Math 341 Lecture \#26
§5.3: The Mean Value Theorem, Part I
The simple "observation" for a differentiable function $f:[a, b] \rightarrow \mathbb{R}$ that there exists $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

is known as the Mean Value Theorem, and is the cornerstone of almost every major theorem about differentiation there is (as we shall see).
Theorem 5.3.1 (Rolle's Theorem). Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$, differentiable on (a, b). If $f(a)=f(b)$, then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.
Proof. The continuity of f on the compact set $[a, b]$ implies that f attains a maximum value and a minimum value.
If the maximum value occurs at one endpoint of $[a, b]$, and the minimum value occurs at the other endpoint of $[a, b]$, then f is a constant function, so that $f^{\prime}(x)=0$ for all $x \in(a, b)$, and we can choose any $c \in(a, b)$.
If the maximum value or the minimum value occurs at an interior point c of $[a, b]$, then by the Interior Extremum Theorem we have $f^{\prime}(c)=0$.
Theorem 5.3.2 (Mean Value Theorem). If $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$, differentiable on (a, b), then there exists $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Proof. We reduce the general case of the Mean Value Theorem to the special case of Rolle's Theorem by constructing a new function from f.
Define a function $g:[a, b] \rightarrow \mathbb{R}$ by

$$
g(x)=f(x)-\left[\left(\frac{f(b)-f(a)}{b-a}\right)(x-a)+f(a)\right]
$$

This function $g(x)$ measures the vertical distance from the graph of $f(x)$ to the graph of the line connecting the points $(a, f(a))$ and $(b, f(b))$.
One readily verifies that g is continuous on $[a, b]$ (because f is), and that g is differentiable on (a, b) (because f is).

We evaluate g at the endpoints:

$$
g(a)=f(a)-[0+f(a)]=0, \quad g(b)=f(b)-[f(b)-f(a)+f(a)]=0 .
$$

We can now applies Rolle's Theorem to obtain the existence of $c \in(a, b)$ such that $g^{\prime}(c)=0$.
We then translate this back to f :

$$
0=g^{\prime}(c)=f^{\prime}(c)-\frac{f(b)-f(a)}{b-a}
$$

Rearranging this gives

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

which is the desired result.
We know for a constant function $f(x)=k$ on an interval A that $f^{\prime}(x)=0$ for all $x \in A$. But how do we prove the converse? With the Mean Value Theorem.
Corollary 5.3.3. For an interval A, if $g: A \rightarrow \mathbb{R}$ is differentiable and satisfies $g^{\prime}(x)=0$ for all $x \in A$, then $g(x)=k$ for some constant $k \in \mathbb{R}$.

Proof. Take $x, y \in A$ and WLOG suppose $x<y$.
Applying the Mean Value Theorem to g on $[x, y]$ there exists $c \in(x, y)$ such that

$$
g^{\prime}(c)=\frac{g(y)-g(x)}{y-x}
$$

By hypothesis, we have that $g^{\prime}(c)=0$, so that as $x \neq y$, we have $g(x)=g(y)$.
Set k equal to this common value.
The arbitrariness of x and y now implies that $g(x)=k$ for all $x \in A$.
Another consequence of the Mean Value Theorem is the familiar result that two antiderivatives of a continuous function differ by a constant.
Corollary 5.3.4. If f and g are differentiable on an interval A and satisfy $f^{\prime}(x)=g^{\prime}(x)$ for all $x \in A$, then $f(x)=g(x)+k$ for some constant $k \in \mathbb{R}$.
Proof. The function $h(x)=f(x)-g(x)$ is differentiable on A and satisfies $h^{\prime}(x)=0$ for all $x \in A$.

By Corollary 5.3.3., we know that $h(x)=k$ for some constant $k \in \mathbb{R}$, so that $f(x)=$ $g(x)+k$.
Example. Let f be a differentiable function on $[0,3]$ where $f(0)=1, f(1)=3, f(2)=1$, and $f(3)=2$, and $f^{\prime}(x) \geq 1$ for $x \in(0,1)$.
Now there will be lots of differentiable functions whose graphs pass through the points $(0,1),(1,3),(2,1)$, and $(3,2)$, and have $f^{\prime}(x) \geq 1$ for all $x \in(0,1)$.
What properties do all of these differentiable functions have?
Since $f^{\prime}(x) \geq 1$ for all $x \in(0,1)$, we know that f is increasing on $(0,1)$.
The function $g(x)=x-f(x)$ is continuous on [0, 3], and since $g(0)=-1$ and $g(3)=$ $3-2=1$, there exists by the Intermediate Value Theorem a point $d \in(0,3)$ such that $g(d)=0$, or $f(d)=d$.
That is, the graph of f crosses the graph of $y=x$ at $x=d$.
For any subinterval $[a, b]$ of $[0,3]$, the function f is continuous on $[a, b]$ and differentiable on (a, b).

By the Mean Value Theorem there exists $c_{1} \in(1,2)$ such that

$$
f^{\prime}\left(c_{1}\right)=\frac{f(2)-f(1)}{2-1}=\frac{1-3}{1}=-2 .
$$

By the Mean Value Theorem there exists $c_{2} \in(2,3)$ such that

$$
f^{\prime}\left(c_{2}\right)=\frac{f(3)-f(2)}{3-2}=\frac{2-1}{3-2}=1 .
$$

Since f is differentible on $\left[c_{1}, c_{2}\right]$, there is by Darboux's Theorem a point $c_{3} \in\left(c_{1}, c_{2}\right) \subseteq$ $(1,3)$ such that $f^{\prime}\left(c_{3}\right)=0$.

The following result is a generalization of the Mean Value Theorem due to Cauchy, and is key to proving L'Hospital's Rule.
Theorem 5.3.5. If f and g are continuous on $[a, b]$ and differentiable on (a, b), then there exists $c \in(a, b)$ such that

$$
[f(b)-f(a)] g^{\prime}(c)=[g(b)-g(a)] f^{\prime}(c)
$$

If $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$, then we have

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-b(a)}
$$

Proof. The function

$$
h(x)=[f(b)-f(a)] g(x)-[g(b)-g(a)] f(x)
$$

is continuous on $[a, b]$ and differentiable on (a, b).
Since

$$
\begin{aligned}
h(b) & =[f(b)-f(a)] g(b)-[g(b)-g(a)] f(b) \\
& =f(b) g(b)-f(a) g(b)-g(b) f(b)+g(a) g(b) \\
& =-f(a) g(b)+g(a) f(b), \\
h(a) & =[f(b)-f(a)] g(a)-[g(b)-g(a)] f(a) \\
& =f(b) g(a)-f(a) g(a)-g(b) f(a)+g(a) f(a) \\
& =f(b) g(a)-g(b) f(a),
\end{aligned}
$$

we have that $h(b)=h(a)$.
Applying Rolle's Theorem gives the existence of $c \in(a, b)$ such that $h^{\prime}(c)=0$, which unwrapped gives the desired conclusion.

