Math 341 Lecture \#21

§4.3: Continuous Functions
We recall the $\epsilon-\delta$ notion of what it means for a function to be continuous at a point in its domain.
Definition 4.3.1. For a nonempty $A \subseteq \mathbb{R}$, a function $f: A \rightarrow \mathbb{R}$ is continuous at a point $c \in A$ if, for all $\epsilon>0$, there exists $\delta>0$ such that whenever $|x-c|<\delta$ and $x \in A$, it follows that $|f(x)-f(c)|<\epsilon$.

If f is continuous at every point of A, we say that f is continuous on A.
This definition of continuity at a point looks like a functional limit, except that for continuity we require that $c \in A$, not merely that c is a limit point of A.
We would like to say f is continuous at $c \in A$ by writing

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

The minor technical difficulty with doing this is when $c \in A$ is an isolated point, but then f is continuous at c in this case because $V_{\delta}(c) \cap A=\{c\}$ for all small enough $\delta>0$. Theorem 4.3.2 (Characterization of Continuity). For a nonempty $A \subseteq \mathbb{R}$, let $f: A \rightarrow \mathbb{R}$, and let $c \in A$. Then f is continuous at c if and only if any one of the following conditions is met:
(i) for all $\epsilon>0$ there exists $\delta>0$ such that $|x-c|<\delta$ and $x \in A$ implies $|f(x)-f(c)|<$ ϵ;
(ii) for all $V_{\epsilon}(f(c))$ there is $V_{\delta}(c)$ for which $x \in V_{\delta}(c) \cap A$ implies $f(x) \in V_{\epsilon}(f(c))$;
(iii) if $\left(x_{n}\right) \rightarrow c$ with $x_{n} \in A$, then $f\left(x_{n}\right) \rightarrow f(c)$.

If c is a limit point of A, then the above conditions are equivalent to
(iv) $\lim _{x \rightarrow c} f(x)=f(c)$;

Proof. The equivalence of (i), (iii), and (iv) is simple and straightforward.
We will show the equivalence of (ii) and (iii).
Suppose for all $V_{\epsilon}(f(c))$ there is $V_{\delta}(c)$ for which $x \in V_{\delta}(c) \cap A$ implies $f(x) \in V_{\epsilon}(f(c))$.
Let $\left(x_{n}\right)$ be a sequence in A converging to c.
Thus there exists $N \in \mathbb{N}$ such that $x_{n} \in V_{\delta}(x) \cap A$ for all $n \geq N$.
This implies that $f\left(x_{n}\right) \in V_{\epsilon}(f(c))$ and so we have $f\left(x_{n}\right) \rightarrow f(c)$.
Now, suppose, to the contrary, that there exists ϵ_{0} such that for all $V_{\delta}(c)$ there exists $x \in V_{\delta}(c) \cap A$ such that $f(x) \notin V_{\epsilon_{0}}(f(c))$.
For each $\delta_{n}=1 / n$ we choose $x_{n} \in V_{\delta_{n}}(c) \cap A$ for which $f\left(x_{n}\right) \notin V_{\epsilon_{0}}(f(c))$.
This gives a sequence $\left(x_{n}\right)$ in A which converges to c, but for which $f\left(x_{n}\right) \nrightarrow f(c)$.
Statement (iii) of this theorem is a new approach to continuity, and hence to discontinuity.

Corollary 4.3.3 (Criterion for Discontinuity). Let $f: A \rightarrow \mathbb{R}$, and let $c \in A$ be a limit point of A. If there exists a sequence $\left(x_{n}\right)$ in A with $x_{n} \rightarrow c$ such that $f\left(x_{n}\right) \nrightarrow f(c)$, then f is not continuous at c.
Using the sequential approach to continuity establishes the following.
Theorem 4.3.4 (Algebraic Continuity Theorem). Assume $f: A \rightarrow \mathbb{R}$ and $g: A \rightarrow \mathbb{R}$ are continuous at $c \in A$. Then
(i) $k f(x)$ is continuous at c for all $k \in \mathbb{R}$,
(ii) $f(x)+g(x)$ is continuous at c,
(iii) $f(x) g(x)$ is continuous at c, and
(iv) $f(x) / g(x)$ is continuous at c provided the quotient is defined.

Example 4.3.5. For constants $a, b \in \mathbb{R}$, the function $f(x)=a x+b$ for $x \in A=\mathbb{R}$ is continuous.
To see why, take $c \in A$, and consider

$$
|f(x)-(a c+b)|=|a x+b-a c-b|=|a||x-c| .
$$

For $\epsilon>0$ we choose $\delta=\epsilon /|a|$, so that when $x \in V_{\delta}(c)$ we have

$$
|f(x)-(a c+b)|<|a| \epsilon /|a|=\epsilon .
$$

By Theorem 4.3.4, it follows that every polynomial is continuous on \mathbb{R}, and that every rational function is continuous at those points where the denominator is not zero.
Example 4.3.6. Is the function

$$
g(x)= \begin{cases}x \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

continuous at $c=0$?
For $x \neq 0$, we have

$$
|g(x)-g(0)|=|x \sin (1 / x)-0|=|x \sin (1 / x)| \leq|x|
$$

because $|\sin (1 / x)| \leq 1$.
For $\epsilon>0$ we choose $\delta=\epsilon$ so that when $x \in V_{\delta}(0)$ we have

$$
|g(x)-g(0)| \leq|x|<\delta=\epsilon .
$$

Thus $g(x)$ is continuous at $c=0$.
Example 4.3.8. Show that $f(x)=\sqrt{x}$ is continuous on $A=[0, \infty)$.
For $\epsilon>0$ and $c \in A$, we need to find $\delta>0$ such that

$$
|f(x)-f(c)|=|\sqrt{x}-\sqrt{c}|<\epsilon
$$

when $x \in V_{\delta}(c) \cap A$.
When $c=0$ this reduces to $|\sqrt{x}-0|=\sqrt{x}<\epsilon$.
This gives $x<\epsilon^{2}$ from which we choose $\delta=\epsilon^{2}$.
Thus for $x \in V_{\delta}(0) \cap A$ we have $|\sqrt{x}-0|=\sqrt{x}<\sqrt{\delta}=\sqrt{\epsilon^{2}}=\epsilon$, and so we have continuity of $g(x)$ at $c=0$.

Now for $c>0$ we are dealing with

$$
|\sqrt{x}-\sqrt{c}|=|\sqrt{x}-\sqrt{c}| \frac{\sqrt{x}+\sqrt{c}}{\sqrt{x}+\sqrt{c}}=\frac{|x-c|}{\sqrt{x}+\sqrt{c}} .
$$

We can control the numerator $|x-c|$ by the choice of δ, so we need to find a way to deal with the denominator $\sqrt{x}+\sqrt{c}$.
Since $\sqrt{x}+\sqrt{c} \geq \sqrt{c}>0$ we have

$$
\frac{1}{\sqrt{x}+\sqrt{c}} \leq \frac{1}{\sqrt{c}}
$$

We then have

$$
|\sqrt{x}-\sqrt{c}| \leq \frac{|x-c|}{\sqrt{c}}
$$

The choice of $\delta=\epsilon \sqrt{c}$ then gives us

$$
|\sqrt{x}-\sqrt{c}|<\frac{\epsilon \sqrt{c}}{\sqrt{c}}=\epsilon
$$

Thus $f(x)=\sqrt{x}$ is continuous at $c>0$, and so $f(x)$ is continuous on A.
Recall that the range of a function $f: A \rightarrow \mathbb{R}$ is the set $f(A)=\{f(x): x \in A\}$.
Theorem 4.3.9 (Composition of Continuous Functions). Suppose for functions $f: A \rightarrow \mathbb{R}$ and $g: B \rightarrow \mathbb{R}$ satisfy $f(A) \subseteq B$. If f is continuous at $c \in A$ and g is continuous at $f(c)$, then the composition $g \circ f(x)$ is continuous at c.
The proof of this is a homework problem (4.3.3).

