
Math 341 Lecture #29
§6.3: Uniform Convergence and Differentiation

We have seen that a pointwise converging sequence of continuous functions need not have
a continuous limit function; we needed uniform convergence to get continuity of the limit
function.

What can we say about the differentiability of the limit function of a pointwise converging
sequence of differentiable functions?

The sequence of differentiable hn(x) = x1+1/(2n−1), x ∈ [−1, 1], converges pointwise to the
nondifferentiable h(x) = x; we will need to assume more about the pointwise converging
sequence of differentiable functions to ensure that the limit function is differentiable.

Theorem 6.3.1 (Differentiable Limit Theorem). Let fn → f pointwise on the
closed interval [a, b], and assume that each fn is differentiable. If (f ′n) converges uniformly
on [a, b] to a function g, then f is differentiable and f ′ = g.

Proof. Let ε > 0 and fix c ∈ [a, b].

Our goal is to show that f ′(c) exists and equals g(c).

To this end, we will show the existence of δ > 0 such that for all 0 < |x − c| < δ, with
x ∈ [a, b], we have ∣∣∣∣f(x)− f(c)

x− c
− g(c)

∣∣∣∣ < ε

which implies that

f ′(c) = lim
x→c

f(x)− f(c)

x− c
exists and is equal to g(c).

The way forward is to replace (f(x) − f(c))/(x − c) − g(c) with expressions we can
hopefully control:∣∣∣∣f(x)− f(c)

x− c
− g(c)

∣∣∣∣ =

∣∣∣∣f(x)− f(c)

x− c
− fn(x)− fn(c)

x− c
+
fn(x)− fn(c)

x− c

− f ′n(c) + f ′n(c)− g(c)

∣∣∣∣
≤

∣∣∣∣f(x)− f(c)

x− c
− fn(x)− fn(c)

x− c

∣∣∣∣
+

∣∣∣∣fn(x)− fn(c)

x− c
− f ′n(c)

∣∣∣∣ + |f ′n(c)− g(c)|.

The second and third expressions we can control respectively by the differentiability of
fn and the uniformly convergence of f ′n to g.

It is the first term that will take some effort to control.

Let x ∈ [a, b] such that x 6= c.

Then either x > c or x < c; assume that x > c (the other case is similar).



For m,n ∈ N, the function fm − fn is differentiable on [c, x], and so by the Mean Value
Theorem there exists α ∈ (c, x) such that

f ′m(α)− f ′n(α) =
(fm(x)− fn(x))− (fm(c)− fn(c))

x− c
.

Rearranging the right hand side of this gives

f ′m(α)− f ′n(α) =
fm(x)− fm(c)

x− c
− fn(x)− fn(c)

x− c
.

Since (f ′n) converges uniformly to g we have by the Cauchy Criterion for Uniform Con-
vergence the existence of N1 ∈ N such that for all m,n ≥ N1 we have

|f ′m(α)− f ′n(α)| < ε

3
.

Without the uniform convergence of f ′n to g, we would not have been able to do this
because the α depends on m,n.

Putting the pieces together we have∣∣∣∣fm(x)− fm(c)

x− c
− fn(x)− fn(c)

x− c

∣∣∣∣ = |f ′m(α)− f ′n(α)| < ε

3
.

Because fn → f (pointwise convergence), we can use the Order Limit Theorem to control
the first expression by taking the limit as m→∞:∣∣∣∣f(x)− f(c)

x− c
− fn(x)− fn(c)

x− c

∣∣∣∣ ≤ ε

3
.

By the uniform convergence of f ′m to g we have control of the third expression: there is
N2 ∈ N such that for all n ≥ N2 we have

|f ′n(c)− g(c)| < ε

3
.

We settle the choice of N needed to control the second expression: N = max{N1, N2}.
Then the differentiability of fN gives the existence of δ > 0 such that when 0 < |x−c| < δ
with x ∈ [a, b], we have ∣∣∣∣fN(x)− fN(c)

x− c
− f ′N(c)

∣∣∣∣ < ε

3
.

We now have the choice of N and 0 < |x− c| < δ with x ∈ [a, b], such that∣∣∣∣f(x)− f(c)

x− c
− g(c)

∣∣∣∣ ≤ ∣∣∣∣f(x)− f(c)

x− c
− fN(x)− fN(c)

x− c

∣∣∣∣ +

∣∣∣∣fN(x)− fN(c)

x− c
− f ′N(c)

∣∣∣∣
+ |f ′N(c)− g(c)|

<
ε

3
+
ε

3
+
ε

3
= ε.



This shows that f ′(c) exists and is equal to g(c).

As c ∈ [a, b] was arbitrary, we conclude that f is differentiable on [a, b] and satisfies
f ′ = g. �

In the hypothesis of Theorem 6.3.1 we assumed that fn → f and (f ′n) converged uniformly
to g.

But doesn’t uniform convergence of f ′n to g almost, nearly, within ε, imply the uniform
convergence of fn to f? Not quite as it is possible for fn to diverge with f ′n converging,
i.e., fn(x) = n→∞ while f ′n = 0→ 0.

Theorem 6.3.2. Let (fn) be a sequence of differentiable functions defined on a closed
interval [a, b], and assume (f ′n) converges uniformly to a function g on [a, b]. If there
exist a point x0 ∈ [a, b] such that fn(x0) is a convergent sequence, then (fn) converges
uniformly.

Combining the previous two theorems gives us a better convergence result.

Theorem 6.3.3. Let (fn) be a sequence of differentiable functions on the closed interval
[a, b], and assume (f ′n) converges uniformly to a function g on [a, b]. If there is a point
x0 ∈ [a, b] such that fn(x0) is a convergent sequence, then (fn) converges uniformly, and
the limit function f = lim fn is differentiable with f ′ = g.

Proof. All we need to do is recognize that by Theorem 6.3.2, we have uniform convergence
of (fn) to a function f , which implies that fn converges pointwise to f .

Then we apply Theorem 6.3.1. �

Example. Consider the sequence of functions

fn(x) =
ln(1 + nx2)

2n
, x ∈ [1, 2].

Here fn(1) converges to 0, and the sequence of derivatives

f ′n(x) =
2nx

2n(1 + nx2)
=

x

1 + nx2
, x ∈ [1, 2]

converges pointwise to g(x) = 0, x ∈ [0, 2].

The convergence of f ′n to g is uniform on [1, 2] because |x| ≤ 2 and 1 + nx2 ≥ n implies∣∣∣∣ x

1 + nx2
− 0

∣∣∣∣ =
|x|

1 + nx2
≤ 2

n
.

Then by Theorem 6.3.3, the sequence (fn) converges uniformly (something not easily
proved directly) and the limit function f = lim fn is differentiable with f ′ = g.

Here f(x) = 0 for x ∈ [1, 2] whose derivative is 0.


