Math 341 Lecture #29
§6.3: Uniform Convergence and Differentiation

We have seen that a pointwise converging sequence of continuous functions need not have
a continuous limit function; we needed uniform convergence to get continuity of the limit
function.

What can we say about the differentiability of the limit function of a pointwise converging

sequence of differentiable functions?
The sequence of differentiable h,,(z) = 2'*/2"=Y 2 € [~1, 1], converges pointwise to the
nondifferentiable h(z) = ; we will need to assume more about the pointwise converging

sequence of differentiable functions to ensure that the limit function is differentiable.

Theorem 6.3.1 (Differentiable Limit Theorem). Let f, — f pointwise on the
closed interval [a, b], and assume that each f, is differentiable. If (f),) converges uniformly
on [a,b] to a function g, then f is differentiable and f" = g.

Proof. Let € > 0 and fix ¢ € [a, b].
Our goal is to show that f'(c) exists and equals g(c).

To this end, we will show the existence of § > 0 such that for all 0 < |z — ¢| < §, with
x € |[a, b], we have

f(xa)::f(c)_g(c) <€
which implies that

exists and is equal to g(c).

The way forward is to replace (f(x) — f(c))/(x — ¢) — g(c) with expressions we can
hopefully control:

f(x) = f(o)

Tr —cC

f(.%') _ f(c> . fn<x> — fn(c) + fn(m) B fn(c)

= fale) + fr(e) = g(c)
< ‘f(x) —f(e) _ fulz) = fulo)

—9(0)‘ = '

N w—f;(c) +1f4(¢) — g(e)l.

The second and third expressions we can control respectively by the differentiability of
fn and the uniformly convergence of f] to g.

It is the first term that will take some effort to control.
Let = € [a, b] such that x # c.

Then either 2 > ¢ or x < ¢; assume that z > ¢ (the other case is similar).



For m,n € N, the function f,, — f, is differentiable on [c, x|, and so by the Mean Value
Theorem there exists « € (¢, z) such that

f;n(a) . f,/l(a) — (fm<l’> — fn<x>> — (fm(C) — fn(c))

Tr—cC

Rearranging the right hand side of this gives

f7/n<a> . fr/L(O‘) _ fm(x> B fm(c) - fn(x) — fn(c)

Tr—cC r—cC

Since (f!) converges uniformly to g we have by the Cauchy Criterion for Uniform Con-
vergence the existence of N; € N such that for all m,n > N; we have

FAOEFACIES

Without the uniform convergence of f) to g, we would not have been able to do this
because the o depends on m,n.

Putting the pieces together we have

fm<x) — fm(c) . fn(I) — fn(c)

r —C r —C

€

= fla) = fale)] < §

Because f,, — f (pointwise convergence), we can use the Order Limit Theorem to control
the first expression by taking the limit as m — oo:

f@) = fle)  falz) — fule)

r —cC Tr —cC

<

Wl o

By the uniform convergence of f/ to g we have control of the third expression: there is
Ny € N such that for all n > N, we have

£2(e) = g(0)] < 5.

We settle the choice of N needed to control the second expression: N = max{Ny, Ny}.

Then the differentiability of fy gives the existence of § > 0 such that when 0 < [z —¢| < §
with = € [a, b], we have
fn(z) — fn(c)

Tr—cC

€
< .

_ /
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We now have the choice of N and 0 < |z — ¢| < § with z € [a, b], such that

f@) = fle) g(c)’ < ’f(w) —fle)  fn(@) = fnle)| | | fn(x) = fn(e)

r —C r —cC r —cC r —cC

_|_

— In(0)

+1fn(e) = g(c)]

<€+€+€_
373737 ¢



This shows that f’(c) exists and is equal to g(c).

As ¢ € [a,b] was arbitrary, we conclude that f is differentiable on [a,b] and satisfies
=g O
In the hypothesis of Theorem 6.3.1 we assumed that f,, — f and (f]) converged uniformly
to g.

But doesn’t uniform convergence of f/ to g almost, nearly, within ¢, imply the uniform
convergence of f,, to f?7 Not quite as it is possible for f,, to diverge with f] converging,
ie., fu(xr) =n — oo while f/ =0 — 0.

Theorem 6.3.2. Let (f,) be a sequence of differentiable functions defined on a closed
interval [a,b], and assume (f),) converges uniformly to a function g on [a,b]. If there
exist a point xy € [a,b] such that f,(zo) is a convergent sequence, then (f,) converges
uniformly.

Combining the previous two theorems gives us a better convergence result.

Theorem 6.3.3. Let (f,) be a sequence of differentiable functions on the closed interval
[a,b], and assume (f/) converges uniformly to a function g on [a,b]. If there is a point
xy € |a,b] such that f,(x¢) is a convergent sequence, then (f,,) converges uniformly, and
the limit function f = lim f,, is differentiable with f’ = g.

Proof. All we need to do is recognize that by Theorem 6.3.2, we have uniform convergence
of (f,) to a function f, which implies that f, converges pointwise to f.

Then we apply Theorem 6.3.1. ([l

Example. Consider the sequence of functions

fa(z) = In1 + na”) ;rnm2>, z € [1,2].

Here f,(1) converges to 0, and the sequence of derivatives

2nx o
2n(1 +na?) 1+ nz?’

fulz) = z €[l,2]

converges pointwise to g(z) =0, z € [0, 2].

The convergence of f! to g is uniform on [1, 2] because |z| < 2 and 1 + nz? > n implies

‘ x ‘ || <2

1 4+ na? T 14nz2 T on

Then by Theorem 6.3.3, the sequence (f,) converges uniformly (something not easily
proved directly) and the limit function f = lim f,, is differentiable with f’ = g.

Here f(z) = 0 for = € [1,2] whose derivative is 0.



