Math 341 Lecture \#20
§4.2: Functional Limits
We will now rigorously define $\lim _{x \rightarrow c} f(x)$ for a function $f: A \rightarrow \mathbb{R}$ with $\emptyset \neq A \subseteq \mathbb{R}$ (and A not assumed to be an interval).
Recall that a limit point c of A is a point $c \in \mathbb{R}$ such that $\left(A \cap V_{\epsilon}(c)\right)-\{c\} \neq \emptyset$ for all $\epsilon>0$.
Equivalently, c is a limit point of A if there is a sequence $\left(x_{n}\right)$ in A with $x_{n} \neq c$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow c$.
For a limit point c of A, we remember that

$$
\lim _{x \rightarrow c} f(x)=L
$$

means that as x approaches c, the value of $f(x)$ approaches L.
And you might remember the $\epsilon-\delta$ version of this.
Definition 4.2.1. Let $f: A \rightarrow \mathbb{R}$, and let c be a limit point of A (so that c is not necessarily in the nonempty A). We say that

$$
\lim _{x \rightarrow c} f(x)=L
$$

if for every $\epsilon>0$ there exists $\delta>0$ such that whenever $0<|x-c|<\delta$ with $x \in A$ it follows that $|f(x)-L|<\epsilon$.
We can recast this $\epsilon-\delta$ definition of limit in the topological setting: we say $\lim _{x \rightarrow c} f(x)=$ L if for every $V_{\epsilon}(L)$ there exists $V_{\delta}(c)$ such that for every $x \in\left(V_{\delta}(c) \cap A\right)-\{c\}$, it follows that $f(x) \in V_{\epsilon}(L)$.
The appearance of $x \in A$ in these equivalent definitions of a limit is to remind us that x has to be in the domain of f; it isn't always the case the f is defined for all points nearby c.
Example 4.2.2. (i) For $f(x)=3 x+1$ with domain $A=\mathbb{R}$ we will show that

$$
\lim _{x \rightarrow 2} f(x)=7 .
$$

For each $\epsilon>0$ we have to find $\delta>0$ such that $0<|x-2|<\delta$ leads to $|f(x)-7|<\epsilon$.
We look at what f is doing in relation to is alleged limit of 7 :

$$
|f(x)-7|=|3 x+1-7|=|3 x-6|=3|x-2| .
$$

Since we want this to be smaller than ϵ when $0<|x-2|<\delta$, we pick

$$
\delta=\frac{\epsilon}{3} .
$$

Then we have that

$$
|f(x)-7|=3|x-2|<3 \delta=3\left(\frac{\epsilon}{3}\right)=\epsilon .
$$

(ii) For $g(x)=x^{2}$ we will show that

$$
\lim _{x \rightarrow 2} g(x)=4
$$

We start with how $g(x)$ relates with 4 :

$$
|g(x)-4|=\left|x^{2}-4\right|=|(x+2)(x-2)|=|x+2||x-2| .
$$

The term $|x-2|$ we can control with δ, but what do we do with $|x+2|$?
This is where the flexible to choose δ comes into play.
We are only interested in what happens to $g(x)$ when x is close to 2 , and so we choose to keep δ from getting too big.

When $\delta \leq 1$, the inequality $|x-2|<\delta$ implies that $|x+2|<5$.
To get an ϵ into this we choose $\delta=\min \{1, \epsilon / 5\}$ which forces δ to never be bigger than 1 . Then for $0<|x-2|<\delta$ we have that

$$
\left|x^{2}-4\right|=|x+2||x-2|<5\left(\frac{\epsilon}{5}\right)=\epsilon .
$$

We can recast the definition of a functional limit in terms of sequences.
Theorem 4.2.3 (Sequential Criterion for Functional Limits). For a function $f: A \rightarrow \mathbb{R}$ and a limit point c of A, the following are equivalent.
(i) $\lim _{x \rightarrow c} f(x)=L$.
(ii) For all sequences $\left(x_{n}\right)$ in A satisfying $x_{n} \neq c$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow c$, we have that $f\left(x_{n}\right) \rightarrow L$.

Proof. Suppose that $\lim _{x \rightarrow c} f(x)=L$.
For $\epsilon>0$ there is $\delta>0$ such that $f(x) \in V_{\epsilon}(L)$ whenever $x \in\left(V_{\delta}(c) \cap A\right)-\{c\}$.
Consider an arbitrary sequence $\left(x_{n}\right)$ in A with $x_{n} \neq c$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow c$.
Because $x_{n} \rightarrow c$, there is $N \in \mathbb{N}$ such that $x_{n} \in\left(V_{\delta}(c) \cap A\right)-\{c\}$ for all $n \geq N$.
Having $x_{n} \in\left(V_{\delta}(c) \cap A\right)-\{c\}$ for all $n \geq N$ implies that $f\left(x_{n}\right) \in V_{\epsilon}(L)$ for all $n \geq N$.
This says precisely that $f\left(x_{n}\right) \rightarrow L$.
We will argue the other direction by contradiction.
We assume that for all sequences $\left(x_{n}\right)$ in A with $x_{n} \neq c$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow c$ we have $f\left(x_{n}\right) \rightarrow L$, but that $\lim _{x \rightarrow c} f(x) \neq L$.
The latter means that there exists $\epsilon_{0}>0$ such that for all $\delta>0$ there exists $x \in$ $\left(V_{\delta}(c) \cap A\right)-\{c\}$ such that $f(x) \notin V_{\epsilon_{0}}(L)$.
We use this to construct a sequence that will give a contradiction.

For each $n \in \mathbb{N}$ we set $\delta_{n}=1 / n$ and choose $x_{n} \in\left(V_{\delta_{n}}(c) \cap A\right)-\{c\}$ for which $f\left(x_{n}\right) \notin$ $V_{\epsilon_{0}}(L)$.
The sequence $\left(x_{n}\right)$ converges to c, but $f\left(x_{n}\right) \nrightarrow L$, a contradiction.
Now we can apply the theory of sequences to derive familiar results about functional limits.
Corollary 4.2.4 (The Algebraic Limit Theorem for Functional Limits). Let f and g be real-valued functions defined on $A \subseteq \mathbb{R}$, and assume that $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$ for some limit point c of A. Then
(i) $\lim _{x \rightarrow c} k f(x)=k L$ for all $k \in \mathbb{R}$,
(ii) $\lim _{x \rightarrow c}[f(x)+g(x)]=L+M$,
(iii) $\lim _{x \rightarrow c}[f(x) g(x)]=L M$, and
(iv) $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{M}$ provided $M \neq 0$.

The proof of these is a simple consequence of the Algebraic Limit Theorem for sequences. Corollary 4.2.5 (Divergence Criterion for Functional Limits). Let $f: A \rightarrow \mathbb{R}$ for $A \subseteq \mathbb{R}$ and let c be a limit point of A. If there exist two sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in A with $x_{n} \neq c, y_{n} \neq c$ for all $n \in \mathbb{N}$, and $x_{n} \rightarrow c$ and $y_{n} \rightarrow c$, and

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq \lim _{n \rightarrow \infty} f\left(y_{n}\right)
$$

then $\lim _{x \rightarrow c} f(x)$ does not exist.
You should be able to see why this Corollary is true.
Example 4.2.6. Does the function $f(x)=\sin (1 / x)$ defined on $A=\mathbb{R} \backslash\{0\}$ have a limit as $x \rightarrow 0$?

For $n \in \mathbb{N}$, if

$$
x_{n}=\frac{1}{2 n \pi}, y_{n}=\frac{1}{2 n \pi+\pi / 2}
$$

then $x_{n} \rightarrow 0\left(\right.$ with $\left.x_{n} \neq 0\right)$ and $y_{n} \rightarrow 0\left(\right.$ with $\left.y_{n} \neq 0\right)$, and $f\left(x_{n}\right)=\sin (2 n \pi)=0$ and $f\left(y_{n}\right)=f(2 n \pi+\pi / 2)=1$ for all $n \in \mathbb{N}$, so that $f\left(x_{n}\right) \rightarrow 0$ while $f\left(y_{n}\right) \rightarrow 1$.
By the Divergence Criterion for Functional Limits, we have that $\lim _{x \rightarrow 0} f(x)$ does not exist.

