
Math 341 Lecture #25
§5.2: Derivatives

We now begin a rigorous exploration of the notion of differentiability for a function.

Definition 5.2.1. Let g : A→ R be a function where A is an interval. For c ∈ A, the
derivative of g at c is defined by

g′(c) = lim
x→c

g(x)− g(c)

x− c

provided the limit exists.

If g′(c) exists for all c ∈ A, we say that g is differentiable on A.

Note that in this definition of differentiability the domain A is an interval, i.e, a connected
subset of R, and hence every c ∈ A is a limit point of A.

The definition of derivative allows for one-sided derivatives when c ∈ A is an endpoint of
A.

Theorem 5.2.3. If g : A → R is differentiable at c ∈ A, then g is continuous at c as
well.

Proof. Suppose that g is differentiable at c, i.e.,

g′(c) = lim
x→c

g(x)− g(c)

x− c

exists.

By the Algebraic Limit Theorem we have that

lim
x→c

(
g(x)− g(c)

)
= lim

x→c

(
g(x)− g(c)

x− c

)(
x− c

)
= g′(c) · 0 = 0.

This implies that
lim
x→c

g(x) = g(c),

and so g is continuous at c. �

Algebraic combinations of functions differentiable at a point yields functions differentiable
at that point.

Theorem 5.2.4. Let f and g be functions defined on an interval A, and suppose that
f and g are both differentiable at c ∈ A. Then

(i) (f + g)′(c) = f ′(c) + g′(c),

(ii) (kf)′(c) = kf ′(c) for any constant k ∈ R,

(iii) (fg)′(c) = f ′(c)g(c) + f(c)g′(c), and

(iv) (f/g)′(c) =
f ′(c)g(c)− f(c)g′(c)

[g(c)]2
provided g(c) 6= 0.



Proof. Statements (i), (ii), and (iv) are left for you.

For (iii) we have

(fg)(x)− (fg)(c)

x− c
=
f(x)g(x)− f(x)g(c) + f(x)g(c)− f(c)g(c)

x− c

= f(x)

[
g(x)− g(c)

x− c

]
+ g(c)

[
f(x)− f(c)

x− c

]
.

Because f is differentiable at c, by Theorem 5.2.3, we have that f(x)→ f(c) as x→ c.

Because f and g are differentiable at c, the limits of the terms in the square brackets as
x→ c exist and equal g′(c) and f ′(c) respectively, thus giving (iii). �

The composition of two differentiable functions is also differentiable.

Theorem 5.2.5 (Chain Rule). Let f : A→ R and g : B → R such that f(A) ⊆ B. If
f is differentiable at c ∈ A and g is differentiable at f(c) in B, then g ◦ f is differentiable
at c with

(g ◦ f)′(c) = g′(f(c))f ′(c).

Proof. With g differentiable at f(c) we have

g′(f(c)) = lim
y→f(c)

g(y)− g(f(c))

y − f(c)
.

Another way to assert this limit is by saying the limit of

d(y) =
g(y)− g(f(c))

y − f(c)
− g′(f(c))

is 0 as y → f(c).

The function d(y) is not defined when y = f(c), but we declare d(f(c)) = 0, so that d is
continuous at f(c).

We rewrite the equation defining d(y) as

g(y)− g(f(c)) = [g′(f(c)) + d(y)](y − f(c)).

Notice that this equation holds for all y ∈ B including when y = f(c).

We can then substitute f(t) for y for any t ∈ A that we wish, to give

g(f(t))− g(f(c)) = [g′(f(c)) + d(f(t))](f(t)− f(c)).

For t 6= c, we divide both sides of this by t− c to get

g(f(t))− g(f(c))

t− c
= [g′(f(t)) + d(f(t))]

f(t)− f(c)

t− c
.

For the right-hand side of this, we have that d(f(t)) → 0 because f(t) → f(c) by the
continuity of f at c implied by the differentiability of f at c.



Thus by the differentiability of f at c, the limit of the right-hand side exists and is equal
to g′(f(c))f ′(c).

This implies the limit of the left-hand side exists, and so g ◦ f is differentiable at c. �

What can we say about the derivative of a differentiable function, especial when the
derivative is not continuous?

Theorem 5.2.6 (Interior Extremum Theorem). Let f be differentiable on an open
interval (a, b). If f attains a maximum value at some point c ∈ (a, b), then f ′(c) = 0.
The same is true if f(c) is a minimum value.

Proof. Because c ∈ (a, b) we can find sequences (xn) and (yn) in (a, b) for which xn <
c < yn for all n ∈ N and xn → c and yn → c.

Since f(c) is a maximum value, we have that f(yn) − f(c) ≤ 0 for all n ∈ N, and thus
with yn − c > 0 we have

f ′(c) = lim
n→∞

f(yn)− f(c)

yn − c
≤ 0

by the Order Limit Theorem.

Similary we have f(xn)− f(c) ≤ 0 and xn − c < 0 so that

f ′(c) = lim
n→∞

f(xn)− f(c)

xn − c
≥ 0.

These implies that f ′(c) = 0. �

All of the functions for which you found the maximum or minimum values in Calculus
had continuous derivatives.

In this case the Intermediate Value Theorem applies: for f ′ continuous on [a, b] means
that for every value L between f ′(a) and f ′(b) there is c ∈ (a, b) such that f ′(c) = L.

Does this happens when the derivative of a differentiable function is not continuous?

Theorem 5.2.7 (Darboux’s Theorem). If f is differentiable on an interval [a, b],
then f ′ has the intermediate value property on [a, b].

Start of Proof. For s, t ∈ [a, b] with s < t suppose there is α between f ′(s) and f ′(t).

We are looking for c ∈ (s, t) such that f ′(c) = α.

We convert this problem to one of finding a root c of the derivative of the differentiable
function g(x) = f(x)− αx.

Here g′(x) = f ′(x)− α, and we are looking for c ∈ (s, t) such that g′(c) = f ′(c)− α = 0.

WLOG suppose that f ′(s) < α < f ′(t).

Then g′(s) = f ′(s)− α < 0 and g′(t) = f ′(t)− α > 0.

The remainder of the proof is a homework problem (5.2.11).


