Math 341 Lecture \#28

§6.2: Uniform Convergence
Recall that we constructed a continuous nowhere differentiable function by way of a convergent series of continuous functions:

$$
g(x)=\sum_{n=0}^{\infty} h_{n}(x) .
$$

We showed that for each x the series converged, that the sequence of partials sums converged.
We give this "type" of convergence a name.
Definition 6.2.1. For each $n \in \mathbb{N}$ let $f_{n}: A \rightarrow \mathbb{R}$ for $A \subseteq \mathbb{R}$. The sequence $\left(f_{n}\right)$ converges pointwise on A to a function $f: A \rightarrow \mathbb{R}$ if for all $x \in A$ the sequence of real numbers $f_{n}(x)$ converges to $f(x)$.
Notations for this pointwise convergence of f_{n} to f on A are

$$
f_{n} \rightarrow f, \quad \lim f_{n}=f, \quad \lim _{n \rightarrow \infty} f_{n}(x)=f(x)
$$

where the domain A, not written, is understood.
Example 6.2.2. (ii) For $n \in \mathbb{N}$, let $g_{n}(x)=x^{n}$ on the domain $A=[0,1]$.
Here are the graphs of $g_{1}, g_{2}, g_{3}, g_{4}$.

We notice that $g_{n}(1)=1$ for all $n \in \mathbb{N}$, so that

$$
\lim _{n \rightarrow \infty} g_{n}(1)=1
$$

For $0 \leq x<1$, we have that

$$
\lim _{n \rightarrow \infty} g_{n}(x)=0
$$

Although each g_{n} is differentiable (and hence continuous) on A, the limit function

$$
g(x)= \begin{cases}0 & \text { if } 0 \leq x<1 \\ 1 & \text { if } x=1\end{cases}
$$

is not continuous on A.
We have $g_{n} \rightarrow g$ pointwise: this sequence of continuous functions converges to a discontinuous function.

This says that pointwise convergence of a series of continuous functions is not enough to guarantee the limit function if continuous; we need a stronger "type" of convergence.
Definition 6.2.3. Let f_{n} be a sequence of functions defined on $A \subseteq \mathbb{R}$. We say that $\left(f_{n}\right)$ converges uniformly on A to a limit function f on A if for every $\epsilon>0$ there exists an $N \in \mathbb{N}$ such that $\left|f_{n}(x)-f(x)\right|<\epsilon$ for all $x \in A$ whenever $n \geq N$.
Certainly, uniform convergence implies pointwise convergence, but the converse is false (as we have seen), so that uniform convergence is a stronger "type" of convergence than pointwise convergence.
Example. 6.2.4. (i) Let

$$
g_{n}(x)=\frac{1}{n\left(1+x^{2}\right)}
$$

For any $x \in \mathbb{R}$, we see that $g_{n}(x) \rightarrow 0$, so that g_{n} converges pointwise to $g(x)=0$.
Is this convergence uniform on \mathbb{R} ?
Well, since $1 /\left(x^{2}+1\right) \leq 1$ for all $x \in \mathbb{R}$, we have

$$
\left|g_{n}(x)-g(x)\right|=\left|\frac{1}{n\left(x^{2}+1\right)}-0\right| \leq \frac{1}{n}
$$

Thus for a given $\epsilon>0$ we can choose $N \geq 1 / \epsilon$, a choice of N that is independent of $x \in \mathbb{R}$, so that $\left|g_{n}(x)-g(x)\right|<\epsilon$ for all $x \in \mathbb{R}$ whenever $n \geq N$.
This says that g_{n} converges uniformly to g on \mathbb{R}.
(ii) It is "easy" to guess that the sequence of functions

$$
f_{n}(x)=\frac{x^{2}+n x}{n}
$$

converges pointwise to $f(x)=x$ on all of \mathbb{R}.
Investigating whether this convergence is uniform, we consider

$$
\left|f_{n}(x)-f(x)\right|=\left|\frac{x^{2}+n x}{n}-x\right|=\left|\frac{x^{2}+n x-n x}{n}\right|=\frac{x^{2}}{n}
$$

Asking that $\left|f_{n}(x)-f(x)\right|<\epsilon$ for $\epsilon>0$ requires that we choose $N \in \mathbb{N}$ according to

$$
N>\frac{x^{2}}{\epsilon}
$$

This says that we cannot choose one value of N that works for all $x \in \mathbb{R}$, and so the pointwise convergence of f_{n} to f is not uniform on \mathbb{R}.
If instead, we restrict the domain of f_{n} to the compact subset $[-b, b]$ (for $b>0$), then we can get uniform convergence of f_{n} to f by choosing

$$
N>\frac{b^{2}}{\epsilon}
$$

That is we have for all $x \in[-b, b]$ that

$$
\left|f_{n}(x)-f(x)\right|=\frac{x^{2}}{n} \leq \frac{b^{2}}{n} \leq \frac{b^{2}}{N}<\epsilon
$$

for all $n \geq N$.
For $b=1$, what does uniform convergence of f_{n} to f on $[-1,1]$ means geometrically?
For $\epsilon=1 / 2$ and $b=1$ we have that $N=3>1^{2} /(1 / 2)=2$, and we get

$$
\left|f_{n}(x)-f(x)\right|<1 / 2 \text { or } f(x)-1 / 2<f_{n}(x)<f(x)+1 / 2
$$

for all $x \in[-1,1]$ and all $n \geq 3$.
Here are the graphs of $f(x)=x, f(x)+1 / 2, f(x)-1 / 2$, and $f_{n}(x)$ for $n=3,4,5$.

What do you notice about the graphs of $f_{n}(x)$ for $n=3,4,5$? Each lies within the $\epsilon=1 / 2$ "tube" about $f(x)$ on $[-1,1]$.
This is what uniform convergence means geometrically.
Recall the Cauchy Criterion for the convergence of a sequence of real numbers did not require a "guess" for the limit.

We have a similar criterion for uniform convergence.

Theorem 6.2.5 (Cauchy Criterion for Uniform Convergence). A sequence of functions (f_{n}) defined on $A \subseteq \mathbb{R}$ converges uniformly on A if and only if for every $\epsilon>0$ there exists an $N \in \mathbb{N}$ such that

$$
\left|f_{n}(x)-f_{m}(x)\right|<\epsilon
$$

for all $n, m \geq N$ and all $x \in A$.
Proof. Suppose that f_{n} converges uniformly to f on A.
Then for $\epsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|f_{n}(x)-f(x)\right|<\epsilon / 2$ for all $n \geq N$ and all $x \in A$.
Thus for $n, m \geq N$ and any $x \in A$ we have

$$
\begin{aligned}
\left|f_{n}(x)-f_{m}(x)\right| & =\left|f_{n}(x)-f(x)+f(x)-f_{m}(x)\right| \\
& \leq\left|f_{n}(x)-f(x)\right|+\left|f_{m}(x)-f(x)\right| \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon
\end{aligned}
$$

Now suppose that for all $\epsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|f_{n}(x)-f_{m}(x)\right|<\epsilon$ for all $n, m \geq N$ and all $x \in A$.
Then for each $x \in A$, the sequence $\left(f_{n}(x)\right)$ is Cauchy sequence of real numbers, and therefore it converges to a real number, call it $f(x)$.
We have found a function $f: A \rightarrow \mathbb{R}$ which is the pointwise limit of f_{n}.
By the Algebraic Limit and Order Limit Theorems we have for all $n \geq N$ and all $x \in A$ that

$$
\left|f_{n}(x)-f(x)\right|=\lim _{m \rightarrow \infty}\left|f_{n}(x)-f_{m}(x)\right| \leq \epsilon
$$

which says that f_{n} converges uniformly to f on A.
The stronger assumption of uniform convergence is enough to guarantee that the limit function of a sequence of continuous functions is continuous.
Theorem 6.2.6 (Continuous Limit Theorem). Let $\left(f_{n}\right)$ be a sequence of functions defined on $A \subseteq \mathbb{R}$ that converges uniformly on A to f. If each f_{n} is continuous at $c \in A$, then f is continuous at c too.
Proof. Fix $c \in A$, and for $\epsilon>0$ choose $N \in \mathbb{N}$ such that for all $x \in A$ we have

$$
\left|f_{N}(x)-f(x)\right|<\frac{\epsilon}{3} .
$$

By the continuity of f_{N} at c there exists $\delta>0$ such that whenever $|x-c|<\delta$ we have

$$
\left|f_{N}(x)-f_{N}(c)\right|<\frac{\epsilon}{3} .
$$

Thus

$$
|f(x)-f(c)| \leq\left|f(x)-f_{N}(x)\right|+\left|f_{N}(x)-f_{N}(c)\right|+\left|f_{N}(c)-f(c)\right|<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon
$$

whenever $|x-c|<\delta$, and so f is continuous at c.

