
Math 341 Lecture #19
§4.1: Examples of Dirichlet and Thomae

We begin a discussion about the continuity of a function f : A → R, for a nonempty
A ⊂ R.

Recall from Calculus I that we say f is continuous at a point a ∈ R if f(a) exists (i.e.,
a ∈ A), limx→a f(x) exists, and limx→a f(x) = f(a).

[We are leaving the notion of the limit of a function vague for now; we will see the rigorous
definition next time.]

For a function f : A → R, we let Df denote the set of points in A where f is not
continuous.

What kind of a subset of R can Df be?

Example. Dirichlet defined a function g : R→ R by

g(x) =

{
1 if x ∈ Q,

0 if x 6∈ Q.

For any c ∈ R we can find sequences (xn) in Q and (yn) in Qc such that xn → c and
yn → c, but for which g(xn) = 1 and g(yn) = 0 for all n ∈ N, so that

lim
n→∞

g(xn) 6= lim
n→∞

g(yn).

This suggests that f is not continuous at c, and as c was arbitrary, that f is not continuous
at any c ∈ R.

We have that Dg = R.

Example. A modification of Dirichlet’s function results in a function that is continuous
at just one point.

Define h : R→ R by

h(x) =

{
x if x ∈ Q,

0 if x 6∈ Q.

For a nonzero c we can find sequences (xn) in Q and (yn) in Qc such that xn → c and
yn → c, but for which h(xn) = xn and h(yn) = 0 for all n ∈ N, so that

lim
n→∞

h(xn) = c 6= 0 = lim
n→∞

h(yn).

This suggests that the function h is not continuous at any point c 6= 0.

However, if c = 0, then for any sequence (zn) in R with zn → 0 we have |h(zn)| ≤ |zn|,
so that h(zn)→ 0 as well.

Thus h is continuous at c = 0.

We have that Dh = R− {0}.



Example. Thomae defined a function t : R→ R by

t(x) =


1 if x = 0,

1/n if x = m/n ∈ Q \ {0} in lowest terms with n > 0,

0 if x 6∈ Q.

For c ∈ Q, we have t(c) > 0.

For a sequence (yn) in Qc such that yn → c, we have t(yn) = 0 for all n ∈ N, so that

t(c) 6= 0 = lim
n→∞

t(yn).

This suggests that t is discontinuous at every rational point.

On the other hand, if c is irrational, we have t(c) = 0.

For any sequence (xn) in R such that xn → c we have t(xn) = 0 when xn 6∈ Q or t(xn) is
the reciprocal of the positive denominator of the rational xn is lowest terms.

The closer xn is to the irrational c, the larger the denominator of xn is, so that t(xn) is
as close to 0 as needed.

The result of this is that t(xn)→ 0 as n→∞, that is, we have

lim
n→∞

t(xn) = 0 = t(c),

suggesting that t is continuous at every irrational c.

We have that Dt = Q.

Example. Define a function s : R→ R by

s(x) = [[x]]

where [[x]] is the largest integer n such that n ≤ s.

For c ∈ R such that n < c < n + 1 for n ∈ N, we have for any sequence (xn) converging
to c that

lim
n→∞

s(xn) = n = [[c]].

On the other hand, for c = n for n ∈ N, we take a sequence (yn) such that n−1 < yn < n
and yn → c, so that

lim
n→∞

s(yn) = n− 1 6= [[c]] = n.

This suggests that s is discontinuous at every integer point, and we have that Ds = Z.

Example. Define a function f : R→ R by

f(x) =


0 if x ≤ 0,

x if x ∈ Q ∩ (0, 1),

0 if x ∈ (0, 1)−Q,

0 if x ≥ 1.



The function is continuous at every c < 0 and at every c > 1.

As with the modified Dirichlet function, this function f is continuous at c = 0, but
discontinuous at every c ∈ (0, 1).

This function is also discontinuous at c = 1 because for a rational sequence (xn) in (0, 1)
with xn → 1 we have f(xn) = xn → 1, while for any sequence (yn) with yn > 1 and
yn → 1 we have f(yn)→ 0.

So here we have Df = (0, 1].

With all of the examples we have explored, what is the topological property shared by
the set of discontinuities? Open, closed, compact, connected, Fσ, Gδ?

If you are thinking an Fσ set, you are correct.

To prove this is somewhat involved, so we focus in Section 4.6 on a simpler class of
functions f for which Df is more readily understood.


