Math 341 Lecture #28 §6.2: Uniform Convergence

Recall that we constructed a continuous nowhere differentiable function by way of a convergent series of continuous functions:

$$g(x) = \sum_{n=0}^{\infty} h_n(x).$$

We showed that for each x the series converged, that the sequence of partials sums converged.

We give this "type" of convergence a name.

Definition 6.2.1. For each $n \in \mathbb{N}$ let $f_n : A \to \mathbb{R}$ for $A \subseteq \mathbb{R}$. The sequence (f_n) converges pointwise on A to a function $f : A \to \mathbb{R}$ if for all $x \in A$ the sequence of real numbers $f_n(x)$ converges to f(x).

Notations for this pointwise convergence of f_n to f on A are

$$f_n \to f$$
, $\lim f_n = f$, $\lim_{n \to \infty} f_n(x) = f(x)$,

where the domain A, not written, is understood.

Example 6.2.2. (ii) For $n \in \mathbb{N}$, let $g_n(x) = x^n$ on the domain A = [0, 1]. Here are the graphs of g_1, g_2, g_3, g_4 .

We notice that $g_n(1) = 1$ for all $n \in \mathbb{N}$, so that

$$\lim_{n \to \infty} g_n(1) = 1$$

For $0 \le x < 1$, we have that

$$\lim_{n \to \infty} g_n(x) = 0$$

Although each g_n is differentiable (and hence continuous) on A, the limit function

$$g(x) = \begin{cases} 0 & \text{if } 0 \le x < 1, \\ 1 & \text{if } x = 1, \end{cases}$$

is not continuous on A.

We have $g_n \to g$ pointwise: this sequence of continuous functions converges to a discontinuous function.

This says that pointwise convergence of a series of continuous functions is not enough to guarantee the limit function if continuous; we need a stronger "type" of convergence.

Definition 6.2.3. Let f_n be a sequence of functions defined on $A \subseteq \mathbb{R}$. We say that (f_n) converges uniformly on A to a limit function f on A if for every $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that $|f_n(x) - f(x)| < \epsilon$ for all $x \in A$ whenever $n \ge N$.

Certainly, uniform convergence implies pointwise convergence, but the converse is false (as we have seen), so that uniform convergence is a stronger "type" of convergence than pointwise convergence.

Example. 6.2.4. (i) Let

$$g_n(x) = \frac{1}{n(1+x^2)}.$$

For any $x \in \mathbb{R}$, we see that $g_n(x) \to 0$, so that g_n converges pointwise to g(x) = 0. Is this convergence uniform on \mathbb{R} ?

Well, since $1/(x^2 + 1) \le 1$ for all $x \in \mathbb{R}$, we have

$$|g_n(x) - g(x)| = \left|\frac{1}{n(x^2 + 1)} - 0\right| \le \frac{1}{n}.$$

Thus for a given $\epsilon > 0$ we can choose $N \ge 1/\epsilon$, a choice of N that is independent of $x \in \mathbb{R}$, so that $|g_n(x) - g(x)| < \epsilon$ for all $x \in \mathbb{R}$ whenever $n \ge N$.

This says that g_n converges uniformly to g on \mathbb{R} .

(ii) It is "easy" to guess that the sequence of functions

$$f_n(x) = \frac{x^2 + nx}{n}$$

converges pointwise to f(x) = x on all of \mathbb{R} .

Investigating whether this convergence is uniform, we consider

$$|f_n(x) - f(x)| = \left|\frac{x^2 + nx}{n} - x\right| = \left|\frac{x^2 + nx - nx}{n}\right| = \frac{x^2}{n}$$

Asking that $|f_n(x) - f(x)| < \epsilon$ for $\epsilon > 0$ requires that we choose $N \in \mathbb{N}$ according to

$$N > \frac{x^2}{\epsilon}.$$

This says that we cannot choose one value of N that works for all $x \in \mathbb{R}$, and so the pointwise convergence of f_n to f is not uniform on \mathbb{R} .

If instead, we restrict the domain of f_n to the compact subset [-b, b] (for b > 0), then we can get uniform convergence of f_n to f by choosing

$$N > \frac{b^2}{\epsilon}$$

That is we have for all $x \in [-b, b]$ that

$$|f_n(x) - f(x)| = \frac{x^2}{n} \le \frac{b^2}{n} \le \frac{b^2}{N} < \epsilon$$

for all $n \geq N$.

For b = 1, what does uniform convergence of f_n to f on [-1, 1] means geometrically? For $\epsilon = 1/2$ and b = 1 we have that $N = 3 > 1^2/(1/2) = 2$, and we get

$$|f_n(x) - f(x)| < 1/2 \text{ or } f(x) - 1/2 < f_n(x) < f(x) + 1/2$$

for all $x \in [-1, 1]$ and all $n \ge 3$.

Here are the graphs of f(x) = x, f(x) + 1/2, f(x) - 1/2, and $f_n(x)$ for n = 3, 4, 5.

What do you notice about the graphs of $f_n(x)$ for n = 3, 4, 5? Each lies within the $\epsilon = 1/2$ "tube" about f(x) on [-1, 1].

This is what uniform convergence means geometrically.

Recall the Cauchy Criterion for the convergence of a sequence of real numbers did not require a "guess" for the limit.

We have a similar criterion for uniform convergence.

Theorem 6.2.5 (Cauchy Criterion for Uniform Convergence). A sequence of functions (f_n) defined on $A \subseteq \mathbb{R}$ converges uniformly on A if and only if for every $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that

$$|f_n(x) - f_m(x)| < \epsilon$$

for all $n, m \ge N$ and all $x \in A$.

Proof. Suppose that f_n converges uniformly to f on A.

Then for $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $|f_n(x) - f(x)| < \epsilon/2$ for all $n \ge N$ and all $x \in A$.

Thus for $n, m \ge N$ and any $x \in A$ we have

$$|f_n(x) - f_m(x)| = |f_n(x) - f(x) + f(x) - f_m(x)| \\\leq |f_n(x) - f(x)| + |f_m(x) - f(x)| \\< \frac{\epsilon}{2} + \frac{\epsilon}{2} \\= \epsilon.$$

Now suppose that for all $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $|f_n(x) - f_m(x)| < \epsilon$ for all $n, m \ge N$ and all $x \in A$.

Then for each $x \in A$, the sequence $(f_n(x))$ is Cauchy sequence of real numbers, and therefore it converges to a real number, call it f(x).

We have found a function $f : A \to \mathbb{R}$ which is the pointwise limit of f_n .

By the Algebraic Limit and Order Limit Theorems we have for all $n \ge N$ and all $x \in A$ that

$$|f_n(x) - f(x)| = \lim_{m \to \infty} |f_n(x) - f_m(x)| \le \epsilon$$

which says that f_n converges uniformly to f on A.

The stronger assumption of uniform convergence is enough to guarantee that the limit function of a sequence of continuous functions is continuous.

Theorem 6.2.6 (Continuous Limit Theorem). Let (f_n) be a sequence of functions defined on $A \subseteq \mathbb{R}$ that converges uniformly on A to f. If each f_n is continuous at $c \in A$, then f is continuous at c too.

Proof. Fix $c \in A$, and for $\epsilon > 0$ choose $N \in \mathbb{N}$ such that for all $x \in A$ we have

$$|f_N(x) - f(x)| < \frac{\epsilon}{3}$$

By the continuity of f_N at c there exists $\delta > 0$ such that whenever $|x - c| < \delta$ we have

$$|f_N(x) - f_N(c)| < \frac{\epsilon}{3}.$$

Thus

$$|f(x) - f(c)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(c)| + |f_N(c) - f(c)| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$

whenever $|x - c| < \delta$, and so f is continuous at c.