Math 341 Lecture \#22

§4.4: Continuous Functions on Compact Sets

The Extreme Value Theorem. The topological terms of open, closed, bounded, compact, perfect, and connected are all used to describe subsets of \mathbb{R}.
A function $f: A \rightarrow \mathbb{R}$ maps a subset A of \mathbb{R} to a subset $f(A)$ of \mathbb{R}.
If f is continuous and $B \subseteq A$ has topological property X, does $f(B)$ have topological property X as well?
Examples. (a) If B is open, then is $f(B)$ open too?
The function $f(x)=x^{2}$ is continuous on $A=\mathbb{R}$, the set $B=(-1,1) \subseteq$ is open, but $f(B)=[0,1)$ is not open.

So continuous functions do not in general take open sets to open sets.
(b) If B is closed, then is $f(B)$ closed?

The function

$$
f(x)=\frac{1}{1+x^{2}}
$$

is continuous on $A=\mathbb{R}$, the set $B=[0, \infty) \subseteq A$ is closed, but $f(B)=(0,1]$ is not closed. So continuous functions do not in general take closed sets to closed sets.
(c) If B is bounded, then is $f(B)$ bounded too?

The function $f(x)=1 / x$ is continuous on $A=\mathbb{R}-\{0\}$, the set $B=(0,1) \subseteq A$ is bounded, but $f(B)=[1, \infty)$ is not bounded.
So continuous functions do not in general take bounded sets to bounded sets
So what topological property does a continuous map preserve?
Theorem 4.4.1 (Preservation of Compact Sets). If $f: A \rightarrow \mathbb{R}$ is continuous and $K \subseteq A$ is compact, then $f(K)$ is compact.
Proof. We will show that a sequence $\left(y_{n}\right)$ in $f(K)$ has a convergent subsequence whose limit is in $f(K)$, and therefore $f(K)$ is compact (by Definition 3.3.1).

With $y_{n} \in f(K)$ there is (at least one) $x_{n} \in K$ such that $y_{n}=f\left(x_{n}\right)$.
This gives a sequence $\left(x_{n}\right)$ in K.
The compactness of K implies that $\left(x_{n}\right)$ has a convergent subsequence $\left(x_{n_{k}}\right)$, whose limit $x \in K$.
Since $\left(x_{n_{k}}\right) \rightarrow x$ and f is continuous, we have that $y_{n_{k}}=f\left(x_{n_{k}}\right) \rightarrow f(x)$.
Since $x \in K$, we know that $f(x) \in f(K)$, so that $\left(y_{n}\right)$ has a convergent subsequence $\left(y_{n_{k}}\right)$ whose limit $f(x)$ is in K; hence $f(K)$ is compact.
Recall the a continuous function defined on a closed interval of finite length, always attains a maximal value and a minimum value.

Have any of you seen a proof of this Math 112 result?
Well, we can now give a proof of this.

Theorem 4.4.2 (The Extreme Value Theorem). If $f: K \rightarrow \mathbb{R}$ is continuous on a compact set $K \subseteq \mathbb{R}$, then there exists $x_{0}, x_{1} \in K$ such that $f\left(x_{0}\right) \leq f(x) \leq f\left(x_{1}\right)$ for all $x \in K$.
Proof. Under the assumptions, we have that $f(K)$ is compact by Theorem 4.4.1.
Since $f(K)$ is bounded, the quantity $\alpha=\sup f(K)$ exists by the Axiom of Completeness.
For each $n \in \mathbb{N}$, there is then $y_{n} \in f(K)$ such that $\alpha-1 / n<y_{n} \leq \alpha$, and hence $y_{n} \rightarrow \alpha$. If $y_{n}<\alpha$ for all n, then α is a limit point of $f(K)$, and since $f(K)$ is closed, we have $\alpha \in f(K)$.
If $y_{n}=\alpha$ for some n, then $\alpha \in f(K)$.
Thus, in either case, there is $x_{1} \in K$ such that $f(x) \leq \alpha=f\left(x_{1}\right)$ for all $x \in K$.
Similarly, there is $x_{0} \in f(K)$ such that $f\left(x_{0}\right) \leq f(x)$ for all $x \in K$.
Uniform Continuity. We turn our attention to another consequence of continuity of a function on a compact set, for which we set the stage.
Example 4.4.3. (i) In showing that the function $f(x)=3 x+1$ is continuous at an arbitrary $c \in \mathbb{R}$, we choose $\delta>0$ that corresponds to $\epsilon>0$ by considering

$$
|f(x)-f(c)|=|3 x+1-3 c-1|=3|x-c|
$$

Here the choice of $\delta=\epsilon / 3$ is independent of c that gives $|f(x)-f(c)|<\epsilon$ whenever $|x-c|<\delta$.
Changing the value of c does not change the value of δ needed for continuity.
(ii) In showing that $f(x)=x^{2}$ is continuous at an arbitrary $c \in \mathbb{R}$, we choose δ that corresponds to $\epsilon>0$ by considering

$$
|f(x)-f(c)|=\left|x^{2}-c^{2}\right|=|x+c||x-c|
$$

where when $|x-c|<\delta \leq 1$ we have $|x|-|c| \leq|x-c|<1$, so that $|x|<|c|+1$, and hence

$$
|x+c| \leq|x|+|c| \leq(|c|+1)+|c|=2|c|+1
$$

Here the choice of $\delta=\min \{1, \epsilon /(2|c|+1)\}$ is dependent on c that gives $|f(x)-f(c)|<\epsilon$ whenever $|x-c|<\delta$.
Changing the value of c changes the value of δ needed for continuity.
Definition 4.4.4. A function $f: A \rightarrow \mathbb{R}$ is uniformly continuous on A if for every $\epsilon>0$ there exists δ such that $|x-y|<\delta$ for $x, y \in A$ implies that $|f(x)-f(y)|<\epsilon$.
This says that there is one choice of δ needed for continuity of f for every $c \in A$.
The function $f(x)=3 x+1$ in Example 4.4.3 (i) is uniformly continuous on $A=\mathbb{R}$ because the choice of δ needed for continuity of f at c is independent of c.
The function $f(x)=x^{2}$ in Example 4.4.3 (ii) is not uniformly continuous on $A=\mathbb{R}$ because the choice of δ needed for continuity of f at c depends on c : the larger $|c|$ is, the smaller δ has to be for continuity, and so there is not one choice of δ that will do the job.

We have a test for detecting the lack of uniform continuity.
Theorem 4.4.5 (Sequential Criterion for Nonuniform Continuity). A function $f: A \rightarrow \mathbb{R}$ fails to be uniformly continuous on A if and only if there exists $\epsilon_{0}>0$ and two sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in A satisfying

$$
\left|x_{n}-y_{n}\right| \rightarrow 0 \text { but }\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{0} .
$$

Proof. The logical negation of the definition of uniform continuity is: there exists $\epsilon_{0}>0$ such that for all $\delta>0$ there exists $x, y \in A$ satisfying $|x-y|<\delta$ for which $|f(x)-f(y)| \geq$ ϵ_{0}.
For each $\delta=1 / n$ choose $x_{n}, y_{n} \in A$ with $\left|x_{n}-y_{n}\right|<1 / n$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{0}$.
Then $\left|x_{n}-y_{n}\right| \rightarrow 0$ while $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{0}$.
Example 4.4.6. The function $f(x)=\sin (1 / x)$ is continuous on the bounded open $A=(0,1)$, but it is not uniformly continuous on A.
Keeping Theorem 4.4.5 in mind, for $\epsilon_{0}=2$ and sequences

$$
x_{n}=\frac{1}{2 n \pi+\pi / 2}, y_{n}=\frac{1}{2 n \pi+3 \pi / 2}
$$

we have $\left|x_{n}-y_{n}\right| \rightarrow 0$ while $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|=|1-(-1)| \geq \epsilon_{0}$ for all $n \in \mathbb{N}$.
Is there a topological property on A that would guarantee that a function continuous on A is uniformly continuous on A ?
Theorem 4.4.7. A function that is continuous on a compact set K is uniformly continuous on K.
Proof. Suppose for a compact $K \subseteq \mathbb{R}$, that a continuous function $f: K \rightarrow \mathbb{R}$ is not uniformly continuous.
By Theorem 4.4.5, there exist $\epsilon_{0}>0$ and sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in K such that $\left|x_{n}-y_{n}\right| \rightarrow 0$ while $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{0}$.
By the compactness of K the sequence $\left(x_{n}\right)$ has a convergent subsequence $x_{n_{k}}$ whose limit x is in K.
For the subsequence $\left(y_{n_{k}}\right)$ we have by the Algebraic Limit Theorem that

$$
\lim _{k \rightarrow \infty} y_{n_{k}}=\lim _{k \rightarrow \infty}\left(\left(y_{n_{k}}-x_{n_{k}}\right)+x_{n_{k}}\right)=0+x=x
$$

Thus $\left(x_{n_{k}}\right)$ and ($y_{n_{k}}$) converge to $x \in K$.
Because f is continuous at every point of K, we have the $f\left(x_{n_{k}}\right) \rightarrow f(x)$ and $f\left(y_{n_{k}}\right) \rightarrow$ $f(x)$, which by the Algebraic Limit Theorem implies that

$$
\lim _{k \rightarrow \infty}\left|f\left(x_{n_{k}}\right)-f\left(y_{n_{k}}\right)\right|=0 .
$$

This contradicts that $\left|f\left(x_{n_{k}}\right)-f\left(y_{n_{k}}\right)\right| \geq \epsilon_{0}>0$.

