## Math 341 Lecture \#25

§5.2: Derivatives
We now begin a rigorous exploration of the notion of differentiability for a function.
Definition 5.2.1. Let $g: A \rightarrow \mathbb{R}$ be a function where $A$ is an interval. For $c \in A$, the derivative of $g$ at $c$ is defined by

$$
g^{\prime}(c)=\lim _{x \rightarrow c} \frac{g(x)-g(c)}{x-c}
$$

provided the limit exists.
If $g^{\prime}(c)$ exists for all $c \in A$, we say that $g$ is differentiable on $A$.
Note that in this definition of differentiability the domain $A$ is an interval, i.e, a connected subset of $\mathbb{R}$, and hence every $c \in A$ is a limit point of $A$.
The definition of derivative allows for one-sided derivatives when $c \in A$ is an endpoint of $A$.
Theorem 5.2.3. If $g: A \rightarrow \mathbb{R}$ is differentiable at $c \in A$, then $g$ is continuous at $c$ as well.
Proof. Suppose that $g$ is differentiable at $c$, i.e.,

$$
g^{\prime}(c)=\lim _{x \rightarrow c} \frac{g(x)-g(c)}{x-c}
$$

exists.
By the Algebraic Limit Theorem we have that

$$
\lim _{x \rightarrow c}(g(x)-g(c))=\lim _{x \rightarrow c}\left(\frac{g(x)-g(c)}{x-c}\right)(x-c)=g^{\prime}(c) \cdot 0=0 .
$$

This implies that

$$
\lim _{x \rightarrow c} g(x)=g(c),
$$

and so $g$ is continuous at $c$.
Algebraic combinations of functions differentiable at a point yields functions differentiable at that point.
Theorem 5.2.4. Let $f$ and $g$ be functions defined on an interval $A$, and suppose that $f$ and $g$ are both differentiable at $c \in A$. Then
(i) $(f+g)^{\prime}(c)=f^{\prime}(c)+g^{\prime}(c)$,
(ii) $(k f)^{\prime}(c)=k f^{\prime}(c)$ for any constant $k \in \mathbb{R}$,
(iii) $(f g)^{\prime}(c)=f^{\prime}(c) g(c)+f(c) g^{\prime}(c)$, and
(iv) $(f / g)^{\prime}(c)=\frac{f^{\prime}(c) g(c)-f(c) g^{\prime}(c)}{[g(c)]^{2}}$ provided $g(c) \neq 0$.

Proof. Statements (i), (ii), and (iv) are left for you.
For (iii) we have

$$
\begin{aligned}
\frac{(f g)(x)-(f g)(c)}{x-c} & =\frac{f(x) g(x)-f(x) g(c)+f(x) g(c)-f(c) g(c)}{x-c} \\
& =f(x)\left[\frac{g(x)-g(c)}{x-c}\right]+g(c)\left[\frac{f(x)-f(c)}{x-c}\right]
\end{aligned}
$$

Because $f$ is differentiable at $c$, by Theorem 5.2.3, we have that $f(x) \rightarrow f(c)$ as $x \rightarrow c$.
Because $f$ and $g$ are differentiable at $c$, the limits of the terms in the square brackets as $x \rightarrow c$ exist and equal $g^{\prime}(c)$ and $f^{\prime}(c)$ respectively, thus giving (iii).

The composition of two differentiable functions is also differentiable.
Theorem 5.2.5 (Chain Rule). Let $f: A \rightarrow \mathbb{R}$ and $g: B \rightarrow \mathbb{R}$ such that $f(A) \subseteq B$. If $f$ is differentiable at $c \in A$ and $g$ is differentiable at $f(c)$ in $B$, then $g \circ f$ is differentiable at $c$ with

$$
(g \circ f)^{\prime}(c)=g^{\prime}(f(c)) f^{\prime}(c) .
$$

Proof. With $g$ differentiable at $f(c)$ we have

$$
g^{\prime}(f(c))=\lim _{y \rightarrow f(c)} \frac{g(y)-g(f(c))}{y-f(c)} .
$$

Another way to assert this limit is by saying the limit of

$$
d(y)=\frac{g(y)-g(f(c))}{y-f(c)}-g^{\prime}(f(c))
$$

is 0 as $y \rightarrow f(c)$.
The function $d(y)$ is not defined when $y=f(c)$, but we declare $d(f(c))=0$, so that $d$ is continuous at $f(c)$.
We rewrite the equation defining $d(y)$ as

$$
g(y)-g(f(c))=\left[g^{\prime}(f(c))+d(y)\right](y-f(c)) .
$$

Notice that this equation holds for all $y \in B$ including when $y=f(c)$.
We can then substitute $f(t)$ for $y$ for any $t \in A$ that we wish, to give

$$
g(f(t))-g(f(c))=\left[g^{\prime}(f(c))+d(f(t))\right](f(t)-f(c))
$$

For $t \neq c$, we divide both sides of this by $t-c$ to get

$$
\frac{g(f(t))-g(f(c))}{t-c}=\left[g^{\prime}(f(t))+d(f(t))\right] \frac{f(t)-f(c)}{t-c} .
$$

For the right-hand side of this, we have that $d(f(t)) \rightarrow 0$ because $f(t) \rightarrow f(c)$ by the continuity of $f$ at $c$ implied by the differentiability of $f$ at $c$.

Thus by the differentiability of $f$ at $c$, the limit of the right-hand side exists and is equal to $g^{\prime}(f(c)) f^{\prime}(c)$.
This implies the limit of the left-hand side exists, and so $g \circ f$ is differentiable at $c$.
What can we say about the derivative of a differentiable function, especial when the derivative is not continuous?

Theorem 5.2.6 (Interior Extremum Theorem). Let $f$ be differentiable on an open interval $(a, b)$. If $f$ attains a maximum value at some point $c \in(a, b)$, then $f^{\prime}(c)=0$. The same is true if $f(c)$ is a minimum value.
Proof. Because $c \in(a, b)$ we can find sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in $(a, b)$ for which $x_{n}<$ $c<y_{n}$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow c$ and $y_{n} \rightarrow c$.
Since $f(c)$ is a maximum value, we have that $f\left(y_{n}\right)-f(c) \leq 0$ for all $n \in \mathbb{N}$, and thus with $y_{n}-c>0$ we have

$$
f^{\prime}(c)=\lim _{n \rightarrow \infty} \frac{f\left(y_{n}\right)-f(c)}{y_{n}-c} \leq 0
$$

by the Order Limit Theorem.
Similary we have $f\left(x_{n}\right)-f(c) \leq 0$ and $x_{n}-c<0$ so that

$$
f^{\prime}(c)=\lim _{n \rightarrow \infty} \frac{f\left(x_{n}\right)-f(c)}{x_{n}-c} \geq 0
$$

These implies that $f^{\prime}(c)=0$.
All of the functions for which you found the maximum or minimum values in Calculus had continuous derivatives.
In this case the Intermediate Value Theorem applies: for $f^{\prime}$ continuous on $[a, b]$ means that for every value $L$ between $f^{\prime}(a)$ and $f^{\prime}(b)$ there is $c \in(a, b)$ such that $f^{\prime}(c)=L$.
Does this happens when the derivative of a differentiable function is not continuous?
Theorem 5.2.7 (Darboux's Theorem). If $f$ is differentiable on an interval $[a, b]$, then $f^{\prime}$ has the intermediate value property on $[a, b]$.
Start of Proof. For $s, t \in[a, b]$ with $s<t$ suppose there is $\alpha$ between $f^{\prime}(s)$ and $f^{\prime}(t)$.
We are looking for $c \in(s, t)$ such that $f^{\prime}(c)=\alpha$.
We convert this problem to one of finding a root $c$ of the derivative of the differentiable function $g(x)=f(x)-\alpha x$.
Here $g^{\prime}(x)=f^{\prime}(x)-\alpha$, and we are looking for $c \in(s, t)$ such that $g^{\prime}(c)=f^{\prime}(c)-\alpha=0$. WLOG suppose that $f^{\prime}(s)<\alpha<f^{\prime}(t)$.
Then $g^{\prime}(s)=f^{\prime}(s)-\alpha<0$ and $g^{\prime}(t)=f^{\prime}(t)-\alpha>0$.
The remainder of the proof is a homework problem (5.2.11).

