Math 341 Lecture #27 §5.3: The Mean Value Theorem, Part II §5.4: A Continuous Nowhere Differentiable Function

Theorem 5.3.6 (L'Hospital's Rule: 0/0 case). Assume f and g are continuous functions defined on an interval containing a, and assume that f and g are differentiable on this interval (with the possible exception of a). If f(a) = 0 and g(a) = 0, then

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = L \implies \lim_{x \to a} \frac{f(x)}{g(x)} = L.$$

Proof. We get to start with assuming that

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = L$$

Then for any $\epsilon > 0$ there exists $\delta > 0$ such that whenever $0 < |x - a| < \delta$ we have

$$\left|\frac{f'(x)}{g'(x)} - L\right| < \epsilon.$$

This says that f'(x)/g'(x) exists when $0 < |x - a| < \delta$, so that $g'(x) \neq 0$ when $0 < |x - a| < \delta$.

By the Generalized Mean Value Theorem, with $0 < h < \delta$, we have the existence of $c \in (a, a + h)$ such that

$$\frac{f'(c)}{g'(c)} = \frac{f(a+h) - f(a)}{g(a+h) - g(a)}.$$

By hypothesis, we know that f(a) = 0 and g(a) = 0, so that

$$\frac{f'(c)}{g'(c)} = \frac{f(a+h)}{g(a+h)}.$$

Since $0 < c - a < a + h - a < h < \delta$, we have

$$\left|\frac{f(a+h)}{g(a+h)} - L\right| = \left|\frac{f'(c)}{g'(c)} - L\right| < \epsilon.$$

For x = a + h > a, we have $0 < x - a = h < \delta$, so that

$$\left|\frac{f(x)}{g(x)} - L\right| < \epsilon.$$

This says that

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = L.$$

In a similar manner we obtain the other one-sided limit,

$$\lim_{x \to a^-} \frac{f(x)}{g(x)} = L,$$

thus obtaining the desired result.

A Continuous Nowhere-Differentiable Function. We are going to construct a convergent series of functions whose limit function is a continuous nowhere differentiable function on \mathbb{R} .

This may seems a pathological example, but it is more the norm than you think.

We start with the function h(x) = |x| on [-1, 1]. Here is the graph of h(x) on [-1, 1].

We extend this h(x) periodically to a function $h_0(x)$ on \mathbb{R} defined by h(x+2) = h(x). Here is the graph of the $h_0(x)$ on [0, 4].

The periodic function $h_0(x)$ is even and satisfies $|h_0(x)| \leq 1$ for all $x \in \mathbb{R}$. What does the graph of $h_1(x) = (1/2)h_0(2x)$ look like? Here is this graph on [0, 4].

What does the graph of $h_2(x) = (1/4)h_0(4x)$ look like? Here is this graph on [0, 4].

From these graphs, we see that for each $n \in \mathbb{N}$, the even function

$$h_n(x) = (1/2^n)h_0(2^n x)$$

is continuous on \mathbb{R} whose graph consists of line segments of alternating slopes, and is not differentiable at points of the form $p/2^n$ for integers p.

We are going to add the functions $h_0(x)$, $h_1(x)$, $h_2(x)$, etc. Here is the graph of $h_0(x) + h_1(x)$ on [0, 4].

Do you see where this function is not differentiable? At the points 1/2, 3/2, 2, 5/2, 7/2, etc.

Here is the graph of $h_0(x) + h_1(x) + h_2(x)$ on [0, 4].

Do you see where this functions is not differentiable? At the points 1/4, 3/4, 1, 5/4, 7/4, 2, etc.

Here is the graph of $\sum_{n=0}^{3} h_n(x)$ on [0, 4].

Do you see where the function is not differentiable? At points of the form $p/8 = p/2^3$ for integers p.

Here is the graph of $\sum_{n=1}^{7} h_n(x)$ on [0, 4].

This function is not differentiable at points of the points $p/2^7$ for integers p. The claim is that the infinite sum

$$g(x) = \sum_{n=0}^{\infty} h_n(x) = \sum_{n=0}^{\infty} (1/2^n) h_0(2^n x)$$

is a continuous nowhere differentiable even function on \mathbb{R} .

First thing to settle is that this infinite series actually defines a function on \mathbb{R} . Recall that $h_0(x)$ satisfies $|h_0(x)| \leq 1$ for all $x \in \mathbb{R}$.

Thus $h_0(2^n x)$ also satisfies $|h_0(2^n x)| \leq 1$ for all $x \in \mathbb{R}$ and all $n = 0, 1, 2, 3, \dots$ So for each $x \in \mathbb{R}$ we have

$$\sum_{n=0}^{\infty} \left| \frac{h_0(2^n x)}{2^n} \right| \le \sum_{n=0}^{\infty} \frac{1}{2^n} = \frac{1}{1 - 1/2} = 2$$

by the geometric series.

It follows by the Absolute Convergence Test (Theorem 2.7.6) that g(x) is a convergent series for each $x \in \mathbb{R}$, and so g(x) is a properly defined function on \mathbb{R} .

Remember that this says that for each $x \in \mathbb{R}$, the sequence of partial sums

$$g_m(x) = \sum_{n=0}^m h_n(x)$$

converges to g(x) as $m \to \infty$.

Because each function h_n is continuous on \mathbb{R} , it follows for each $m = 0, 1, 2, 3, \ldots$, that the function $g_m(x)$ is continuous on \mathbb{R} .

We will see later, in Chapter 6, that g(x) is continuous.

Appendix. We will deal here with the harder problem of showing that g is nowhere differentiable function.

Looking at the graph of $g_7(x)$ above, it appears that g is not differentiable at any integer point c.

For simplicity we take c = 0, and consider the sequence $x_m = 1/2^m$ for m = 0, 1, 2, 3, ...In the rise over run formulation of the derivative, we will need the value of g(0).

Since $h_n(x) = (1/2^n)h_0(2^nx)$, we have that $h_n(0) = 0$ for all n = 0, 1, 2, 3, ..., and so g(0) = 0 as well.

We will find the value of

$$\frac{g(x_m) - g(0)}{x_m - 0} = 2^m g(x_m).$$

To do this we compute

$$g(x_m) = \sum_{n=0}^{\infty} h_n(x_m) = \sum_{n=0}^{\infty} \frac{h_0(2^n x_m)}{2^n} = \sum_{n=0}^{\infty} \frac{h_0(2^n/2^m)}{2^n}.$$

When $n \ge m+1$, then $2^n/2^m = 2^{n-m}$ is an even integer, and so $h_0(2^n/2^m) = 0$ for all $n \ge m+1$, hence that

$$\sum_{n=0}^{\infty} \frac{h_0(2^n/2^m)}{2^n} = \sum_{n=0}^m \frac{h_0(2^n/2^m)}{2^n}.$$

For $0 \le n \le m$ we have that $h_0(2^n/2^m) = h_0(2^{n-m}) = 2^{n-m}$, so that

$$\sum_{n=0}^{m} \frac{h_0(2^n/2^m)}{2^n} = \sum_{n=0}^{m} \frac{2^{n-m}}{2^n} = \sum_{n=0}^{m} \frac{1}{2^m} = \frac{(m+1)}{2^m}.$$

We then have that

$$2^{m}g(x_{m}) = 2^{m}\left(\frac{m+1}{2^{m}}\right) = m+1.$$

Thus

$$\lim_{m \to \infty} \frac{g(x_m) - g(0)}{x_m - 0} = \lim_{m \to \infty} (m+1) = \infty,$$

and so g is not differentiable at c = 0.

In a similar way the sequence $x_m = -1/2^m$ yields

$$\lim_{m \to \infty} \frac{g(x_m) - g(0)}{x_m - 0} = -\infty$$

This shows that g(x) has a "cusp" at c = 0.

In a similar manner, one can show that g is not differentiable at c = 1, c = 1/2, and at $c = p/2^k$ for $p \in \mathbb{Z}$ and $k \in \mathbb{N} \cup \{0\}$.

Points of the form $p/2^k$ for $p \in \mathbb{Z}$ and $k \in \mathbb{N} \cup \{0\}$ are called *dyadic* points.

The dyadic points form a dense subset of \mathbb{R} , and so we then have that g(x) is not differentiable on this dense subset.

Now assume that x is not a dyadic point.

Then for each $m \in \mathbb{N} \cup \{0\}$, the point x falls between two adjacent dyadic points,

$$\frac{p}{2^m} < x < \frac{p+1}{2^m}$$

for some $p \in \mathbb{Z}$.

For the sequences $x_m = p/2^m$ and $y_m = (p+1)/2^m$ we have $x_m < x < y_m$ and $x_m \to x$ and $y_m \to x$.

One can show for each m that g_m is differentiable at each non-dyadic x, and the sequence of derivatives $(g'_m(x))$ satsifies

$$|g'_{m+1}(x) - g'_m(x)| = 1, \ m \in \mathbb{N} \cup \{0\}.$$

Specifically the sequence $(g'_m(x))$ eventually alternates between -1 and 1.

If one can show that the inequalities

$$\frac{g(y_m) - g(x)}{y_m - x} \le g'_m(x) \le \frac{g(x_m) - g(x)}{x_m - x}$$

hold for all m, then it follows that when

$$\lim_{m \to \infty} \frac{g(y_m) - g(x)}{y_m - x}, \quad \lim_{m \to \infty} \frac{g(x_m) - g(x)}{x_m - x}$$

both exist they can not have same value because the sequence $(g'_m(x))$ eventually alternates between -1 and 1, keeping the two rise over runs apart from each other.

Now we show that the inequalities hold for all $m = 0, 1, 2, 3, \ldots$

Recalling that $h_0(x) = 0$ whenever x is an even integer, we have that

$$g(x_m) = \sum_{n=0}^{\infty} \frac{h_0(2^n x_m)}{2^n}$$
$$= \sum_{n=0}^{\infty} \frac{h_0(p2^{n-m})}{2^n}$$
$$= \sum_{n=0}^{m} \frac{h_0(p2^{n-m})}{2^n}$$
$$= g_m(x_m).$$

For x, the sequence $g_m(x)$ is increasing because $h_0 \ge 0$, so that $g_m(x) \le g(x)$ and hence $-g(x) \le -g_m(x)$.

Thus we have that

$$g(x_m) - g(x) = g_m(x_m) - g(x) \le g_m(x_m) - g_m(x).$$

Since $x_m < x$, then $x_m - x < 0$, so that

$$\frac{g(x_m) - g(x)}{x_m - x} \ge \frac{g_m(x_m) - g_m(x)}{x_m - x}.$$

The graph of the function g_m on the interval $[x_m, y_m]$ is a straight line segment (in fact, g_m is a continuous piecewise linear function) so that

$$\frac{g_m(x_m) - g_m(x)}{x_m - x} = g'_m(x).$$

Thus we have that

$$g'_m(x) \le \frac{g(x_m) - g(x)}{x_m - x}.$$

In a similar way we get

$$\frac{g(y_m) - g(x)}{y_m - x} \le g'_m(x).$$

Thus g is not differentiable at the non-dyadic x, and so g is nowhere differentiable.