
Math 341 Lecture #28
§6.2: Uniform Convergence

Recall that we constructed a continuous nowhere differentiable function by way of a
convergent series of continuous functions:

g(x) =
∞∑
n=0

hn(x).

We showed that for each x the series converged, that the sequence of partials sums
converged.

We give this “type” of convergence a name.

Definition 6.2.1. For each n ∈ N let fn : A → R for A ⊆ R. The sequence (fn)
converges pointwise on A to a function f : A → R if for all x ∈ A the sequence of real
numbers fn(x) converges to f(x).

Notations for this pointwise convergence of fn to f on A are

fn → f, lim fn = f, lim
n→∞

fn(x) = f(x),

where the domain A, not written, is understood.

Example 6.2.2. (ii) For n ∈ N, let gn(x) = xn on the domain A = [0, 1].

Here are the graphs of g1, g2, g3, g4.

We notice that gn(1) = 1 for all n ∈ N, so that

lim
n→∞

gn(1) = 1.

For 0 ≤ x < 1, we have that
lim
n→∞

gn(x) = 0.



Although each gn is differentiable (and hence continuous) on A, the limit function

g(x) =

{
0 if 0 ≤ x < 1,

1 if x = 1,

is not continuous on A.

We have gn → g pointwise: this sequence of continuous functions converges to a discon-
tinuous function.

This says that pointwise convergence of a series of continuous functions is not enough to
guarantee the limit function if continuous; we need a stronger “type” of convergence.

Definition 6.2.3. Let fn be a sequence of functions defined on A ⊆ R. We say that
(fn) converges uniformly on A to a limit function f on A if for every ε > 0 there exists
an N ∈ N such that |fn(x)− f(x)| < ε for all x ∈ A whenever n ≥ N .

Certainly, uniform convergence implies pointwise convergence, but the converse is false
(as we have seen), so that uniform convergence is a stronger “type” of convergence than
pointwise convergence.

Example. 6.2.4. (i) Let

gn(x) =
1

n(1 + x2)
.

For any x ∈ R, we see that gn(x)→ 0, so that gn converges pointwise to g(x) = 0.

Is this convergence uniform on R?

Well, since 1/(x2 + 1) ≤ 1 for all x ∈ R, we have

|gn(x)− g(x)| =
∣∣∣∣ 1

n(x2 + 1)
− 0

∣∣∣∣ ≤ 1

n
.

Thus for a given ε > 0 we can choose N ≥ 1/ε, a choice of N that is independent of
x ∈ R, so that |gn(x)− g(x)| < ε for all x ∈ R whenever n ≥ N .

This says that gn converges uniformly to g on R.

(ii) It is “easy” to guess that the sequence of functions

fn(x) =
x2 + nx

n

converges pointwise to f(x) = x on all of R.

Investigating whether this convergence is uniform, we consider

|fn(x)− f(x)| =
∣∣∣∣x2 + nx

n
− x
∣∣∣∣ =

∣∣∣∣x2 + nx− nx
n

∣∣∣∣ =
x2

n
.

Asking that |fn(x)− f(x)| < ε for ε > 0 requires that we choose N ∈ N according to

N >
x2

ε
.



This says that we cannot choose one value of N that works for all x ∈ R, and so the
pointwise convergence of fn to f is not uniform on R.

If instead, we restrict the domain of fn to the compact subset [−b, b] (for b > 0), then we
can get uniform convergence of fn to f by choosing

N >
b2

ε
.

That is we have for all x ∈ [−b, b] that

|fn(x)− f(x)| = x2

n
≤ b2

n
≤ b2

N
< ε

for all n ≥ N .

For b = 1, what does uniform convergence of fn to f on [−1, 1] means geometrically?

For ε = 1/2 and b = 1 we have that N = 3 > 12/(1/2) = 2, and we get

|fn(x)− f(x)| < 1/2 or f(x)− 1/2 < fn(x) < f(x) + 1/2

for all x ∈ [−1, 1] and all n ≥ 3.

Here are the graphs of f(x) = x, f(x) + 1/2, f(x)− 1/2, and fn(x) for n = 3, 4, 5.

What do you notice about the graphs of fn(x) for n = 3, 4, 5? Each lies within the
ε = 1/2 “tube” about f(x) on [−1, 1].

This is what uniform convergence means geometrically.

Recall the Cauchy Criterion for the convergence of a sequence of real numbers did not
require a “guess” for the limit.

We have a similar criterion for uniform convergence.



Theorem 6.2.5 (Cauchy Criterion for Uniform Convergence). A sequence of
functions (fn) defined on A ⊆ R converges uniformly on A if and only if for every ε > 0
there exists an N ∈ N such that

|fn(x)− fm(x)| < ε

for all n,m ≥ N and all x ∈ A.

Proof. Suppose that fn converges uniformly to f on A.

Then for ε > 0 there exists N ∈ N such that |fn(x) − f(x)| < ε/2 for all n ≥ N and all
x ∈ A.

Thus for n,m ≥ N and any x ∈ A we have

|fn(x)− fm(x)| = |fn(x)− f(x) + f(x)− fm(x)|
≤ |fn(x)− f(x)|+ |fm(x)− f(x)|

<
ε

2
+
ε

2
= ε.

Now suppose that for all ε > 0 there exists N ∈ N such that |fn(x) − fm(x)| < ε for all
n,m ≥ N and all x ∈ A.

Then for each x ∈ A, the sequence (fn(x)) is Cauchy sequence of real numbers, and
therefore it converges to a real number, call it f(x).

We have found a function f : A→ R which is the pointwise limit of fn.

By the Algebraic Limit and Order Limit Theorems we have for all n ≥ N and all x ∈ A
that

|fn(x)− f(x)| = lim
m→∞

|fn(x)− fm(x)| ≤ ε

which says that fn converges uniformly to f on A. �

The stronger assumption of uniform convergence is enough to guarantee that the limit
function of a sequence of continuous functions is continuous.

Theorem 6.2.6 (Continuous Limit Theorem). Let (fn) be a sequence of functions
defined on A ⊆ R that converges uniformly on A to f . If each fn is continuous at c ∈ A,
then f is continuous at c too.

Proof. Fix c ∈ A, and for ε > 0 choose N ∈ N such that for all x ∈ A we have

|fN(x)− f(x)| < ε

3
.

By the continuity of fN at c there exists δ > 0 such that whenever |x− c| < δ we have

|fN(x)− fN(c)| < ε

3
.

Thus

|f(x)− f(c)| ≤ |f(x)− fN(x)|+ |fN(x)− fN(c)|+ |fN(c)− f(c)| < ε

3
+
ε

3
+
ε

3
= ε

whenever |x− c| < δ, and so f is continuous at c. �


