Math 341 Lecture #20§4.2: Functional Limits

We will now rigorously define $\lim_{x\to c} f(x)$ for a function $f: A \to \mathbb{R}$ with $\emptyset \neq A \subseteq \mathbb{R}$ (and A not assumed to be an interval).

Recall that a limit point c of A is a point $c \in \mathbb{R}$ such that $(A \cap V_{\epsilon}(c)) - \{c\} \neq \emptyset$ for all $\epsilon > 0$.

Equivalently, c is a limit point of A if there is a sequence (x_n) in A with $x_n \neq c$ for all $n \in \mathbb{N}$ and $x_n \to c$.

For a limit point c of A, we remember that

$$\lim_{x \to c} f(x) = L$$

means that as x approaches c, the value of f(x) approaches L.

And you might remember the $\epsilon - \delta$ version of this.

Definition 4.2.1. Let $f : A \to \mathbb{R}$, and let c be a limit point of A (so that c is not necessarily in the nonempty A). We say that

$$\lim_{x \to c} f(x) = L$$

if for every $\epsilon > 0$ there exists $\delta > 0$ such that whenever $0 < |x - c| < \delta$ with $x \in A$ it follows that $|f(x) - L| < \epsilon$.

We can recast this $\epsilon - \delta$ definition of limit in the topological setting: we say $\lim_{x\to c} f(x) = L$ if for every $V_{\epsilon}(L)$ there exists $V_{\delta}(c)$ such that for every $x \in (V_{\delta}(c) \cap A) - \{c\}$, it follows that $f(x) \in V_{\epsilon}(L)$.

The appearance of $x \in A$ in these equivalent definitions of a limit is to remind us that x has to be in the domain of f; it isn't always the case the f is defined for all points nearby c.

Example 4.2.2. (i) For f(x) = 3x + 1 with domain $A = \mathbb{R}$ we will show that

$$\lim_{x \to 2} f(x) = 7.$$

For each $\epsilon > 0$ we have to find $\delta > 0$ such that $0 < |x - 2| < \delta$ leads to $|f(x) - 7| < \epsilon$. We look at what f is doing in relation to is alleged limit of 7:

$$|f(x) - 7| = |3x + 1 - 7| = |3x - 6| = 3|x - 2|.$$

Since we want this to be smaller than ϵ when $0 < |x - 2| < \delta$, we pick

$$\delta = \frac{\epsilon}{3}.$$

Then we have that

$$|f(x) - 7| = 3|x - 2| < 3\delta = 3\left(\frac{\epsilon}{3}\right) = \epsilon.$$

(ii) For $g(x) = x^2$ we will show that

$$\lim_{x \to 2} g(x) = 4.$$

We start with how g(x) relates with 4:

$$|g(x) - 4| = |x^2 - 4| = |(x + 2)(x - 2)| = |x + 2| |x - 2|.$$

The term |x-2| we can control with δ , but what do we do with |x+2|?

This is where the flexible to choose δ comes into play.

We are only interested in what happens to g(x) when x is close to 2, and so we choose to keep δ from getting too big.

When $\delta \leq 1$, the inequality $|x - 2| < \delta$ implies that |x + 2| < 5.

To get an ϵ into this we choose $\delta = \min\{1, \epsilon/5\}$ which forces δ to never be bigger than 1. Then for $0 < |x - 2| < \delta$ we have that

$$|x^{2} - 4| = |x + 2| |x - 2| < 5\left(\frac{\epsilon}{5}\right) = \epsilon.$$

We can recast the definition of a functional limit in terms of sequences.

Theorem 4.2.3 (Sequential Criterion for Functional Limits). For a function $f: A \to \mathbb{R}$ and a limit point c of A, the following are equivalent.

- (i) $\lim_{x \to c} f(x) = L.$
- (ii) For all sequences (x_n) in A satisfying $x_n \neq c$ for all $n \in \mathbb{N}$ and $x_n \to c$, we have that $f(x_n) \to L$.

Proof. Suppose that $\lim_{x\to c} f(x) = L$.

For $\epsilon > 0$ there is $\delta > 0$ such that $f(x) \in V_{\epsilon}(L)$ whenever $x \in (V_{\delta}(c) \cap A) - \{c\}$.

Consider an arbitrary sequence (x_n) in A with $x_n \neq c$ for all $n \in \mathbb{N}$ and $x_n \rightarrow c$.

Because $x_n \to c$, there is $N \in \mathbb{N}$ such that $x_n \in (V_{\delta}(c) \cap A) - \{c\}$ for all $n \ge N$.

Having $x_n \in (V_{\delta}(c) \cap A) - \{c\}$ for all $n \geq N$ implies that $f(x_n) \in V_{\epsilon}(L)$ for all $n \geq N$. This says precisely that $f(x_n) \to L$.

We will argue the other direction by contradiction.

We assume that for all sequences (x_n) in A with $x_n \neq c$ for all $n \in \mathbb{N}$ and $x_n \rightarrow c$ we have $f(x_n) \rightarrow L$, but that $\lim_{x \rightarrow c} f(x) \neq L$.

The latter means that there exists $\epsilon_0 > 0$ such that for all $\delta > 0$ there exists $x \in (V_{\delta}(c) \cap A) - \{c\}$ such that $f(x) \notin V_{\epsilon_0}(L)$.

We use this to construct a sequence that will give a contradiction.

For each $n \in \mathbb{N}$ we set $\delta_n = 1/n$ and choose $x_n \in (V_{\delta_n}(c) \cap A) - \{c\}$ for which $f(x_n) \notin V_{\epsilon_0}(L)$.

The sequence (x_n) converges to c, but $f(x_n) \not\rightarrow L$, a contradiction.

Now we can apply the theory of sequences to derive familiar results about functional limits.

Corollary 4.2.4 (The Algebraic Limit Theorem for Functional Limits). Let f and g be real-valued functions defined on $A \subseteq \mathbb{R}$, and assume that $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$ for some limit point c of A. Then

- (i) $\lim_{x \to \infty} kf(x) = kL$ for all $k \in \mathbb{R}$,
- (ii) $\lim_{x \to c} [f(x) + g(x)] = L + M$,

(iii)
$$\lim_{x \to \infty} \left[f(x)g(x) \right] = LM$$
, and

(iv) $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}$ provided $M \neq 0$.

The proof of these is a simple consequence of the Algebraic Limit Theorem for sequences. Corollary 4.2.5 (Divergence Criterion for Functional Limits). Let $f : A \to \mathbb{R}$ for $A \subseteq \mathbb{R}$ and let c be a limit point of A. If there exist two sequences (x_n) and (y_n) in A with $x_n \neq c, y_n \neq c$ for all $n \in \mathbb{N}$, and $x_n \to c$ and $y_n \to c$, and

$$\lim_{n \to \infty} f(x_n) \neq \lim_{n \to \infty} f(y_n)$$

then $\lim_{x\to c} f(x)$ does not exist.

You should be able to see why this Corollary is true.

Example 4.2.6. Does the function $f(x) = \sin(1/x)$ defined on $A = \mathbb{R} \setminus \{0\}$ have a limit as $x \to 0$?

For $n \in \mathbb{N}$, if

$$x_n = \frac{1}{2n\pi}, \ y_n = \frac{1}{2n\pi + \pi/2}$$

then $x_n \to 0$ (with $x_n \neq 0$) and $y_n \to 0$ (with $y_n \neq 0$), and $f(x_n) = \sin(2n\pi) = 0$ and $f(y_n) = f(2n\pi + \pi/2) = 1$ for all $n \in \mathbb{N}$, so that $f(x_n) \to 0$ while $f(y_n) \to 1$.

By the Divergence Criterion for Functional Limits, we have that $\lim_{x\to 0} f(x)$ does not exist.