Math 341 Lecture \#27
§5.3: The Mean Value Theorem, Part II
§5.4: A Continuous Nowhere Differentiable Function
Theorem 5.3.6 (L'Hospital's Rule: $0 / 0$ case). Assume f and g are continuous functions defined on an interval containing a, and assume that f and g are differentiable on this interval (with the possible exception of a). If $f(a)=0$ and $g(a)=0$, then

$$
\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L \Rightarrow \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=L .
$$

Proof. We get to start with assuming that

$$
\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L .
$$

Then for any $\epsilon>0$ there exists $\delta>0$ such that whenever $0<|x-a|<\delta$ we have

$$
\left|\frac{f^{\prime}(x)}{g^{\prime}(x)}-L\right|<\epsilon .
$$

This says that $f^{\prime}(x) / g^{\prime}(x)$ exists when $0<|x-a|<\delta$, so that $g^{\prime}(x) \neq 0$ when $0<$ $|x-a|<\delta$.
By the Generalized Mean Value Theorem, with $0<h<\delta$, we have the existence of $c \in(a, a+h)$ such that

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(a+h)-f(a)}{g(a+h)-g(a)} .
$$

By hypothesis, we know that $f(a)=0$ and $g(a)=0$, so that

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(a+h)}{g(a+h)} .
$$

Since $0<c-a<a+h-a<h<\delta$, we have

$$
\left|\frac{f(a+h)}{g(a+h)}-L\right|=\left|\frac{f^{\prime}(c)}{g^{\prime}(c)}-L\right|<\epsilon .
$$

For $x=a+h>a$, we have $0<x-a=h<\delta$, so that

$$
\left|\frac{f(x)}{g(x)}-L\right|<\epsilon .
$$

This says that

$$
\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}=L .
$$

In a similar manner we obtain the other one-sided limit,

$$
\lim _{x \rightarrow a^{-}} \frac{f(x)}{g(x)}=L,
$$

thus obtaining the desired result.
A Continuous Nowhere-Differentiable Function. We are going to construct a convergent series of functions whose limit function is a continuous nowhere differentiable function on \mathbb{R}.
This may seems a pathological example, but it is more the norm than you think.
We start with the function $h(x)=|x|$ on $[-1,1]$. Here is the graph of $h(x)$ on $[-1,1]$.

We extend this $h(x)$ periodically to a function $h_{0}(x)$ on \mathbb{R} defined by $h(x+2)=h(x)$. Here is the graph of the $h_{0}(x)$ on $[0,4]$.

The periodic function $h_{0}(x)$ is even and satisfies $\left|h_{0}(x)\right| \leq 1$ for all $x \in \mathbb{R}$.
What does the graph of $h_{1}(x)=(1 / 2) h_{0}(2 x)$ look like? Here is this graph on $[0,4]$.

What does the graph of $h_{2}(x)=(1 / 4) h_{0}(4 x)$ look like? Here is this graph on $[0,4]$.

From these graphs, we see that for each $n \in \mathbb{N}$, the even function

$$
h_{n}(x)=\left(1 / 2^{n}\right) h_{0}\left(2^{n} x\right)
$$

is continuous on \mathbb{R} whose graph consists of line segments of alternating slopes, and is not differentiable at points of the form $p / 2^{n}$ for integers p.
We are going to add the functions $h_{0}(x), h_{1}(x), h_{2}(x)$, etc.
Here is the graph of $h_{0}(x)+h_{1}(x)$ on $[0,4]$.

Do you see where this function is not differentiable? At the points $1 / 2,3 / 2,2,5 / 2,7 / 2$, etc.
Here is the graph of $h_{0}(x)+h_{1}(x)+h_{2}(x)$ on [0, 4].

Do you see where this functions is not differentiable? At the points $1 / 4,3 / 4,1,5 / 4,7 / 4$, 2, etc.
Here is the graph of $\sum_{n=0}^{3} h_{n}(x)$ on $[0,4]$.

Do you see where the function is not differentiable? At points of the form $p / 8=p / 2^{3}$ for integers p.
Here is the graph of $\sum_{n=1}^{7} h_{n}(x)$ on [0, 4].

This function is not differentiable at points of the points $p / 2^{7}$ for integers p.
The claim is that the infinite sum

$$
g(x)=\sum_{n=0}^{\infty} h_{n}(x)=\sum_{n=0}^{\infty}\left(1 / 2^{n}\right) h_{0}\left(2^{n} x\right)
$$

is a continuous nowhere differentiable even function on \mathbb{R}.
First thing to settle is that this infinite series actually defines a function on \mathbb{R}.
Recall that $h_{0}(x)$ satisfies $\left|h_{0}(x)\right| \leq 1$ for all $x \in \mathbb{R}$.
Thus $h_{0}\left(2^{n} x\right)$ also satisfies $\left|h_{0}\left(2^{n} x\right)\right| \leq 1$ for all $x \in \mathbb{R}$ and all $n=0,1,2,3, \ldots$
So for each $x \in \mathbb{R}$ we have

$$
\sum_{n=0}^{\infty}\left|\frac{h_{0}\left(2^{n} x\right)}{2^{n}}\right| \leq \sum_{n=0}^{\infty} \frac{1}{2^{n}}=\frac{1}{1-1 / 2}=2
$$

by the geometric series.
It follows by the Absolute Convergence Test (Theorem 2.7.6) that $g(x)$ is a convergent series for each $x \in \mathbb{R}$, and so $g(x)$ is a properly defined function on \mathbb{R}.
Remember that this says that for each $x \in \mathbb{R}$, the sequence of partial sums

$$
g_{m}(x)=\sum_{n=0}^{m} h_{n}(x)
$$

converges to $g(x)$ as $m \rightarrow \infty$.
Because each function h_{n} is continuous on \mathbb{R}, it follows for each $m=0,1,2,3, \ldots$, that the function $g_{m}(x)$ is continuous on \mathbb{R}.
We will see later, in Chapter 6, that $g(x)$ is continuous.

Appendix. We will deal here with the harder problem of showing that g is nowhere differentiable function.
Looking at the graph of $g_{7}(x)$ above, it appears that g is not differentiable at any integer point c.
For simplicity we take $c=0$, and consider the sequence $x_{m}=1 / 2^{m}$ for $m=0,1,2,3, \ldots$.
In the rise over run formulation of the derivative, we will need the value of $g(0)$.
Since $h_{n}(x)=\left(1 / 2^{n}\right) h_{0}\left(2^{n} x\right)$, we have that $h_{n}(0)=0$ for all $n=0,1,2,3, \ldots$, and so $g(0)=0$ as well.
We will find the value of

$$
\frac{g\left(x_{m}\right)-g(0)}{x_{m}-0}=2^{m} g\left(x_{m}\right)
$$

To do this we compute

$$
g\left(x_{m}\right)=\sum_{n=0}^{\infty} h_{n}\left(x_{m}\right)=\sum_{n=0}^{\infty} \frac{h_{0}\left(2^{n} x_{m}\right)}{2^{n}}=\sum_{n=0}^{\infty} \frac{h_{0}\left(2^{n} / 2^{m}\right)}{2^{n}}
$$

When $n \geq m+1$, then $2^{n} / 2^{m}=2^{n-m}$ is an even integer, and so $h_{0}\left(2^{n} / 2^{m}\right)=0$ for all $n \geq m+1$, hence that

$$
\sum_{n=0}^{\infty} \frac{h_{0}\left(2^{n} / 2^{m}\right)}{2^{n}}=\sum_{n=0}^{m} \frac{h_{0}\left(2^{n} / 2^{m}\right)}{2^{n}}
$$

For $0 \leq n \leq m$ we have that $h_{0}\left(2^{n} / 2^{m}\right)=h_{0}\left(2^{n-m}\right)=2^{n-m}$, so that

$$
\sum_{n=0}^{m} \frac{h_{0}\left(2^{n} / 2^{m}\right)}{2^{n}}=\sum_{n=0}^{m} \frac{2^{n-m}}{2^{n}}=\sum_{n=0}^{m} \frac{1}{2^{m}}=\frac{(m+1)}{2^{m}}
$$

We then have that

$$
2^{m} g\left(x_{m}\right)=2^{m}\left(\frac{m+1}{2^{m}}\right)=m+1
$$

Thus

$$
\lim _{m \rightarrow \infty} \frac{g\left(x_{m}\right)-g(0)}{x_{m}-0}=\lim _{m \rightarrow \infty}(m+1)=\infty
$$

and so g is not differentiable at $c=0$.
In a similar way the sequence $x_{m}=-1 / 2^{m}$ yields

$$
\lim _{m \rightarrow \infty} \frac{g\left(x_{m}\right)-g(0)}{x_{m}-0}=-\infty
$$

This shows that $g(x)$ has a "cusp" at $c=0$.
In a similar manner, one can show that g is not differentiable at $c=1, c=1 / 2$, and at $c=p / 2^{k}$ for $p \in \mathbb{Z}$ and $k \in \mathbb{N} \cup\{0\}$.
Points of the form $p / 2^{k}$ for $p \in \mathbb{Z}$ and $k \in \mathbb{N} \cup\{0\}$ are called dyadic points.

The dyadic points form a dense subset of \mathbb{R}, and so we then have that $g(x)$ is not differentiable on this dense subset.
Now assume that x is not a dyadic point.
Then for each $m \in \mathbb{N} \cup\{0\}$, the point x falls between two adjacent dyadic points,

$$
\frac{p}{2^{m}}<x<\frac{p+1}{2^{m}}
$$

for some $p \in \mathbb{Z}$.
For the sequences $x_{m}=p / 2^{m}$ and $y_{m}=(p+1) / 2^{m}$ we have $x_{m}<x<y_{m}$ and $x_{m} \rightarrow x$ and $y_{m} \rightarrow x$.
One can show for each m that g_{m} is differentiable at each non-dyadic x, and the sequence of derivatives $\left(g_{m}^{\prime}(x)\right)$ satsifies

$$
\left|g_{m+1}^{\prime}(x)-g_{m}^{\prime}(x)\right|=1, m \in \mathbb{N} \cup\{0\}
$$

Specifically the sequence $\left(g_{m}^{\prime}(x)\right)$ eventually alternates between -1 and 1 .
If one can show that the inequalities

$$
\frac{g\left(y_{m}\right)-g(x)}{y_{m}-x} \leq g_{m}^{\prime}(x) \leq \frac{g\left(x_{m}\right)-g(x)}{x_{m}-x}
$$

hold for all m, then it follows that when

$$
\lim _{m \rightarrow \infty} \frac{g\left(y_{m}\right)-g(x)}{y_{m}-x}, \quad \lim _{m \rightarrow \infty} \frac{g\left(x_{m}\right)-g(x)}{x_{m}-x}
$$

both exist they can not have same value because the sequence $\left(g_{m}^{\prime}(x)\right)$ eventually alternates between -1 and 1 , keeping the two rise over runs apart from each other.
Now we show that the inequalities hold for all $m=0,1,2,3, \ldots$.
Recalling that $h_{0}(x)=0$ whenever x is an even integer, we have that

$$
\begin{aligned}
g\left(x_{m}\right) & =\sum_{n=0}^{\infty} \frac{h_{0}\left(2^{n} x_{m}\right)}{2^{n}} \\
& =\sum_{n=0}^{\infty} \frac{h_{0}\left(p 2^{n-m}\right)}{2^{n}} \\
& =\sum_{n=0}^{m} \frac{h_{0}\left(p 2^{n-m}\right)}{2^{n}} \\
& =g_{m}\left(x_{m}\right) .
\end{aligned}
$$

For x, the sequence $g_{m}(x)$ is increasing because $h_{0} \geq 0$, so that $g_{m}(x) \leq g(x)$ and hence $-g(x) \leq-g_{m}(x)$.
Thus we have that

$$
g\left(x_{m}\right)-g(x)=g_{m}\left(x_{m}\right)-g(x) \leq g_{m}\left(x_{m}\right)-g_{m}(x)
$$

Since $x_{m}<x$, then $x_{m}-x<0$, so that

$$
\frac{g\left(x_{m}\right)-g(x)}{x_{m}-x} \geq \frac{g_{m}\left(x_{m}\right)-g_{m}(x)}{x_{m}-x} .
$$

The graph of the function g_{m} on the interval $\left[x_{m}, y_{m}\right]$ is a straight line segment (in fact, g_{m} is a continuous piecewise linear function) so that

$$
\frac{g_{m}\left(x_{m}\right)-g_{m}(x)}{x_{m}-x}=g_{m}^{\prime}(x) .
$$

Thus we have that

$$
g_{m}^{\prime}(x) \leq \frac{g\left(x_{m}\right)-g(x)}{x_{m}-x}
$$

In a similar way we get

$$
\frac{g\left(y_{m}\right)-g(x)}{y_{m}-x} \leq g_{m}^{\prime}(x)
$$

Thus g is not differentiable at the non-dyadic x, and so g is nowhere differentiable.

