Math 341 Lecture #25
§5.2: Derivatives

We now begin a rigorous exploration of the notion of differentiability for a function.

Definition 5.2.1. Let g : A — R be a function where A is an interval. For ¢ € A, the
derivative of g at ¢ is defined by

provided the limit exists.
If ¢'(c) exists for all ¢ € A, we say that g is differentiable on A.

Note that in this definition of differentiability the domain A is an interval, i.e, a connected
subset of R, and hence every ¢ € A is a limit point of A.

The definition of derivative allows for one-sided derivatives when ¢ € A is an endpoint of

A.

Theorem 5.2.3. If g : A — R is differentiable at ¢ € A, then g is continuous at c as
well.

Proof. Suppose that g is differentiable at ¢, i.e.,
r—rc Tr — C
exists.

By the Algebraic Limit Theorem we have that

r—c r—c €Tr—cC

lim (g(z) — g(c)) = lim <M) (x—c)=4g(c)-0=0.

This implies that
lim g(x) = g(c),

Tr—cC

and so ¢ is continuous at c. 0

Algebraic combinations of functions differentiable at a point yields functions differentiable
at that point.

Theorem 5.2.4. Let f and ¢ be functions defined on an interval A, and suppose that
f and g are both differentiable at ¢ € A. Then

(i) (f+9)(c) = f(c)+d'(c),
(i) (kf)'(c) =kf'(c) for any constant k € R,
(iil) (

) (

(iv

fg)'(c) = [(e)g(c) + f(c)g'(c), and

f'()g(e) = fle)g'(e) .
fl9)(c) = TOR provided g(c) # 0.




Proof. Statements (i), (ii), and (iv) are left for you.

For (iii) we have

(f9)(=) = (f9)(c) _ flz)g(x) — f(x)g(c) + f(x)g(c) — f(c)g(c)
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Because f is differentiable at ¢, by Theorem 5.2.3, we have that f(z) — f(c) as ¢ — c.
Because f and g are differentiable at ¢, the limits of the terms in the square brackets as
x — ¢ exist and equal ¢'(c) and f’(c) respectively, thus giving (iii). O
The composition of two differentiable functions is also differentiable.

Theorem 5.2.5 (Chain Rule). Let f: A — Rand g : B — Rsuch that f(A) C B. If
f is differentiable at ¢ € A and g is differentiable at f(c) in B, then go f is differentiable
at ¢ with

(g0 f)(c) =g (f(c))f(c)-
Proof. With ¢ differentiable at f(c) we have

g(y) — g(f(c))
y=fe)  y—fle)

g () =

Another way to assert this limit is by saying the limit of

i = 20D

is 0 as y — f(c).

The function d(y) is not defined when y = f(c), but we declare d(f(c)) = 0, so that d is
continuous at f(c).

We rewrite the equation defining d(y) as

g(y) — g(f(c)) = [g'(f(c)) +dy)](y — f(c)).

Notice that this equation holds for all y € B including when y = f(c).
We can then substitute f(¢) for y for any ¢ € A that we wish, to give

g(f(t)) = 9(f(c)) = [g'(f (c)) + d(f ()] (f(t) = f(c)).
For t # ¢, we divide both sides of this by t — ¢ to get
9(f (1)) — 9(f(c))

t—c

£(t) = fte)

t—c

= [g'(f (1)) +d(£(1))]

For the right-hand side of this, we have that d(f(¢)) — 0 because f(t) — f(c) by the
continuity of f at ¢ implied by the differentiability of f at c.



Thus by the differentiability of f at ¢, the limit of the right-hand side exists and is equal
to g'(f(c))f'(c).
This implies the limit of the left-hand side exists, and so g o f is differentiable at ¢. [

What can we say about the derivative of a differentiable function, especial when the
derivative is not continuous?

Theorem 5.2.6 (Interior Extremum Theorem). Let f be differentiable on an open
interval (a,b). If f attains a maximum value at some point ¢ € (a,b), then f'(c) = 0.
The same is true if f(c) is a minimum value.

Proof. Because ¢ € (a,b) we can find sequences (x,) and (y,) in (a,b) for which z,, <
c <y, foralln €N and z, — cand y, — c.

Since f(c) is a maximum value, we have that f(y,) — f(c) < 0 for all n € N, and thus
with y,, — ¢ > 0 we have
f(yn) — f(C)

f'(c) = lim ————= <0

by the Order Limit Theorem.
Similary we have f(z,) — f(¢) <0 and z, — ¢ < 0 so that

o) — tim T =1
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These implies that f’(c) = 0. O

All of the functions for which you found the maximum or minimum values in Calculus
had continuous derivatives.

In this case the Intermediate Value Theorem applies: for f’ continuous on [a,b] means
that for every value L between f’(a) and f’(b) there is ¢ € (a,b) such that f'(c) = L.

Does this happens when the derivative of a differentiable function is not continuous?

Theorem 5.2.7 (Darboux’s Theorem). If f is differentiable on an interval [a, D],
then f’ has the intermediate value property on [a, b].

Start of Proof. For s,t € [a,b] with s < t suppose there is « between f'(s) and f'(t).
We are looking for ¢ € (s,t) such that f'(c) = a.

We convert this problem to one of finding a root ¢ of the derivative of the differentiable
function g(z) = f(x) — az.

Here ¢'(x) = f'(z) — o, and we are looking for ¢ € (s,t) such that ¢'(c) = f'(¢) —a = 0.
WLOG suppose that f'(s) < a < f'(t).
Then ¢'(s) = f'(s) —a <0 and ¢'(t) = f'(t) — a > 0.

The remainder of the proof is a homework problem (5.2.11).



