
Math 341 Lecture #26
§5.3: The Mean Value Theorem, Part I

The simple “observation” for a differentiable function f : [a, b] → R that there exists
c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a

is known as the Mean Value Theorem, and is the cornerstone of almost every major
theorem about differentiation there is (as we shall see).

Theorem 5.3.1 (Rolle’s Theorem). Let f : [a, b] → R be continuous on [a, b],
differentiable on (a, b). If f(a) = f(b), then there exists c ∈ (a, b) such that f ′(c) = 0.

Proof. The continuity of f on the compact set [a, b] implies that f attains a maximum
value and a minimum value.

If the maximum value occurs at one endpoint of [a, b], and the minimum value occurs
at the other endpoint of [a, b], then f is a constant function, so that f ′(x) = 0 for all
x ∈ (a, b), and we can choose any c ∈ (a, b).

If the maximum value or the minimum value occurs at an interior point c of [a, b], then
by the Interior Extremum Theorem we have f ′(c) = 0. �

Theorem 5.3.2 (Mean Value Theorem). If f : [a, b] → R is continuous on [a, b],
differentiable on (a, b), then there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof. We reduce the general case of the Mean Value Theorem to the special case of
Rolle’s Theorem by constructing a new function from f .

Define a function g : [a, b]→ R by

g(x) = f(x)−
[(

f(b)− f(a)

b− a

)
(x− a) + f(a)

]
.

This function g(x) measures the vertical distance from the graph of f(x) to the graph of
the line connecting the points (a, f(a)) and (b, f(b)).

One readily verifies that g is continuous on [a, b] (because f is), and that g is differentiable
on (a, b) (because f is).

We evaluate g at the endpoints:

g(a) = f(a)− [0 + f(a)] = 0, g(b) = f(b)− [f(b)− f(a) + f(a)] = 0.

We can now applies Rolle’s Theorem to obtain the existence of c ∈ (a, b) such that
g′(c) = 0.

We then translate this back to f :

0 = g′(c) = f ′(c)− f(b)− f(a)

b− a
.



Rearranging this gives

f ′(c) =
f(b)− f(a)

b− a

which is the desired result. �

We know for a constant function f(x) = k on an interval A that f ′(x) = 0 for all x ∈ A.

But how do we prove the converse? With the Mean Value Theorem.

Corollary 5.3.3. For an interval A, if g : A→ R is differentiable and satisfies g′(x) = 0
for all x ∈ A, then g(x) = k for some constant k ∈ R.

Proof. Take x, y ∈ A and WLOG suppose x < y.

Applying the Mean Value Theorem to g on [x, y] there exists c ∈ (x, y) such that

g′(c) =
g(y)− g(x)

y − x
.

By hypothesis, we have that g′(c) = 0, so that as x 6= y, we have g(x) = g(y).

Set k equal to this common value.

The arbitrariness of x and y now implies that g(x) = k for all x ∈ A. �.

Another consequence of the Mean Value Theorem is the familiar result that two an-
tiderivatives of a continuous function differ by a constant.

Corollary 5.3.4. If f and g are differentiable on an interval A and satisfy f ′(x) = g′(x)
for all x ∈ A, then f(x) = g(x) + k for some constant k ∈ R.

Proof. The function h(x) = f(x)− g(x) is differentiable on A and satisfies h′(x) = 0 for
all x ∈ A.

By Corollary 5.3.3., we know that h(x) = k for some constant k ∈ R, so that f(x) =
g(x) + k. �

Example. Let f be a differentiable function on [0, 3] where f(0) = 1, f(1) = 3, f(2) = 1,
and f(3) = 2, and f ′(x) ≥ 1 for x ∈ (0, 1).

Now there will be lots of differentiable functions whose graphs pass through the points
(0, 1), (1, 3), (2, 1), and (3, 2), and have f ′(x) ≥ 1 for all x ∈ (0, 1).

What properties do all of these differentiable functions have?

Since f ′(x) ≥ 1 for all x ∈ (0, 1), we know that f is increasing on (0, 1).

The function g(x) = x − f(x) is continuous on [0, 3], and since g(0) = −1 and g(3) =
3 − 2 = 1, there exists by the Intermediate Value Theorem a point d ∈ (0, 3) such that
g(d) = 0, or f(d) = d.

That is, the graph of f crosses the graph of y = x at x = d.

For any subinterval [a, b] of [0, 3], the function f is continuous on [a, b] and differentiable
on (a, b).



By the Mean Value Theorem there exists c1 ∈ (1, 2) such that

f ′(c1) =
f(2)− f(1)

2− 1
=

1− 3

1
= −2.

By the Mean Value Theorem there exists c2 ∈ (2, 3) such that

f ′(c2) =
f(3)− f(2)

3− 2
=

2− 1

3− 2
= 1.

Since f is differentible on [c1, c2], there is by Darboux’s Theorem a point c3 ∈ (c1, c2) ⊆
(1, 3) such that f ′(c3) = 0.

The following result is a generalization of the Mean Value Theorem due to Cauchy, and
is key to proving L’Hospital’s Rule.

Theorem 5.3.5. If f and g are continuous on [a, b] and differentiable on (a, b), then
there exists c ∈ (a, b) such that

[f(b)− f(a)]g′(c) = [g(b)− g(a)]f ′(c).

If g′(x) 6= 0 for all x ∈ (a, b), then we have

f ′(c)

g′(c)
=

f(b)− f(a)

g(b)− b(a)
.

Proof. The function

h(x) = [f(b)− f(a)]g(x)− [g(b)− g(a)]f(x)

is continuous on [a, b] and differentiable on (a, b).

Since

h(b) = [f(b)− f(a)]g(b)− [g(b)− g(a)]f(b)

= f(b)g(b)− f(a)g(b)− g(b)f(b) + g(a)g(b)

= −f(a)g(b) + g(a)f(b),

h(a) = [f(b)− f(a)]g(a)− [g(b)− g(a)]f(a)

= f(b)g(a)− f(a)g(a)− g(b)f(a) + g(a)f(a)

= f(b)g(a)− g(b)f(a),

we have that h(b) = h(a).

Applying Rolle’s Theorem gives the existence of c ∈ (a, b) such that h′(c) = 0, which
unwrapped gives the desired conclusion. �


