Math 341 Lecture \#24

§4.6: Sets of Discontinuity
We saw at the beginning of Chapter 4 that the set of discontinuities D_{f} for a function $f: A \rightarrow \mathbb{R}$ appeared to always be an F_{σ} set (a countable union of closed sets).
We will prove this in the case when f is monotone.
Definition. 4.6.1. A function $f: A \rightarrow \mathbb{R}$ is increasing on A if $f(x) \leq f(y)$ whenever $x<y$ for $x, y \in A$, and is decreasing if $f(x) \geq f(y)$ whenever $x<y$ for $x, y \in A$.
A function $f: A \rightarrow \mathbb{R}$ is monotone if f is either increasing or decreasing.
The function $s(x)=[[x]]$ on \mathbb{R} is monotone increasing.
In showing that $s(x)$ is discontinuous at every integer point, we took a sequence y_{n} such that $n-1<y_{n}<n$ and $y_{n} \rightarrow n$.
This is a sequence that approaches n from the left.
We can talk about functional limits in the same way: from the left or from the right.
Definition. 4.6.2. Given a limit point c of a nonempty set A and a function $f: A \rightarrow \mathbb{R}$ we say the limit of $f(x)$ exists from the right and equals L, and write

$$
\lim _{x \rightarrow c^{+}} f(x)=L
$$

if for all $\epsilon>0$ there exists $\delta>0$ such that $|f(x)-L|<\epsilon$ whenever $0<x-c<\delta$ and $x \in A$.
In terms of sequences this is the same as $\left(x_{n}\right)$ in A with $x_{n}>c$ and $x_{n} \rightarrow c$, for which $f\left(x_{n}\right) \rightarrow L$.
You have it as a homework problem (4.6.3) to state the definition of the limit from the left,

$$
\lim _{x \rightarrow c^{-}} f(x)=L
$$

Recall that the limits from the right and from the left are related to the limit.
Theorem 4.6.3. Let $f: A \rightarrow \mathbb{R}$ and c a limit point of A. Then $\lim _{x \rightarrow c} f(x)=L$ if and only if

$$
\lim _{x \rightarrow c^{-}} f(x)=L \text { and } \lim _{x \rightarrow c^{+}} f(x)=L
$$

The discontinuities of a function can be divided into three categories.
(i) If $\lim _{x \rightarrow c} f(x)$ exists but is not equal to $f(c)$, then f has a removable discontinuity at c.
(ii) If $\lim _{x \rightarrow c^{-}} f(x)$ and $\lim _{x \rightarrow c^{+}} f(x)$ both exist but are not equal, then f has a jump discontinuity at c.
(iii) If $\lim _{x \rightarrow c} f(x)$ does not exist for some other reason, then f has an essential discontinuity at c.

The third category includes vertical asymptote type discontinuities, like $f(x)=1 / x$ has at $x=0$, and bounded oscillatory type discontinuities, like $f(x)=\sin (1 / x)$ has at $x=0$.
A monotone function f, though, can have only one type of discontinuity, and this is what makes it easier to identify D_{f} in this case.
Theorem. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is monotone, then

$$
\lim _{x \rightarrow c^{-}} f(x) \text { and } \lim _{x \rightarrow c^{+}} f(x)
$$

exist at every at point c in \mathbb{R}.
Proof. WLOG, suppose that f is increasing.
For $c \in \mathbb{R}$ consider the nonempty subset $B=\{y=f(x): x<c\}$ of \mathbb{R}.
Since f is increasing, the number $f(c)$ is an upper bound for A.
By the Axiom of Completeness, the number sup B exists.
The claim is that

$$
\lim _{x \rightarrow c^{-}} f(x)=\sup B
$$

For $L=\sup B$, we have that for all $\epsilon>0$ there exist $y_{\epsilon} \in B$ such that $L-\epsilon<y_{\epsilon} \leq L$.
Since $y_{\epsilon} \in B$, there is $x_{\epsilon}<c$ such that $f\left(x_{\epsilon}\right)=y_{\epsilon}$.
For any sequence $\left(x_{n}\right)$ with $x_{n}<c$ and $x_{n} \rightarrow c$, there exists $N \in \mathbb{N}$ such that $x_{\epsilon} \leq x_{n}<c$ for all $n \geq N$.
Thus using the monotonicity of f, we have

$$
L-\epsilon<y_{\epsilon}=f\left(x_{\epsilon}\right) \leq f\left(x_{n}\right) \leq L<L+\epsilon \text { for all } n \geq N .
$$

This says that $f\left(x_{n}\right) \rightarrow L$, and so $\lim _{x \rightarrow c^{-}} f(x)$ exists.
In a similar manner we show that $\lim _{x \rightarrow c^{+}} f(x)$ exists.
Corollary (Exercise 4.6.5). A monotone function $f: \mathbb{R} \rightarrow \mathbb{R}$ can have only jump discontinuities.

Proof. By the Theorem, we have for each $c \in \mathbb{R}$ that

$$
\lim _{x \rightarrow c^{-}} f(x), \lim _{x \rightarrow c^{+}} f(x)
$$

both exist.
When these two limits agree, the function f is continuous at c by Theorem 4.6.3.
When these two limits disagree, the function f has a jump discontinuity with a jump of

$$
\lim _{x \rightarrow c^{+}} f(x)-\lim _{x \rightarrow c^{-}} f(x)
$$

at c.
The only discontinuities that a monotone function can have are jump discontinuities.

Recall that the monotone function $s(x)=[[x]]$ on \mathbb{R} has $D_{s}=\mathbb{Z}$, i.e., a countable set of points where $s(x)$ is not continuous.
You have it as a homework problem (4.6.6) to show for a monotone function f that there exists a bijection between D_{f} and a subset of \mathbb{Q}.
Since every subset of \mathbb{Q} is an F_{σ} set, we will have shown that D_{f} is an F_{σ} set when f is monotone.

