
x = lim an for some sequence (an) contained in A with an 6= x for all n ∈ N.

Proof. Suppose that x is a limit point of A.

For n ∈ N, take ε = 1/n.

With x being a limit point of A, there is a point an ∈ A that is in Vε(x) with an 6= x.

To see that (an) converges to x, for ε > 0, we pick N ∈ N such that 1/N < ε.

Then for all n ≥ N , we have an ∈ V1/n(x) ⊆ V1/N(x) ⊆ Vε(x), i.e., |an − x| < 1/N < ε.

Now suppose there is a sequence (an) in A with an 6= x for all n, such that lim an = x.

Then for ε > 0 there is N ∈ N such that for all n ≥ N there holds an ∈ Vε(x).

In particular, we have for every ε > 0 there existence of aN ∈ A such that aN ∈ (A ∩
Vε(x))− {x}.
This says that x is a limit point of A. �

Note that this idea of a limit point x excludes the use of a constant sequence an = x.

Definition 3.2.6. A point a ∈ A is an isolated point of A if it is not a limit point of A.

Example. Each element of a nonempty finite subset A of R is an isolated point of A.

However, a nonempty finite subset A of R does not have any limit points. Why?

Keep in mind that an isolated point of A is an element of A whereas a limit point of A
need not be an element of A.

Definition 3.2.7. A set F ⊆ R is closed if F contains all of its limit points.

Theorem 3.2.8. A set F ⊆ R is closed if and only if every Cauchy sequence contained
in F has its limit in F also.

This a homework problem 3.2.5.



Example 3.2.9. (i) Does the set

A =

{
1

n
: n ∈ N

}
have isolated points? Is it closed?

Each point of A is isolated because for ε = 1/n−1/(n+1) we have Vε(1/n)∩A = {1/n},
and so 1/n is not a limit point of A.

The number 0 is a limit point of A because 1/n→ 0 where 1/n 6= 0 for all n ∈ N.

The set A is not closed because it does not contain its limit point 0.

However, the set F = A ∪ {0} is closed.

(ii) The closed interval [c, d] for −∞ < c < d <∞ is a closed set.

For a limit point x of [c, d], there is by Theorem 3.2.5 a sequence (xn) in [c, d] with xn 6= x
and (xn)→ x.

The sequence satisfies c ≤ xn ≤ d for all n ∈ N, so by the Order Limit Theorem we have
c ≤ x ≤ d, i.e., x ∈ [c, d], and so [c, d] is closed.

(iii) The set of limit points of Q is all of R.

Recall Theorem 1.4.3 (Density of Q in R) which stated that for every two real numbers
a < b there exists a rational number r satisfying a < r < b.

Thus for a real number y and ε = 1/n there exists a rational number rn satisfying
y − 1/n < rn < y + 1/n.

If y is irrational then rn 6= y, and if y is rational we choose a rational rn satisfying
y − 1/n < rn < y < y + 1/n.

In either case, we have a rational sequence (rn) with rn 6= y such that rn → y.

Hence by Theorem 3.2.5, the real y is a limit point of Q.

We state this version of the density theorem as its own theorem.

Theorem 3.2.10 (Density of Q in R). For every y ∈ R there exists a sequence of
rational numbers converging to y.

Closure. We describe an important topological procedure called closure.

Definition 3.2.11. For a set A ⊆ R and let L be the set of limit points of A. The
closure of A is defined to be A = A ∪ L.

We saw in (i) in the previous Example that A = A ∪ {0}.
For (ii) we have [c, d] = [c, d].

Theorem 3.2.12. For any A ⊆ R, the closure A is a closed set and is the smallest
closed set containing A.

Proof. For a set A, let L be the set of the limit points of A.

Then A = A ∪ L certainly contains all of the limit points of A.



Is the set A closed, i.e., does it contains all of its limit points?

You have it as a homework problem 3.2.7 to supply a proof that A is indeed closed.

Now let C be a closed set containing A.

If x is a limit point of A, then there is a sequence (an) in A with an 6= x for all n, and
an → x.

Since A ⊆ C, we have an ∈ C for all n.

Thus x is a limit point of C, and since C is closed, we have x ∈ C.

This says that A ⊆ C. �

Complements. If a subset is not open, it is closed? If it is not closed, it is open?
The answer to both of these is no, as the half-open, half-closed interval (0, 1] provides a
counterexample to both.

However, open and closed are the opposite of each other under complements.

Recall that the complement of a subset A of R is the set

Ac = {x ∈ R : x 6∈ A}.

Theorem 3.2.13. A set O ⊆ R is open if and only if Oc is closed, and a set F ⊆ R is
closed if and only if F c is open.

Proof. Let O be open and let x be a limit point of Oc.

Then every Vε(x) contains a point of Oc other than x.

If x ∈ O then as O is open, there is ε > 0 such that Vε(x) ⊆ O, contradicting that Vε(x)
contains a point of Oc other than x.

Thus x ∈ Oc, and Oc is closed.

Now assume that Oc is closed, and let x ∈ O.

Then x is not a limit point of Oc, because Oc contains all of its limit points and x 6∈ Oc.

With x not a limit point of Oc there is ε > 0 such that Vε(x) ∩ Oc = ∅, which implies
that Vε(x) ⊆ O; thus O is open.

The second part of the theorem follows from the observation that (Ec)c = E: let O = F c

and Oc = (F c)c = F and apply the above argument. �

We use Theorems 3.2.3 and 3.2.13 in conjunction with De Morgan’s Laws,(⋃
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to prove the following.

Theorem 3.2.14. (i) The union of a finite collection of closed sets is closed. (ii) The
intersection of an arbitrary collection of closed sets is closed.

The middle-thirds Cantor set is closed because it is the intersection of closed sets.


