
Math 341 Lecture #24
§4.6: Sets of Discontinuity

We saw at the beginning of Chapter 4 that the set of discontinuities Df for a function
f : A→ R appeared to always be an Fσ set (a countable union of closed sets).

We will prove this in the case when f is monotone.

Definition. 4.6.1. A function f : A → R is increasing on A if f(x) ≤ f(y) whenever
x < y for x, y ∈ A, and is decreasing if f(x) ≥ f(y) whenever x < y for x, y ∈ A.

A function f : A→ R is monotone if f is either increasing or decreasing.

The function s(x) = [[x]] on R is monotone increasing.

In showing that s(x) is discontinuous at every integer point, we took a sequence yn such
that n− 1 < yn < n and yn → n.

This is a sequence that approaches n from the left.

We can talk about functional limits in the same way: from the left or from the right.

Definition. 4.6.2. Given a limit point c of a nonempty set A and a function f : A→ R
we say the limit of f(x) exists from the right and equals L, and write

lim
x→c+

f(x) = L,

if for all ε > 0 there exists δ > 0 such that |f(x) − L| < ε whenever 0 < x − c < δ and
x ∈ A.

In terms of sequences this is the same as (xn) in A with xn > c and xn → c, for which
f(xn)→ L.

You have it as a homework problem (4.6.3) to state the definition of the limit from the
left,

lim
x→c−

f(x) = L.

Recall that the limits from the right and from the left are related to the limit.

Theorem 4.6.3. Let f : A→ R and c a limit point of A. Then limx→c f(x) = L if and
only if

lim
x→c−

f(x) = L and lim
x→c+

f(x) = L.

The discontinuities of a function can be divided into three categories.

(i) If limx→c f(x) exists but is not equal to f(c), then f has a removable discontinuity
at c.

(ii) If limx→c− f(x) and limx→c+ f(x) both exist but are not equal, then f has a jump
discontinuity at c.

(iii) If limx→c f(x) does not exist for some other reason, then f has an essential discon-
tinuity at c.



The third category includes vertical asymptote type discontinuities, like f(x) = 1/x has
at x = 0, and bounded oscillatory type discontinuities, like f(x) = sin(1/x) has at x = 0.

A monotone function f , though, can have only one type of discontinuity, and this is what
makes it easier to identify Df in this case.

Theorem. If f : R→ R is monotone, then

lim
x→c−

f(x) and lim
x→c+

f(x)

exist at every at point c in R.

Proof. WLOG, suppose that f is increasing.

For c ∈ R consider the nonempty subset B = {y = f(x) : x < c} of R.

Since f is increasing, the number f(c) is an upper bound for A.

By the Axiom of Completeness, the number supB exists.

The claim is that
lim
x→c−

f(x) = supB.

For L = supB, we have that for all ε > 0 there exist yε ∈ B such that L− ε < yε ≤ L.

Since yε ∈ B, there is xε < c such that f(xε) = yε.

For any sequence (xn) with xn < c and xn → c, there exists N ∈ N such that xε ≤ xn < c
for all n ≥ N .

Thus using the monotonicity of f , we have

L− ε < yε = f(xε) ≤ f(xn) ≤ L < L+ ε for all n ≥ N.

This says that f(xn)→ L, and so limx→c− f(x) exists.

In a similar manner we show that limx→c+ f(x) exists. �

Corollary (Exercise 4.6.5). A monotone function f : R → R can have only jump
discontinuities.

Proof. By the Theorem, we have for each c ∈ R that

lim
x→c−

f(x), lim
x→c+

f(x)

both exist.

When these two limits agree, the function f is continuous at c by Theorem 4.6.3.

When these two limits disagree, the function f has a jump discontinuity with a jump of

lim
x→c+

f(x)− lim
x→c−

f(x)

at c.

The only discontinuities that a monotone function can have are jump discontinuities. �



Recall that the monotone function s(x) = [[x]] on R has Ds = Z, i.e., a countable set of
points where s(x) is not continuous.

You have it as a homework problem (4.6.6) to show for a monotone function f that there
exists a bijection between Df and a subset of Q.

Since every subset of Q is an Fσ set, we will have shown that Df is an Fσ set when f is
monotone.


