
Math 341 Lecture #16
§3.3: Compact Sets

Some of you might remember that in Math 314 you may learned a little bit about compact
sets, that they had something to do with being closed and bounded.

We will put all of this on a rigorous foundation now, using sequences.

Definition 3.3.1. A set K ⊆ R is compact if every sequence in K has a subsequence
that converges to a limit that is also in K.

Example 3.3.2. A closed interval [c, d] with −∞ < c < d <∞ is a compact set.

The Bolzano-Weierstrass Theorem and the Order Limit Theorem guarantee that any
sequence (an) with c ≤ an ≤ d for all n ∈ N has a convergent subsequence (ank

) whose
limit is in [c, d].

The closed interval [0,∞) is not compact because the sequence {n} in [0,∞) does not
have a convergent subsequence.

What is the difference?

Definition 3.3.3. A set A ⊆ R is bounded if there exists M > 0 such that |a| ≤M for
all a ∈ A.

Theorem 3.3.4. A set K ⊆ R is compact if and only if it is closed and bounded.

Proof. Let K be compact.

To show that K is bounded, suppose that K is unbounded.

Then for every n ∈ N there is xn ∈ K such that |xn| > n.

Since K is compact, the sequence (xn) has a convergent, hence bounded, subsequence
(xnj

).

But |xnj
| > nj with nj →∞ as j →∞, a contradiction.

So K is bounded.

To see that K is closed, we take a limit point x of K and a sequence (xn) with xn ∈ K
and xn 6= x for all n ∈ N such that (xn)→ x, and show that x ∈ K.

The compactness of K implies that there is a subsequence (xnj
) that converges to a point

that is in K.

Since (xn)→ x, then (xnj
)→ x as well, and so x ∈ K, and K is closed.

Showing that a closed and bounded set is compact is a homework problem 3.3.3. �

We can replace the bounded and closed intervals in the Nested Interval Property with
compact sets, and get the same result.

Theorem 3.3.5. If K1 ⊇ K2 ⊇ K3 ⊇ · · · for compact sets Ki ⊆ R, then ∩∞n=1Kn 6= ∅.
Proof. For each n ∈ N pick xn ∈ Kn.

Because the compact sets are nested, the sequence (xn) is contained in K1.

Since K1 is compact, there is a convergent subsequence (xnj
) with limit x ∈ K1.



We will show that x ∈ Kn for all n ∈ Z, and hence x ∈ ∩∞n=1Kn.

For each n0 ∈ N we have by the nesting that xn ∈ Kn0 for all n ≥ n0.

Because nk is a strictly increasing function, there is a choice of k0 such that for all k ≥ k0

we have xnk
∈ Kn0 .

The compactness of Kn0 implies that x ∈ Kn0 .

Since n0 is arbitrary, we have that x ∈ Kn for all n ∈ N. �

There is another equivalent way to describe (and define) compactness of sets by the use
of open sets.

Definition 3.3.6. An open cover for A ⊆ R is a (possibly infinite) collection of open
sets {Oλ : λ ∈ Λ} for which

A ⊆
⋃
λ∈Λ

Oλ.

For a given open cover {Oλ : λ ∈ Λ} of A, a finite subcover is a finite subcollection of
open sets Oλ1 , . . . , Oλk in {Oλ : λ ∈ Λ} such that

A ⊆
k⋃
i=1

Oλi .

Example 3.3.7. For each x ∈ (0, 1), let Ox = (x/2, 1).

Then the collection {Ox : x ∈ (0, 1)} is an open cover of (0, 1) because each y ∈ (0, 1)
belongs to Ox for an x satisfying 0 < x/2 < y.

Does this open cover of (0, 1) have a finite subcover?

Suppose there is a finite subcover: there are x1, . . . , xn ∈ (0, 1) such that Ox1 , . . . , Oxn is
a finite subcover of (0, 1).

For x′ = min{x1, . . . , xn}, choose y ∈ (0, x′/2].

Since Ox1 , . . . , Oxn is a finite subcover of (0, 1), then

y ∈
n⋃
k=1

Oxk .

But 0 < y ≤ xk/2 for all k = 1, . . . , n, so that y 6∈ Oxk for all k = 1, . . . , n, and hence

y 6∈
n⋃
k=1

Oxk .

Thus the cover {Ox : x ∈ (0, 1)} of (0, 1) does not have a finite subcover.

Is the set (0, 1) compact?

Theorem 3.3.8 (Heine-Borel). For K ⊆ R, the following are equivalent.

(i) K is compact.

(ii) K is closed and bounded.



(iii) Any open cover for K has a finite subcover.

Proof. The equivalence of (i) and (ii) is Theorem 3.3.4.

We will show that (iii) implies (ii).

Suppose that (iii) holds: every open cover of K has a finite subcover.

To show that K is bounded, we consider the open cover {V1(x) : x ∈ K}.
Notice that each V1(x) has a bounded length of 2.

This open cover has a finite cover: there exist finitely many elements x1, . . . , xk ∈ K such
that

K ⊆ V1(x1) ∪ · · · ∪ V1(xk).

Because the finite cover consists of finitely many open intervals of length 2, the set K
must be bounded.

To show that K is closed is more delicate, and it is obtained by contradiction.

Recall Theorem 3.2.8 which states that a set is closed if and only if every Cauchy sequence
in the set has its limit in the set as well.

Let (yn) be a Cauchy sequence in K whose limit y 6∈ K.

Every x ∈ K is a positive distance away from y, i.e., εx = |x− y|/2 > 0 for all x ∈ K.

Let Ox = Vεx(x).

The open cover {Ox : x ∈ K} of K has a finite subcover Ox1 , . . . , Oxk .

Set
ε0 = min{εxi : i = 1, . . . , k}.

Then y is at least a distance of 2ε0 away from each of x1, . . . , xk.

Also for this ε0 there is N ∈ N such that |y − yN | < ε0, that is, yN is within a distance
of ε0 of y.

This implies that yN 6∈ Oxi for all i = 1, . . . , k, and so yN 6∈ ∪ki=1Oxi .

But yN ∈ K and so yN is in the finite subcover, a contradiction.

Thus y ∈ K, and K is closed.

Showing that (ii) implies (iii) is left to you to consider (an outline is given in problem
3.3.9 which is not assigned as homework). �


