
Math 341 Lecture #20
§4.2: Functional Limits

We will now rigorously define limx→c f(x) for a function f : A→ R with ∅ 6= A ⊆ R (and
A not assumed to be an interval).

Recall that a limit point c of A is a point c ∈ R such that (A ∩ Vε(c)) − {c} 6= ∅ for all
ε > 0.

Equivalently, c is a limit point of A if there is a sequence (xn) in A with xn 6= c for all
n ∈ N and xn → c.

For a limit point c of A, we remember that

lim
x→c

f(x) = L

means that as x approaches c, the value of f(x) approaches L.

And you might remember the ε− δ version of this.

Definition 4.2.1. Let f : A → R, and let c be a limit point of A (so that c is not
necessarily in the nonempty A). We say that

lim
x→c

f(x) = L

if for every ε > 0 there exists δ > 0 such that whenever 0 < |x − c| < δ with x ∈ A it
follows that |f(x)− L| < ε.

We can recast this ε−δ definition of limit in the topological setting: we say limx→c f(x) =
L if for every Vε(L) there exists Vδ(c) such that for every x ∈ (Vδ(c)∩A)−{c}, it follows
that f(x) ∈ Vε(L).

The appearance of x ∈ A in these equivalent definitions of a limit is to remind us that
x has to be in the domain of f ; it isn’t always the case the f is defined for all points
nearby c.

Example 4.2.2. (i) For f(x) = 3x+ 1 with domain A = R we will show that

lim
x→2

f(x) = 7.

For each ε > 0 we have to find δ > 0 such that 0 < |x− 2| < δ leads to |f(x)− 7| < ε.

We look at what f is doing in relation to is alleged limit of 7:

|f(x)− 7| = |3x+ 1− 7| = |3x− 6| = 3|x− 2|.

Since we want this to be smaller than ε when 0 < |x− 2| < δ, we pick

δ =
ε

3
.

Then we have that
|f(x)− 7| = 3|x− 2| < 3δ = 3

( ε
3

)
= ε.



(ii) For g(x) = x2 we will show that

lim
x→2

g(x) = 4.

We start with how g(x) relates with 4:

|g(x)− 4| = |x2 − 4| = |(x+ 2)(x− 2)| = |x+ 2| |x− 2|.

The term |x− 2| we can control with δ, but what do we do with |x+ 2|?
This is where the flexible to choose δ comes into play.

We are only interested in what happens to g(x) when x is close to 2, and so we choose
to keep δ from getting too big.

When δ ≤ 1, the inequality |x− 2| < δ implies that |x+ 2| < 5.

To get an ε into this we choose δ = min{1, ε/5} which forces δ to never be bigger than 1.

Then for 0 < |x− 2| < δ we have that

|x2 − 4| = |x+ 2| |x− 2| < 5
( ε

5

)
= ε.

We can recast the definition of a functional limit in terms of sequences.

Theorem 4.2.3 (Sequential Criterion for Functional Limits). For a function
f : A→ R and a limit point c of A, the following are equivalent.

(i) lim
x→c

f(x) = L.

(ii) For all sequences (xn) in A satisfying xn 6= c for all n ∈ N and xn → c, we have
that f(xn)→ L.

Proof. Suppose that limx→c f(x) = L.

For ε > 0 there is δ > 0 such that f(x) ∈ Vε(L) whenever x ∈ (Vδ(c) ∩ A)− {c}.
Consider an arbitrary sequence (xn) in A with xn 6= c for all n ∈ N and xn → c.

Because xn → c, there is N ∈ N such that xn ∈ (Vδ(c) ∩ A)− {c} for all n ≥ N .

Having xn ∈ (Vδ(c) ∩ A)− {c} for all n ≥ N implies that f(xn) ∈ Vε(L) for all n ≥ N .

This says precisely that f(xn)→ L.

We will argue the other direction by contradiction.

We assume that for all sequences (xn) in A with xn 6= c for all n ∈ N and xn → c we
have f(xn)→ L, but that limx→c f(x) 6= L.

The latter means that there exists ε0 > 0 such that for all δ > 0 there exists x ∈
(Vδ(c) ∩ A)− {c} such that f(x) 6∈ Vε0(L).

We use this to construct a sequence that will give a contradiction.



For each n ∈ N we set δn = 1/n and choose xn ∈ (Vδn(c) ∩ A) − {c} for which f(xn) 6∈
Vε0(L).

The sequence (xn) converges to c, but f(xn) 6→ L, a contradiction. �

Now we can apply the theory of sequences to derive familiar results about functional
limits.

Corollary 4.2.4 (The Algebraic Limit Theorem for Functional Limits). Let
f and g be real-valued functions defined on A ⊆ R, and assume that limx→c f(x) = L
and limx→c g(x) = M for some limit point c of A. Then

(i) lim
x→c

kf(x) = kL for all k ∈ R,

(ii) lim
x→c

[
f(x) + g(x)

]
= L+M ,

(iii) lim
x→c

[
f(x)g(x)

]
= LM , and

(iv) lim
x→c

f(x)

g(x)
=

L

M
provided M 6= 0.

The proof of these is a simple consequence of the Algebraic Limit Theorem for sequences.

Corollary 4.2.5 (Divergence Criterion for Functional Limits). Let f : A→ R
for A ⊆ R and let c be a limit point of A. If there exist two sequences (xn) and (yn) in
A with xn 6= c, yn 6= c for all n ∈ N, and xn → c and yn → c, and

lim
n→∞

f(xn) 6= lim
n→∞

f(yn)

then limx→c f(x) does not exist.

You should be able to see why this Corollary is true.

Example 4.2.6. Does the function f(x) = sin(1/x) defined on A = R\{0} have a limit
as x→ 0?



For n ∈ N, if

xn =
1

2nπ
, yn =

1

2nπ + π/2

then xn → 0 (with xn 6= 0) and yn → 0 (with yn 6= 0), and f(xn) = sin(2nπ) = 0 and
f(yn) = f(2nπ + π/2) = 1 for all n ∈ N, so that f(xn)→ 0 while f(yn)→ 1.

By the Divergence Criterion for Functional Limits, we have that limx→0 f(x) does not
exist.


