Math 341 Lecture #28
§6.2: Uniform Convergence

Recall that we constructed a continuous nowhere differentiable function by way of a
convergent series of continuous functions:

g@) = 3 ha(a).

We showed that for each x the series converged, that the sequence of partials sums
converged.

We give this “type” of convergence a name.

Definition 6.2.1. For each n € Nlet f, : A — R for A C R. The sequence (f,)
converges pointwise on A to a function f : A — R if for all x € A the sequence of real
numbers f,(z) converges to f(x).

Notations for this pointwise convergence of f,, to f on A are

where the domain A, not written, is understood.
Example 6.2.2. (ii) For n € N, let g,(x) = 2™ on the domain A = [0, 1].
Here are the graphs of g1, g2, 93, 94.
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We notice that g,(1) =1 for all n € N, so that

g gD =1
For 0 <z < 1, we have that
lim g,(x) = 0.
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Although each g, is differentiable (and hence continuous) on A, the limit function

(2) 0 ifo<e <1,
xT) =
g 1 ifr=1,

is not continuous on A.

We have g, — g pointwise: this sequence of continuous functions converges to a discon-
tinuous function.

This says that pointwise convergence of a series of continuous functions is not enough to
guarantee the limit function if continuous; we need a stronger “type” of convergence.

Definition 6.2.3. Let f, be a sequence of functions defined on A C R. We say that
(fn) converges uniformly on A to a limit function f on A if for every € > 0 there exists
an N € N such that |f,(z) — f(z)| < € for all x € A whenever n > N.

Certainly, uniform convergence implies pointwise convergence, but the converse is false
(as we have seen), so that uniform convergence is a stronger “type” of convergence than
pointwise convergence.

Example. 6.2.4. (i) Let
1

() = ——.
For any = € R, we see that g,(x) — 0, so that g, converges pointwise to g(z) = 0.
Is this convergence uniform on R?

Well, since 1/(z% +1) < 1 for all z € R, we have

1

lgn(z) — g(z)| = m

e
n

Thus for a given € > 0 we can choose N > 1/e, a choice of N that is independent of
x € R, so that |g,(x) — g(x)| < € for all x € R whenever n > N.

This says that g, converges uniformly to g on R.

(ii) It is “easy” to guess that the sequence of functions

fulz) = o’ 4 nx

n
converges pointwise to f(z) = x on all of R.

Investigating whether this convergence is uniform, we consider

| ful2) — fl2)| = @ tnr | |a®+ne—ne

n n

Asking that | f,,(z) — f(z)| < € for € > 0 requires that we choose N € N according to

N > —.
€



This says that we cannot choose one value of N that works for all € R, and so the
pointwise convergence of f,, to f is not uniform on R.

If instead, we restrict the domain of f,, to the compact subset [—b, b] (for b > 0), then we
can get uniform convergence of f,, to f by choosing

b2
N > —.
€

That is we have for all x € [—b,b] that

I2

() = f(2)] = — <

b2
— <
n

_N<€

S|

for alln > N.
For b = 1, what does uniform convergence of f, to f on [—1, 1] means geometrically?
For € = 1/2 and b = 1 we have that N = 3 > 12/(1/2) = 2, and we get

(@) = (@) < 1/20r fz) = 1/2 < fulz) < f(z) +1/2
for all z € [—1,1] and all n > 3.
Here are the graphs of f(z) =z, f(x) +1/2, f(z) — 1/2, and f,(z) for n = 3,4, 5.

What do you notice about the graphs of f,(z) for n = 3,4,57 Each lies within the
€ = 1/2 “tube” about f(x) on [—1,1].

This is what uniform convergence means geometrically.

Recall the Cauchy Criterion for the convergence of a sequence of real numbers did not
require a “guess” for the limit.

We have a similar criterion for uniform convergence.



Theorem 6.2.5 (Cauchy Criterion for Uniform Convergence). A sequence of
functions (f,,) defined on A C R converges uniformly on A if and only if for every e > 0
there exists an N € N such that

|fn(x) - fm(‘r” <€
for all n,m > N and all x € A.
Proof. Suppose that f,, converges uniformly to f on A.

Then for € > 0 there exists N € N such that |f,(z) — f(z)| < €/2 for all n > N and all
z € A.

Thus for n,m > N and any z € A we have

() = fn ()| = |fu(x) = f(2) + f(2) = fn ()]
< [fal) = ()] + [ f(2) = f(2)]
<5+3
=e
Now suppose that for all € > 0 there exists N € N such that |f,(z) — fi.(z)| < € for all
n,m > N and all x € A.

Then for each z € A, the sequence (f,(z)) is Cauchy sequence of real numbers, and
therefore it converges to a real number, call it f(x).

We have found a function f : A — R which is the pointwise limit of f,,.

By the Algebraic Limit and Order Limit Theorems we have for all n > N and all z € A
that

fule) = £@)] = Tim [fu(x) ~ ful@)] <
which says that f, converges uniformly to f on A. 0

The stronger assumption of uniform convergence is enough to guarantee that the limit
function of a sequence of continuous functions is continuous.

Theorem 6.2.6 (Continuous Limit Theorem). Let (f,) be a sequence of functions
defined on A C R that converges uniformly on A to f. If each f,, is continuous at ¢ € A,

then f is continuous at ¢ too.
Proof. Fix ¢ € A, and for € > 0 choose N € N such that for all z € A we have
€
|fn(z) = flz)] < 5.

3

By the continuity of fy at ¢ there exists 6 > 0 such that whenever |z — ¢| < § we have
€
[fvla) = fvle)l < 5.
Thus
€ € €

(@) = f)l < [f(2) = fw(@)] + |fn(@) = vl + [ fnle) = flOl < g+ 3+ 5=

whenever |z — ¢| < 4, and so f is continuous at c. O



