
Math 341 Lecture #21
§4.3: Continuous Functions

We recall the ε− δ notion of what it means for a function to be continuous at a point in
its domain.

Definition 4.3.1. For a nonempty A ⊆ R, a function f : A → R is continuous at a
point c ∈ A if, for all ε > 0, there exists δ > 0 such that whenever |x− c| < δ and x ∈ A,
it follows that |f(x)− f(c)| < ε.

If f is continuous at every point of A, we say that f is continuous on A.

This definition of continuity at a point looks like a functional limit, except that for
continuity we require that c ∈ A, not merely that c is a limit point of A.

We would like to say f is continuous at c ∈ A by writing

lim
x→c

f(x) = f(c).

The minor technical difficulty with doing this is when c ∈ A is an isolated point, but
then f is continuous at c in this case because Vδ(c)∩A = {c} for all small enough δ > 0.

Theorem 4.3.2 (Characterization of Continuity). For a nonempty A ⊆ R, let
f : A → R, and let c ∈ A. Then f is continuous at c if and only if any one of the
following conditions is met:

(i) for all ε > 0 there exists δ > 0 such that |x−c| < δ and x ∈ A implies |f(x)−f(c)| <
ε;

(ii) for all Vε(f(c)) there is Vδ(c) for which x ∈ Vδ(c) ∩ A implies f(x) ∈ Vε(f(c));

(iii) if (xn)→ c with xn ∈ A, then f(xn)→ f(c).

If c is a limit point of A, then the above conditions are equivalent to

(iv) lim
x→c

f(x) = f(c);

Proof. The equivalence of (i), (iii), and (iv) is simple and straightforward.

We will show the equivalence of (ii) and (iii).

Suppose for all Vε(f(c)) there is Vδ(c) for which x ∈ Vδ(c) ∩ A implies f(x) ∈ Vε(f(c)).

Let (xn) be a sequence in A converging to c.

Thus there exists N ∈ N such that xn ∈ Vδ(x) ∩ A for all n ≥ N .

This implies that f(xn) ∈ Vε(f(c)) and so we have f(xn)→ f(c).

Now, suppose, to the contrary, that there exists ε0 such that for all Vδ(c) there exists
x ∈ Vδ(c) ∩ A such that f(x) 6∈ Vε0(f(c)).

For each δn = 1/n we choose xn ∈ Vδn(c) ∩ A for which f(xn) 6∈ Vε0(f(c)).

This gives a sequence (xn) in A which converges to c, but for which f(xn) 6→ f(c). �

Statement (iii) of this theorem is a new approach to continuity, and hence to discontinuity.



Corollary 4.3.3 (Criterion for Discontinuity). Let f : A→ R, and let c ∈ A be a
limit point of A. If there exists a sequence (xn) in A with xn → c such that f(xn) 6→ f(c),
then f is not continuous at c.

Using the sequential approach to continuity establishes the following.

Theorem 4.3.4 (Algebraic Continuity Theorem). Assume f : A → R and
g : A→ R are continuous at c ∈ A. Then

(i) kf(x) is continuous at c for all k ∈ R,

(ii) f(x) + g(x) is continuous at c,

(iii) f(x)g(x) is continuous at c, and

(iv) f(x)/g(x) is continuous at c provided the quotient is defined.

Example 4.3.5. For constants a, b ∈ R, the function f(x) = ax + b for x ∈ A = R is
continuous.

To see why, take c ∈ A, and consider

|f(x)− (ac+ b)| = |ax+ b− ac− b| = |a| |x− c|.

For ε > 0 we choose δ = ε/|a|, so that when x ∈ Vδ(c) we have

|f(x)− (ac+ b)| < |a|ε/|a| = ε.

By Theorem 4.3.4, it follows that every polynomial is continuous on R, and that every
rational function is continuous at those points where the denominator is not zero.

Example 4.3.6. Is the function

g(x) =

{
x sin(1/x) if x 6= 0,

0 if x = 0,

continuous at c = 0?

For x 6= 0, we have

|g(x)− g(0)| = |x sin(1/x)− 0| = |x sin(1/x)| ≤ |x|

because | sin(1/x)| ≤ 1.

For ε > 0 we choose δ = ε so that when x ∈ Vδ(0) we have

|g(x)− g(0)| ≤ |x| < δ = ε.

Thus g(x) is continuous at c = 0.

Example 4.3.8. Show that f(x) =
√
x is continuous on A = [0,∞).

For ε > 0 and c ∈ A, we need to find δ > 0 such that

|f(x)− f(c)| = |
√
x−
√
c| < ε



when x ∈ Vδ(c) ∩ A.

When c = 0 this reduces to |
√
x− 0| =

√
x < ε.

This gives x < ε2 from which we choose δ = ε2.

Thus for x ∈ Vδ(0) ∩ A we have |
√
x − 0| =

√
x <

√
δ =

√
ε2 = ε, and so we have

continuity of g(x) at c = 0.

Now for c > 0 we are dealing with

|
√
x−
√
c| = |

√
x−
√
c|
√
x+
√
c√

x+
√
c

=
|x− c|√
x+
√
c
.

We can control the numerator |x− c| by the choice of δ, so we need to find a way to deal
with the denominator

√
x+
√
c.

Since
√
x+
√
c ≥
√
c > 0 we have

1√
x+
√
c
≤ 1√

c
.

We then have

|
√
x−
√
c| ≤ |x− c|√

c
.

The choice of δ = ε
√
c then gives us

|
√
x−
√
c| < ε

√
c√
c

= ε.

Thus f(x) =
√
x is continuous at c > 0, and so f(x) is continuous on A.

Recall that the range of a function f : A→ R is the set f(A) = {f(x) : x ∈ A}.
Theorem 4.3.9 (Composition of Continuous Functions). Suppose for functions
f : A → R and g : B → R satisfy f(A) ⊆ B. If f is continuous at c ∈ A and g is
continuous at f(c), then the composition g ◦ f(x) is continuous at c.

The proof of this is a homework problem (4.3.3).


