Math 341 Lecture \#19
 §4.1: Examples of Dirichlet and Thomae

We begin a discussion about the continuity of a function $f: A \rightarrow \mathbb{R}$, for a nonempty $A \subset \mathbb{R}$.

Recall from Calculus I that we say f is continuous at a point $a \in \mathbb{R}$ if $f(a)$ exists (i.e., $a \in A), \lim _{x \rightarrow a} f(x)$ exists, and $\lim _{x \rightarrow a} f(x)=f(a)$.
[We are leaving the notion of the limit of a function vague for now; we will see the rigorous definition next time.]
For a function $f: A \rightarrow \mathbb{R}$, we let D_{f} denote the set of points in A where f is not continuous.

What kind of a subset of \mathbb{R} can D_{f} be?
Example. Dirichlet defined a function $g: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
g(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

For any $c \in \mathbb{R}$ we can find sequences $\left(x_{n}\right)$ in \mathbb{Q} and $\left(y_{n}\right)$ in \mathbb{Q}^{c} such that $x_{n} \rightarrow c$ and $y_{n} \rightarrow c$, but for which $g\left(x_{n}\right)=1$ and $g\left(y_{n}\right)=0$ for all $n \in \mathbb{N}$, so that

$$
\lim _{n \rightarrow \infty} g\left(x_{n}\right) \neq \lim _{n \rightarrow \infty} g\left(y_{n}\right) .
$$

This suggests that f is not continuous at c, and as c was arbitrary, that f is not continuous at any $c \in \mathbb{R}$.

We have that $D_{g}=\mathbb{R}$.
Example. A modification of Dirichlet's function results in a function that is continuous at just one point.
Define $h: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
h(x)= \begin{cases}x & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

For a nonzero c we can find sequences $\left(x_{n}\right)$ in \mathbb{Q} and $\left(y_{n}\right)$ in \mathbb{Q}^{c} such that $x_{n} \rightarrow c$ and $y_{n} \rightarrow c$, but for which $h\left(x_{n}\right)=x_{n}$ and $h\left(y_{n}\right)=0$ for all $n \in \mathbb{N}$, so that

$$
\lim _{n \rightarrow \infty} h\left(x_{n}\right)=c \neq 0=\lim _{n \rightarrow \infty} h\left(y_{n}\right) .
$$

This suggests that the function h is not continuous at any point $c \neq 0$.
However, if $c=0$, then for any sequence $\left(z_{n}\right)$ in \mathbb{R} with $z_{n} \rightarrow 0$ we have $\left|h\left(z_{n}\right)\right| \leq\left|z_{n}\right|$, so that $h\left(z_{n}\right) \rightarrow 0$ as well.
Thus h is continuous at $c=0$.
We have that $D_{h}=\mathbb{R}-\{0\}$.

Example. Thomae defined a function $t: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
t(x)= \begin{cases}1 & \text { if } x=0 \\ 1 / n & \text { if } x=m / n \in \mathbb{Q} \backslash\{0\} \text { in lowest terms with } n>0 \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

For $c \in \mathbb{Q}$, we have $t(c)>0$.
For a sequence $\left(y_{n}\right)$ in \mathbb{Q}^{c} such that $y_{n} \rightarrow c$, we have $t\left(y_{n}\right)=0$ for all $n \in \mathbb{N}$, so that

$$
t(c) \neq 0=\lim _{n \rightarrow \infty} t\left(y_{n}\right)
$$

This suggests that t is discontinuous at every rational point.
On the other hand, if c is irrational, we have $t(c)=0$.
For any sequence $\left(x_{n}\right)$ in \mathbb{R} such that $x_{n} \rightarrow c$ we have $t\left(x_{n}\right)=0$ when $x_{n} \notin \mathbb{Q}$ or $t\left(x_{n}\right)$ is the reciprocal of the positive denominator of the rational x_{n} is lowest terms.
The closer x_{n} is to the irrational c, the larger the denominator of x_{n} is, so that $t\left(x_{n}\right)$ is as close to 0 as needed.

The result of this is that $t\left(x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, that is, we have

$$
\lim _{n \rightarrow \infty} t\left(x_{n}\right)=0=t(c),
$$

suggesting that t is continuous at every irrational c.
We have that $D_{t}=\mathbb{Q}$.
Example. Define a function $s: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
s(x)=[[x]]
$$

where $[[x]]$ is the largest integer n such that $n \leq s$.
For $c \in \mathbb{R}$ such that $n<c<n+1$ for $n \in \mathbb{N}$, we have for any sequence $\left(x_{n}\right)$ converging to c that

$$
\lim _{n \rightarrow \infty} s\left(x_{n}\right)=n=[[c]] .
$$

On the other hand, for $c=n$ for $n \in \mathbb{N}$, we take a sequence $\left(y_{n}\right)$ such that $n-1<y_{n}<n$ and $y_{n} \rightarrow c$, so that

$$
\lim _{n \rightarrow \infty} s\left(y_{n}\right)=n-1 \neq[[c]]=n
$$

This suggests that s is discontinuous at every integer point, and we have that $D_{s}=\mathbb{Z}$. Example. Define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}0 & \text { if } x \leq 0 \\ x & \text { if } x \in \mathbb{Q} \cap(0,1) \\ 0 & \text { if } x \in(0,1)-\mathbb{Q} \\ 0 & \text { if } x \geq 1\end{cases}
$$

The function is continuous at every $c<0$ and at every $c>1$.
As with the modified Dirichlet function, this function f is continuous at $c=0$, but discontinuous at every $c \in(0,1)$.
This function is also discontinuous at $c=1$ because for a rational sequence $\left(x_{n}\right)$ in $(0,1)$ with $x_{n} \rightarrow 1$ we have $f\left(x_{n}\right)=x_{n} \rightarrow 1$, while for any sequence $\left(y_{n}\right)$ with $y_{n}>1$ and $y_{n} \rightarrow 1$ we have $f\left(y_{n}\right) \rightarrow 0$.
So here we have $D_{f}=(0,1]$.
With all of the examples we have explored, what is the topological property shared by the set of discontinuities? Open, closed, compact, connected, F_{σ}, G_{δ} ?

If you are thinking an F_{σ} set, you are correct.
To prove this is somewhat involved, so we focus in Section 4.6 on a simpler class of functions f for which D_{f} is more readily understood.

