
Math 341 Lecture #27
§5.3: The Mean Value Theorem, Part II

§5.4: A Continuous Nowhere Differentiable Function

Theorem 5.3.6 (L’Hospital’s Rule: 0/0 case). Assume f and g are continuous
functions defined on an interval containing a, and assume that f and g are differentiable
on this interval (with the possible exception of a). If f(a) = 0 and g(a) = 0, then

lim
x→a

f ′(x)

g′(x)
= L ⇒ lim

x→a

f(x)

g(x)
= L.

Proof. We get to start with assuming that

lim
x→a

f ′(x)

g′(x)
= L.

Then for any ε > 0 there exists δ > 0 such that whenever 0 < |x− a| < δ we have∣∣∣∣f ′(x)

g′(x)
− L

∣∣∣∣ < ε.

This says that f ′(x)/g′(x) exists when 0 < |x − a| < δ, so that g′(x) 6= 0 when 0 <
|x− a| < δ.

By the Generalized Mean Value Theorem, with 0 < h < δ, we have the existence of
c ∈ (a, a+ h) such that

f ′(c)

g′(c)
=
f(a+ h)− f(a)

g(a+ h)− g(a)
.

By hypothesis, we know that f(a) = 0 and g(a) = 0, so that

f ′(c)

g′(c)
=
f(a+ h)

g(a+ h)
.

Since 0 < c− a < a+ h− a < h < δ, we have∣∣∣∣f(a+ h)

g(a+ h)
− L

∣∣∣∣ =

∣∣∣∣f ′(c)g′(c)
− L

∣∣∣∣ < ε.

For x = a+ h > a, we have 0 < x− a = h < δ, so that∣∣∣∣f(x)

g(x)
− L

∣∣∣∣ < ε.

This says that

lim
x→a+

f(x)

g(x)
= L.

In a similar manner we obtain the other one-sided limit,

lim
x→a−

f(x)

g(x)
= L,



thus obtaining the desired result. �

A Continuous Nowhere-Differentiable Function.We are going to construct a
convergent series of functions whose limit function is a continuous nowhere differentiable
function on R.

This may seems a pathological example, but it is more the norm than you think.

We start with the function h(x) = |x| on [−1, 1]. Here is the graph of h(x) on [−1, 1].

We extend this h(x) periodically to a function h0(x) on R defined by h(x + 2) = h(x).
Here is the graph of the h0(x) on [0, 4].

The periodic function h0(x) is even and satisfies |h0(x)| ≤ 1 for all x ∈ R.

What does the graph of h1(x) = (1/2)h0(2x) look like? Here is this graph on [0, 4].

What does the graph of h2(x) = (1/4)h0(4x) look like? Here is this graph on [0, 4].



From these graphs, we see that for each n ∈ N, the even function

hn(x) = (1/2n)h0(2
nx)

is continuous on R whose graph consists of line segments of alternating slopes, and is not
differentiable at points of the form p/2n for integers p.

We are going to add the functions h0(x), h1(x), h2(x), etc.

Here is the graph of h0(x) + h1(x) on [0, 4].

Do you see where this function is not differentiable? At the points 1/2, 3/2, 2, 5/2, 7/2,
etc.

Here is the graph of h0(x) + h1(x) + h2(x) on [0, 4].

Do you see where this functions is not differentiable? At the points 1/4, 3/4, 1, 5/4, 7/4,
2, etc.

Here is the graph of
3∑

n=0

hn(x) on [0, 4].



Do you see where the function is not differentiable? At points of the form p/8 = p/23 for
integers p.

Here is the graph of
7∑

n=1

hn(x) on [0, 4].

This function is not differentiable at points of the points p/27 for integers p.

The claim is that the infinite sum

g(x) =
∞∑
n=0

hn(x) =
∞∑
n=0

(1/2n)h0(2
nx)

is a continuous nowhere differentiable even function on R.

First thing to settle is that this infinite series actually defines a function on R.

Recall that h0(x) satisfies |h0(x)| ≤ 1 for all x ∈ R.

Thus h0(2
nx) also satisfies |h0(2nx)| ≤ 1 for all x ∈ R and all n = 0, 1, 2, 3, . . . .

So for each x ∈ R we have

∞∑
n=0

∣∣∣∣h0(2nx)

2n

∣∣∣∣ ≤ ∞∑
n=0

1

2n
=

1

1− 1/2
= 2

by the geometric series.

It follows by the Absolute Convergence Test (Theorem 2.7.6) that g(x) is a convergent
series for each x ∈ R, and so g(x) is a properly defined function on R.

Remember that this says that for each x ∈ R, the sequence of partial sums

gm(x) =
m∑

n=0

hn(x)

converges to g(x) as m→∞.

Because each function hn is continuous on R, it follows for each m = 0, 1, 2, 3, . . . , that
the function gm(x) is continuous on R.

We will see later, in Chapter 6, that g(x) is continuous.



Appendix. We will deal here with the harder problem of showing that g is nowhere
differentiable function.

Looking at the graph of g7(x) above, it appears that g is not differentiable at any integer
point c.

For simplicity we take c = 0, and consider the sequence xm = 1/2m for m = 0, 1, 2, 3, . . . .

In the rise over run formulation of the derivative, we will need the value of g(0).

Since hn(x) = (1/2n)h0(2
nx), we have that hn(0) = 0 for all n = 0, 1, 2, 3, . . . , and so

g(0) = 0 as well.

We will find the value of
g(xm)− g(0)

xm − 0
= 2mg(xm).

To do this we compute

g(xm) =
∞∑
n=0

hn(xm) =
∞∑
n=0

h0(2
nxm)

2n
=
∞∑
n=0

h0(2
n/2m)

2n
.

When n ≥ m + 1, then 2n/2m = 2n−m is an even integer, and so h0(2
n/2m) = 0 for all

n ≥ m+ 1, hence that
∞∑
n=0

h0(2
n/2m)

2n
=

m∑
n=0

h0(2
n/2m)

2n
.

For 0 ≤ n ≤ m we have that h0(2
n/2m) = h0(2

n−m) = 2n−m, so that

m∑
n=0

h0(2
n/2m)

2n
=

m∑
n=0

2n−m

2n
=

m∑
n=0

1

2m
=

(m+ 1)

2m
.

We then have that

2mg(xm) = 2m

(
m+ 1

2m

)
= m+ 1.

Thus

lim
m→∞

g(xm)− g(0)

xm − 0
= lim

m→∞
(m+ 1) =∞,

and so g is not differentiable at c = 0.

In a similar way the sequence xm = −1/2m yields

lim
m→∞

g(xm)− g(0)

xm − 0
= −∞.

This shows that g(x) has a “cusp” at c = 0.

In a similar manner, one can show that g is not differentiable at c = 1, c = 1/2, and at
c = p/2k for p ∈ Z and k ∈ N ∪ {0}.
Points of the form p/2k for p ∈ Z and k ∈ N ∪ {0} are called dyadic points.



The dyadic points form a dense subset of R, and so we then have that g(x) is not
differentiable on this dense subset.

Now assume that x is not a dyadic point.

Then for each m ∈ N ∪ {0}, the point x falls between two adjacent dyadic points,

p

2m
< x <

p+ 1

2m

for some p ∈ Z.

For the sequences xm = p/2m and ym = (p + 1)/2m we have xm < x < ym and xm → x
and ym → x.

One can show for each m that gm is differentiable at each non-dyadic x, and the sequence
of derivatives (g′m(x)) satsifies

|g′m+1(x)− g′m(x)| = 1, m ∈ N ∪ {0}.

Specifically the sequence (g′m(x)) eventually alternates between −1 and 1.

If one can show that the inequalities

g(ym)− g(x)

ym − x
≤ g′m(x) ≤ g(xm)− g(x)

xm − x

hold for all m, then it follows that when

lim
m→∞

g(ym)− g(x)

ym − x
, lim

m→∞

g(xm)− g(x)

xm − x

both exist they can not have same value because the sequence (g′m(x)) eventually alter-
nates between −1 and 1, keeping the two rise over runs apart from each other.

Now we show that the inequalities hold for all m = 0, 1, 2, 3, . . . .

Recalling that h0(x) = 0 whenever x is an even integer, we have that

g(xm) =
∞∑
n=0

h0(2
nxm)

2n

=
∞∑
n=0

h0(p2
n−m)

2n

=
m∑

n=0

h0(p2
n−m)

2n

= gm(xm).

For x, the sequence gm(x) is increasing because h0 ≥ 0, so that gm(x) ≤ g(x) and hence
−g(x) ≤ −gm(x).

Thus we have that

g(xm)− g(x) = gm(xm)− g(x) ≤ gm(xm)− gm(x).



Since xm < x, then xm − x < 0, so that

g(xm)− g(x)

xm − x
≥ gm(xm)− gm(x)

xm − x
.

The graph of the function gm on the interval [xm, ym] is a straight line segment (in fact,
gm is a continuous piecewise linear function) so that

gm(xm)− gm(x)

xm − x
= g′m(x).

Thus we have that

g′m(x) ≤ g(xm)− g(x)

xm − x
.

In a similar way we get
g(ym)− g(x)

ym − x
≤ g′m(x).

Thus g is not differentiable at the non-dyadic x, and so g is nowhere differentiable.


